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Abstract. We provide a proof using HOL and SPIN of convergence for
the Routing Information Protocol (RIP), an internet protocol based on
distance vector routing. We also calculate a sharp realtime bound for this
convergence. This extends existing results to deal with the RIP standard
itself, which has complexities not accounted for in theorems about ab-
stract versions of the protocol. Our work also provides a case study in
the combined use of a higher-order theorem prover and a model checker.
The former is used to express abstraction properties and inductions, and
structure the high-level proof, while the latter deals efficiently with case
analysis of finitary properties.

1 Introduction

The high connectivity on which the Internet relies is enabled by scalable and
robust protocols that enable routers connecting different physical networks to
forward packets toward destinations described in a uniform addressing system.
The first Internet routing protocols were based on distance vector routing, which
uses information about distance and direction to a destination to route packets.
The first such protocol standardized by the Internet Engineering Task Force
(IETF) was the Routing Information Protocol (RIP), and this protocol remains
in widespread use today. Although the correctness of distance vector routing has
been proved for theoretical versions of the algorithm, the RIP standard itself
has never been proved to have some of the properties it is expected to possess.
Since there exist non-trivial differences between the abstract version and the
standard itself, proofs of some key properties of the standard are worthwhile.
In this paper we carry out the proof of convergence using a combination of the
HOL [5,9] higher-order theorem prover and the SPIN model checker [10,17].
The automated assistance reduces the burden of case analysis in parts of the
standard where manual analysis would prove tedious. Moreover, the HOL/SPIN
proof provides high confidence for RIP and insights into the techniques needed
to address other routing protocols, most of which are more complex than RIP.
Routing protocols are meant to be robust with respect to failures of links and
routers. If there is a failure then the routers communicate this information and
routing tables are updated to route around the failed link or router. This process
takes some time since routers cannot possess instantaneous global knowledge
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of network characteristics. They therefore pass information that is incomplete
and, if the protocol has the right characteristics, they eventually converge on a
suitable set of alternative routes. We have two results: we show that the RIP
protocol will converge after a failure, and we calculate a sharp realtime bound on
the time this will take as a function of the radius of the network. Both results are
based on assumptions about network reliability and timing assumptions specified
in the RIP protocol.

The first proof concerns the convergence of the asynchronous distributed
Bellman-Ford protocol as specified in the IETF RIP standard [8,12]. The classic
proof of a ‘pure’ form of the protocol is given in [1]. Our result covers additional
features included in the standard to improve realtime response times (e.g. split
horizons and poison reverse). These features add additional cases to be consid-
ered in the proof, but the automated support reduces the impact of this complex-
ity. Adding these extensions makes the theory better match the standard, and
hence also its implementations. Qur proof also uses a different technique from
the one in [1], providing some noteworthy properties about network stability.

Our second proof provides a sharp realtime convergence bound on RIP in
terms of the radius of the network around its nodes. In the worst case, the
Bellman-Ford protocol has a convergence time as bad as the number of nodes
in the network. However, if the maximum number of hops any source needs
to traverse to reach a destination is k (the radius around the destination) and
there are no link changes, then RIP will converge in & timeout intervals for this
destination. From our first proof of convergence, it is easy to see that this occurs
within 2 - (k — 1) intervals, but the proof of the sharp bound of k is complicated
by the number of cases that need to be checked: we show how to use automated
support to do this verification, based on the approach developed in the previous
case study supplemented by a new invariant. Thus, if a network has a maximum
radius of 5 around each of its destinations, then it will converge in at most 5
intervals, even if the network has 100 nodes. Assuming the timing intervals in
the RIP standard, such a network will converge within 15 minutes if there are
no link changes.

The basis of our verification is the RIP standard. Early implementations of
distance vector routing were incompatible, so all of the routers running RIP in
a domain needed to use the same implementation. Users and implementors were
led to correct this problem by providing a specification that would define precise
protocols and packet formats, leading to the first version of the standard [8]. In
time this standard was revised to a second version [12]. At the level of abstraction
we use here, our proof is applicable to both of these versions.

There have been a variety of successful formal studies of communication pro-
tocols. However, most of the studies to date have focused on endpoint protocols
(that is, protocols between pairs of hosts) using models that involve two or three
processes (representing the endpoints, or the endpoints and an adversary, for
instance). Studies of routing protocols must have a different flavor since a proof
that works for two or three routers is not interesting unless it can be general-



ized. Routing protocols generally have the following attributes which influence
the way formal verification techniques can be applied:

1. An (essentially) unbounded number of replicated, simple processes execute
concurrently.

2. Dynamic connectivity is assumed and fault tolerance is required.

Processes are reactive systems with a discrete interface of modest complexity.

4. Real time is important and many actions are carried out with some timeout
limit or in response to a timeout.
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Most routing protocols have other attributes such as latencies of information flow
(limiting, for example, the feasibility of a global concept of time) and the need to
protect network resources. These attributes sometimes make the protocols more
complex. For instance, the asynchronous version of the Bellman-Ford protocol
is much harder to prove correct than the synchronous version [1], and the RIP
standard is still harder to prove correct because of the addition of complicating
optimizations intended to reduce latencies.

Following this introduction we give a description of the Routing Information
Protocol as specified in its standard. We then describe our formalization of RIP
in HOL and SPIN. In the fourth and fifth sections we show the convergence
of RIP and derive a sharp realtime bound for the convergence. In the sixth
section we provide some analysis of our methodology including a discussion of
the benefits of automation and some crude measurements of the complexity of
the proofs as viewed by the automated tools and the person carrying out the
verification respectively. Our final section summarizes the conclusions.

2 Routing Information Protocol

The RIP protocol specification is given in [8,12] and a good exposition can be
found in [11]. We start by describing the general networking environment and the
task of a routing protocol. Then we give a brief description of the RIP protocol,
including its pseudocode (Appendices A.1, A.2). Finally, we discuss differences
between the standard and the underlying theory and the way they affect protocol
requirements.

2.1 Routing in Internetworks

An internet is a family of networks connected by routers. Figure 1 illustrates
an internetwork with four networks (shown as clouds) and four routers (shown
as black squares). The goal of the routers is to forward packets between hosts
(shown as circles) that are attached to the networks. The routers use routing
tables which they develop through running a distributed routing protocol. Packets
from hosts travel in hops across networks linked by routers. Each router chooses
a link on which to forward the packet based on the packet’s destination address
and other parameters. In order to be able to make good forwarding decisions,
routers need to maintain partial topology information in the routing tables.



Fig. 1. An Internet

The aim of a routing protocol is to establish a procedure for updating these
tables. In most cases, routing information can be exchanged only locally (i.e.
between neighboring routers). However, the overall goal of a routing protocol
is to establish good global paths (between distant hosts on the internet). An
interface is the link between a router and a network. In this example, router
rl has interfaces i1, 2 and 43, which connect it to the networks nl, n2 and
n3 respectively. Hosts hl and h2 belong to the network nl. Routers are said to
be neighbors if they have interfaces to a common network. In our example, all
routers are neighbors of 1, but r2 and r4 are not neighbors.

2.2 Routing Information Protocol

Each RIP router maintains a routing table. A routing table contains one entry
per destination network, representing the current best route to the destination.
An entry corresponding to destination d has the following fields:

— hops: number of hops to d (i.e. total number of routers that a message sent
along that route traverses before reaching the network d - this includes the
router where this entry resides). This is sometimes called a metric for d.

— nextR: next router along the route to d.

— nextlface: the interface that will be used to forward packets addressed to d.
It uniquely identifies the next network along the route.

Routers periodically advertise their routing tables to their neighbors. Upon
receiving an advertisement, the router checks whether any of the advertised
routes can be used to improve current routes. Whenever this is the case, the
router updates its current route to go through the advertising neighbor. Routes
are compared exclusively by their length, measured in the number of hops.

The value of hops must be an integer between 1 and 16, where 16 has the
meaning of infinity (a destination with hops attribute set to 16 is considered
unreachable). Hence, RIP will not be appropriate for internets that contain a
router and a destination network that are more than 15 hops apart from each
other.



Appendices A.1 and A.2 show pseudocode for RIP. A router advertises its
routes by broadcasting RIP packets to all of its neighbors. A RIP packet contains
a list of (destination, hops)-pairs. A receiving router compares its current metric
for destination to (1 + hops), which is the metric of the alternative route, and
updates the corresponding routing entry if the alternative route is shorter. There
is one exception to this rule—if the receiving router has the advertising router
as nextR for the route, it adopts the alternative route regardless of its metric.

Normally, a RIP packet contains information that reflects the advertising
router’s own routing table. This rule has an exception too—routers do not ad-
vertise routes on the interfaces through which they had been learned. Precisely,
if a route is learned over the interface i, it should be advertised on that inter-
face with hops set to 16 (infinity). This rule is called split horizon with poisoned
reverse and its purpose is to prevent creation of small routing loops.

Each routing table entry has a timer expire associated with it. Every time
an entry is updated (or created), expire is re-set to 180 seconds. Routers try
to advertise every 30 seconds, but due to network failures and congestion some
advertisements may not get through. If a route has not been refreshed for 180
seconds, the router will assume that there was a link failure, the destination
will be marked as unreachable and a special garbageCollect timer will be set to
120 seconds. If this timer expires before the entry gets updated, the route is
expunged from the table.

2.3 Standard vs. Theory

The mathematical theory behind RIP is described in [1] as the Asynchronous
Distributed Bellman-Ford Algorithm (ADBF). In the ADBF model, at every
point in time, a router is either idle, sending an advertisement, or receiving an
advertisement. The routing table is updated upon receiving an advertisement.
Details of the proof that ADBF finds shortest routes are presented in [1].

An interesting question is: ‘Can we use (essentially) the same proof to show
that RIP protocol converges to the set of shortest routes?” It turns out that
the answer is quite certainly ‘no’. Although motivated by the ADBF, RIP stan-
dard [8,12] differs from it in several important details:

— ADBEF has ‘more powerful bookkeeping’. In RIP, routers keep track of only
one (current best) route to each destination. On the other hand, ADBF
nodes keep, for each destination, the most recent routes through each of
the neighbors. Correspondingly, this would be reflected in the pseudocode
(Appendices A.1, A.2) by all subscript indices becoming (dest,neighbor),
instead of just dest. This makes ADBF more flexible, which comes at the
expense of maintaining a larger data structure.

— RIP has ‘blind’ updates. As a consequence of the previous difference, RIP
routers need to separately handle the case when an advertisement is received
from a neighbor which is already nextR for the route. In this case, the receiv-
ing router can do nothing better than blindly accept the advertised route,
regardless of its length. ADBF does not have this special case.



— RIP’s route length is bounded. RIP can handle routes of at most 15 hops.
Distances of 16 or more hops are all considered equivalent to infinity. This
is a practical optimization intended to balance the tradeoff between quicker
loop elimination and greater range for routing information propagation.

— RIP has the split horizon with poisoned reverse rule. This is another engi-
neering optimization, not present in ADBF.

The first of the above gaps alone would be enough to make proofs of conver-
gence requirements for RIP substantially different from proofs for ADBF. Besides
matching the RIP setting closely, our proof technique also gives useful insights
about the speed of propagation of updates, which can be used for establishing
timing bounds for convergence.

3 Formal Specification of RIP

In the previous section, we gave a short description of the RIP standard along
with its pseudo-code. In this section, we present a formal specification of the
protocol that can be analyzed by HOL90 and SPIN. First, we make some sim-
plifications of the protocol:

1. We observe that RIP (Appendices A.1, A.2) operates independently for every
destination, with no interaction between the state or events associated with
different destinations. This means that we need to specify and prove the
protocol only for a single destination and the result will hold for the general
version as well.

2. We only analyze the protocol in between topology changes. When the proto-
col starts, it may have any sound state to begin with. However, once it has
started, one must give the protocol a reasonable period of time to converge.
So we assume that there are no topology changes in the lifetime of the anal-
ysis. Under this assumption, the protocol indeed converges as we show in
Section 4. Moreover, in Section 5, we precisely characterize the time period
for which there must be no topology changes to guarantee convergence.

3. We abstract away from actual timing constraints. If topology changes are
ruled out, routes cannot be expired (ezpireg.s:) or deleted (garbageCollectjest ).
So the only timing constraint left is the time interval between periodic broad-
casts of advertisements. We model this by (a) enabling a router to broadcast
advertisements at any time (a safe abstraction), and (b) adding a fairness
assumption to the broadcast sequence.

We next specify RIP in HOL for analysis in the HOL90 theorem prover. Then
we model the protocol in Promela, the specification language for the SPIN model-
checker. The Promela modeling is straight-forward: it simply involves rewriting
the pseudo-code in terms of Promela’s C-like syntax, and SPIN’s event semantics.
The HOL specification is more involved, since we need to transform the pseudo-
code into a functional specification.



3.1 RIP in HOL

For a RIP router, the universe i/ is a bipartite, connected graph whose nodes
are partitioned into networks and routers, connected through interfaces. Routers
are always connected to at least two networks. We specify networks and routers
using distinct uninterpreted type variables: 'network, 'router. Now any specific
universe can be described simply by a function conn : ‘router — "network — bool,
that describes the interfaces—which routers and networks are connected with
each other. A function conn describes a wvalid universe U if (a) conn connects
each router to at least 2 networks, and (b) conn describes a connected graph.

When the RIP protocol starts operating in a universe i, it is given as input
a valid conn function, describing the topology of I/, and an initial state sg. The
protocol then seeks to compute paths from each router to the destination d. We
describe the HOL specification in three steps: (1) the state of the protocol, along
with an initial state assumption, (2) the processes that change the state and pass
messages to each other, and (3) the semantics of these processes in HOL, and
typical properties they are expected to satisfy.

Protocol State The goal of RIP is to compute an optimal path at each router
r to the destination network d. The path is described by a routing entry: the
number of hops to d, the next router (nextR) along this path, and the network
between r and nextR (nextN). RIP only computes paths of length less than 16;
destinations more than 16 hops away are considered unreachable.

The protocol state consists of a table of the current routing entries at each
router r, which we call the routing table (rtable). A protocol state is defined
as as a 3-tuple s : rtable whose components are hops : 'router — num and
nextN : ‘router — 'network and nextR : 'router — 'router. In addition, we want all
protocol states to be sound, where soundness is defined as follows:

Definition 1 (Soundness). A protocol state s = (hops, nextN, nextR) of a uni-
verse described by a valid conn is said to be sound with respect to d if

1. ¥r :'router.conn r (nextN(r)) A conn (nextR(r)) (nextN(r))
2. Vr :"router.1 < (hops(r)) < 16

3. ¥r :'router.(conn r d) = (hops(r) = 1) A (nextN(r) = d) A (nextR(r) =r)
4. ¥Yr :'router.m(conn r d) = (hops(r) > 1) A (nextN(r) # d) A (nextR(r) # r)

We stipulate that the initial state of the protocol, sg, must be sound. Observe
that soundness really has to do with the ‘local’ connections at a router, which
are typically configured by mechanisms external to RIP. By stipulating that the
initial state is sound, we require that the router is never deluded about its local
topology, otherwise there is no guarantee that it will ever discover global path
information. Put another way, if the system ever gets into an unsound state,
convergence cannot be guaranteed. Note however, that we can only assume the
initial state to be sound, we need to prove that all succeeding states will remain
sound under RIP.



Processes We represent different event handlers in the protocol by different
processes; they typically perform different kinds of actions and may do so in
parallel. As a result, there are three kinds of processes in the universe: each
router r has an advertising process (generating advertisements), and a routing
process (handling packet reception), and at each network net there is a network
process (performing broadcasts).

The advertising process persistently broadcasts route advertisements on each
of its connected networks. Each such advertisement is a tuple (src, hopcount),
saying that the broadcasting router src, knows of a path of length hopcount to
the destination d. Suppose the protocol state is s = (hops, nextN, nextR), then
the hopcount advertised by src on net may have the following values:

— if net = nextN(src), then hopcount = 16 (Infinity);
— otherwise, hopcount = hops(src).

When an advertisement is to be broadcast on network net, it is handed over
to the network process for net. The network process executes the broadcast by
attempting to deliver the incoming advertisement to all routers rcv connected
to the net. We do not assume that the network is reliable in any way, so it may
not deliver the advertisement to any router, or it may deliver it to some of the
routers in an arbitrary order. However, we make the following assumptions

— Fuairness: the network cannot ignore a router forever. So in any execution of
the network net, if a router src sends advertisements infinitely often, and rcv
is another router connected to net, the network process must deliver src’s
advertisements to rcv infinitely often.

— Zero Delay: We assume that if the network does deliver an advertisement, it
does so instantaneously.

We call the tuple (src,net,rcv, hopcount), corresponding to the delivery of
an advertisement, an advertisement event. Observe that the unreliability of
the networks in conjunction with the persistent broadcasts of the advertise-
ment processes allows many possible sequences of advertisement events. In fact,
the network and advertising processes can generate every possible sequence of
(src, net, rcv) tuples in advertisement events, subject to the fairness assumption
and the fact that src and rcv must both be connected to net. The only adver-
tisement field that depends on the network state is the hopcount.

The third process in the system is the routing process at reach router. The
routing process at router rcv reacts to incoming advertisements and updates
the routing table entry, (hops(rcv),nextN(rcv), nextR(rcv)), at rcv. Essentially,
if an advertisement, (src,hopcount), arriving at rcv through net, is such that
hopcount + 1 < hops(rcv) or src = nextR(rcv) A net = nextN(rcv), then the rout-
ing table at rcv is updated so that hops(rcv) = hopcount + 1 and nextN(rcv) =
net and nextR(rcv) = src. In HOL, we represent this process by a state up-
date function, update : rtable — (‘router % 'network * ‘router * num) — rtable,
which, given a protocol state, (hops, nextN, nextR), and an advertisement event
(src, net, rcv, hopcount), computes the new protocol state. The HOL code for the
update function is given for illustration in Appendix A.3.



Trace Semantics The observable behavior of the network and advertising pro-
cesses is essentially an infinite sequence of advertisement events. Therefore, we
choose to express the semantics of these processes as an event trace—an infi-
nite sequence of tuples (src;, net;, rcv;), representing advertisement events. Such
a trace is considered wvalid only if

— the trace is fair—Vry, 7o : 'router.Vi.3j > i.(src; =71) A (rcv; =1r2), and
— the events are possible—Vi.(conn src; net;) A (conn rcv; net;.)

The hopcount field of the advertisement can be filled in as follows: Suppose
that at the it" step (event) of the protocol, the state of the protocol is s; =
(hops, nextN, nextR), then

— if nextN(src;) = net;, then src; sends an advertisement (src;, 16) to rcv; in-
stantaneously via net;;

— otherwise, src; sends an advertisement (src;, hops(src;)) to rcv; instanta-
neously via net;.

Given an event trace, the routing processes react to the events and update
the protocol state. This produces an infinite state sequence of the protocol s;
defined as follows:

— Sp is any sound state
— si+1 = update s; (src;, net;, rcv;, hopcount; ), where the hopcount field is filled
in as described above.

Thus the semantics of the update processes is the state sequence it can generate
for a given event trace. All properties desired of the protocol are expressed and
proved in terms of this state sequence. In particular, the convergence theorem
states that, given any valid event trace, the states generated in the sequence
must converge to the optimal routing table.

3.2 RIP in Promela

Promela [10,17] is a natural specification language for network protocols. In ad-
dition to C-like programming constructs, it supports non-determinism, dynamic
processes, and synchronous/asynchronous channel communication between pro-
cesses. We translate the pseudo-code given in Appendices A.1, A.2 into Promela.
A fragment of the resulting Promela code corresponding to the routing process
is shown in Appendix A.4.

Asin the HOL specification, at each router, we have a routing process and an
advertisement process. The advertisements process is a simple non-terminating
while loop that keeps sending advertisement to all its neighboring networks. The
routing process waits for input advertisements and processes them as before.
Finally we have a network process for each network, which simply implements
the broadcast mechanism by taking advertisements sent to the network and
transporting them to the input buffers of all the routers connected to it. It is
only the network processes that know the topology of the network, the routing



and advertisement processes only know the networks they are directly connected
to.

Once all the above Promela processes are in place, we use SPIN to simulate
the protocol for sample topologies to check our model. We can also verify that
the protocol works for small topologies. A point worth noting is that in varying
the topologies, all we need to change is the encoding of the network processes.
The routing and advertising processes operate above this connection layer. In
effect, the network processes can pretend to have an arbitrary topology and
the routing/advertisement processes will not know the difference. We use this
property later in our SPIN proofs of convergence, where we fool a solitary update
process to believe it is part of a larger network.

4 Convergence of RIP

In this section we present a proof of convergence for RIP. We prove that, in the
absence of topology changes, RIP will find shortest routes to the destination d,
from every router inside the range of 15 hops.

4.1 Proof Results

On the outermost level, our proof uses induction on distance from the destina-
tion. For each router r, distance to d is defined as

D(r) = 1, if (conn r d)
11+ min{D(s) | s neighbor of r}, otherwise.

For k > 1, the k-circle around d is the set of routers
Cr = {r | D(r) <k}
The key notion in our proof is that of the k-stability:

Definition 2 (Stability). For k > 1, we say that the universe is k-stable if
both of the following properties hold:

(S1) Ewvery router from the k-circle has its metric set to the actual distance to
d. Moreover, if r is not connected to d, it has its nextR set to the first router
on some shortest path to d:

Vr.r € C, = hops(r) = D(r) A (—connr d = D(nextR(r)) = D(r) —1)
(S2) Every router outside the k-circle has its hops strictly greater than k:
Vr.r & Cr, = hops(r) > k.

Our goal is to prove that under any fair advertisement trace, the universe is
guaranteed to become k-stable, for every k& < 16. This proof will be carried out
by induction on k.

Recall our stipulation that the universe starts in a sound state. It is easy to
show that sound states are 1-stable, so this gives us the basis of induction:



Lemma 1. The universe U is initially 1-stable. [

A key property of k-stability is that once it is achieved, it is preserved for-
ever.This would not be true if our definition of stability did not contain condition
S2. This condition strengthens the induction hypothesis enough that we can in-
duct on k-stability.

Lemma 2 (Preservation of stability). For any k < 16, if the universe U
is k-stable at some point, then it remains k-stable after an arbitrary number of
advertisements. 0

Lemma 1 is easily proved in HOL using the definition of soundness. We also
prove Lemma 2 in HOL, and it involves a significantly larger case analysis.

Progress from k-stability to (k + 1)-stability happens gradually—more and
more routers start to conform to the conditions S1 and S2. This is why we need an
additional, more refined, definition of stability which captures individual routers,
rather than entire ‘circles’ of routers.

Definition 3. Given a k-stable universe, we say that a router r at distance k+1
from d is (k 4+ 1)-stable if it has an optimal route:

hops(r) = D(r) =k+1 A nextR(r) € Cy.

To prove that a k-stable universe eventually becomes (k4 1)-stable, it suffices
to show that every router at distance (k + 1) eventually becomes (k + 1)-stable.
This is the statement of the following lemma:

Lemma 3. For any k < 15, and any router r such that D(r) = k + 1, if the
universe U is k-stable at some point and the advertisement trace is fair, then r
will eventually become (k + 1)-stable. Moreover, r then remains (k + 1)-stable
indefinitely. U

One of the key facts used in the proof of this lemma is fairness of the advertise-
ment trace. Without fairness, neighbors of r would be allowed to simply stop
advertising to r at any point. This would keep r’s routing table unchanged and
hence prevent it from ever achieving (k + 1)-stability.

Observe that Lemma 3 only involves one router r at a distance k + 1 from
d. Starting from a k-stable state, we need to show that r converges to the cor-
rect value. Moreover, since all future states of the system are guaranteed to
be k-stable (Lemma 2), r will receive advertisements from only two kinds of
neighbors—those within the k-circle, and those outside it. This leads us to a
finitary abstraction of the system. We can then prove the lemma using SPIN,
which performs an exhaustive state search to prove that r will converge to the
right value.

However, we need to prove that the finitary abstraction is property-preserving.
This proof is done in HOL, by induction on the length of fair advertisement
traces. The abstraction proof is the crucial link that allows us to join the HOL
and SPIN results, without loss of rigor. The abstraction proof itself is rather



complex with a large case analysis. However, the effort is justified since the fini-
tary abstraction can then be used for multiple proofs with minor modifications.
This re-use can be seen in the proof statistics in Section 6 (Table 1). The ab-
straction proof is represented in the table as the HOL portion of the second
proof of Stability Preservation (Lemma 2).

Finally, using the fact that there are only finitely many routers, we easily
derive the Progress Lemma which proves our inductive step:

Lemma 4 (Progress). For any k < 15, if the universe U is k-stable at some
point, then U will eventually become and remain (k + 1)-stable indefinitely. [

The main result about the convergence of RIP is a corollary of the above
inductive argument:

Theorem 1 (Convergence of RIP). Starting from an arbitrary sound ini-
tial state, evolving under an arbitrary fair advertisement trace, the universe U
eventually becomes and remains 15-stable. U

4.2 Significance of the Results

Our proof, which we call the radius proof, differs from the one described in [1] for
the asynchronous Bellman-Ford algorithm. Rather than inducting on estimates
for upper and lower bounds for distances, we induct on the the radius of the
stable region around d. The proof has three attributes of interest:

1. It states a property about the RIP protocol, rather the asynchronous dis-
tributed Bellman-Ford algorithm.

2. The radius proof is more informative. It shows that correctness is achieved
quickly close to the destination, and more slowly further away. It also im-
plicitly estimates the number of advertisements needed to progress from
k-stability to (k + 1)-stability. We exploit this in the next section to show a
realtime bound on convergence.

3. It uses a combination of theorem proving and model checking. HOL is more
expressive and serves as the main platform. SPIN is used to treat large case
analyses.

5 Sharp Timing Bounds for RIP Stability

In the previous section we proved convergence for RIP conditioned on the fact
that the topology stays unchanged for some period of time. We now calculate
how big that period of time must be. To do this, we need to have some knowledge
about the times at which certain protocol events happen. In the case of RIP, we
use a single reliability assumption that describes the frequency of advertisements.

Fundamental Timing Assumption: There is a value A, such that during
every topology-stable time interval of the length A, each router gets at least
one advertisement from each of its neighbors. [



RIP routers normally try to advertise every 30 seconds. However, because of
congestion or some other condition, some packets may not go through. This is
why the standard prescribes that a failure to receive an advertisement within
180 seconds is treated as a link failure. Thus, A = 180 seconds satisfies the
Fundamental Timing Assumption for RIP. Notice that the assumption implies
fairness of the advertisement trace.

As before, we concentrate on a particular destination d. Our timing analysis
is based on the notion of weak k-stability.

Definition 4 (Weak stability). For 2 < k < 15, we say that the universe U
is weakly k-stable if all of the following conditions hold:

(WS1) U is (k — 1)-stable.
(WS2) Vr. D(r) =k = (r is k—stable V hops(r) > k).
(WS3) Vr. D(r) >k = hops(r) > k.

Weak k-stability is stronger than (k — 1)-stability, but weaker than k-stability.
The second disjunct in WS2 is what distinguishes it from the ordinary k-stability.
Similarly as before, we have the preservation lemma:

Lemma 5 (Preservation of weak stability). For any 2 < k < 15, if the
universe U is weakly k-stable at some time t, then it is weakly k-stable at any
time t' > t. 0

This lemma and all of the subsequent results in this section are stated using real
time. This is possible because of the Fundamental Timing Assumption, which
provides a connection between discrete advertisement events and continuous
time. Precisely, to show that some property P holds after a A time interval, it is
enough to prove that P holds after each router receives at least one advertisement,
from each of its neighbors.

Now we show that the initial state inevitably becomes weakly 2-stable after
RIP packets have been exchanged between every pair of neighbors:

Lemma 6 (Initial progress). If the universe U is in a sound state and the
topology does not change, U becomes weakly 2-stable after A time. 0

The main progress property says that it takes one A-interval to get from a
weakly k-stable state to a weakly (k 4+ 1)-stable state. This property is shown
in two steps. First we show that condition WS1 for weak (k + 1)-stability holds
after A:

Lemma 7. For any 2 < k < 15, if the universe is weakly k-stable at some time
t, then it is k-stable at time t + A. 0

Then we show the same for conditions WS2 and WS3. The following puts both
steps together:

Lemma 8 (Progress). For any 2 < k < 15, if the universe is weakly k-stable
at some time t, then it is weakly (k + 1)-stable at time t + A. [



Lemmas 5, 6, and 8 are proved in SPIN (Lemma 7 is contained in Lemma 8).
The technique for doing the proofs in SPIN is the same as in the previous section.
We find a finitary abstraction of the system starting from the time when the
universe if weakly k-stable. This abstraction allows us to prove the Lemmas in
SPIN for a single router.

The radius of the universe (around d) is the maximum distance from d:

R = maxz{D(r) | r is a router}.

The main theorem describes convergence time for a destination in terms of its
radius:

Theorem 2 (RIP convergence time). A sound universe of radius R becomes
15-stable within max{15,R} - A time, assuming that there were no topology
changes during that time interval. U

The theorem is an easy corollary of the preceding lemmas and is proved in HOL.
Consider a universe of radius R < 15. To show that it converges in R - A time,
observe what happens during each A-interval of time:

after A weakly 2-stable (by Lemma 6)
after 2- A weakly 3-stable (by Lemma 8)

after 3- A weakly 4-stable (by Lemma 8)

after (R — 1) - A weakly R-stable (by Lemma 8)
after R- A R-stable (by Lemma 7)

R-stability means that all the routers that are not more than R hops away from d
will have shortest routes to d. Since the radius of the universe is R, this includes
all routers.

An interesting observation is that progress from k-stability to (k+1)-stability
is not guaranteed to happen in less than 2- A time (we leave this to the reader).
Consequently, had we chosen to calculate convergence time using stability, rather
than weak stability, we would get a worse upper bound of 2-(R—1)-A. In
fact, our upper bound is sharp: in a linear topology, update messages can be
interleaved in such a way that convergence time becomes as bad as R - A.

Figure 2 shows an example that consists of k routers and has the radius &
with respect to d. Router r; is connected to d and has the correct metric. Router
ro also has the correct metric, but points in the wrong direction. Other routers
have no route to d. In this state, ro will ignore a message from ry, because that
route is no better than what ro (thinks it) already has. However, after receiving
a message from r3, to which it points, ro will update its metric to 16 and lose the
route. Suppose that, from this point on, messages are interleaved in such a way
that during every update interval, all routers first send their update messages and
then receive update messages from their neighbors. This will cause exactly one
new router to discover the shortest route during every update interval. Router
ro will have the route after the second interval, r3 after the third, ..., and rg
after the k-th. This shows that our upper bound of & - A is sharp.
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6 Analysis of Methodology

SPIN is extremely helpful for proving properties such as Lemma 8, which involve
tedious case analysis. To illustrate this, assuming weak k-stability at time ¢,
consider what it takes to show that condition WS2 for weak (k + 1)-stability
holds after A time. (WS1 will hold because of Lemma 7, but further effort is
required for WS3.) To prove WS2, let r be a router with D(r) = k + 1. Because
of weak k-stability at the time ¢, there are two possibilities for r: (1) r has a k-
stable neighbor, or (2) all of the neighbors of r have hops > k. To show that r will
eventually progress into either a (k4 1)-stable state or a state with hops > k+1,
we need to further break the case (2) into three subcases with respect to the
properties of the router that r points to: (2a) r points to s € C (the k-circle),
which is the only neighbor of r from Cy, or (2b) r points to s € Cf, but r has
another neighbor ¢t € C}, such that ¢ # s, or (2¢) r points to s ¢ Cj. Each of
these cases, branches into several further subcases based on the relative ordering
in which r, s and possibly ¢ send and receive update messages.

Doing such proofs by hand is difficult and prone to errors. Essentially, the
proof is a deeply-nested case analysis in which final cases are straight-forward
to prove—an ideal job for a computer to do! Our SPIN verification is divided
into four parts accounting for different kinds of topologies. Each part has a
distinguished process representing r and another processes modeling the envi-
ronment for r. An environment is an abstraction of the ‘rest of the universe’.
It generates all message sequences that could possibly be observed by r. SPIN
considered more cases than a manual proof would have required, 21,804 of them
altogether for Lemma 8, but it checked these in only 1.7 seconds of CPU time.
Even counting set-up time for this verification, this was a significant time-saver.
The resulting proof is probably also more reliable than a manual one.

Table 1 summarizes some of our experience with the complexity of the proofs
in terms of our automated support tools. The complexity of an HOL verification
for the human verifier is described with the following statistics measuring things



Table 1. Protocol Verification Effort on RIP Convergence

[Task [HOL [SPIN

Modeling RIP 495 lines, 19 defs, 20 lemmas |141 lines
Stability Preservation Once |9 lemmas, 119 cases, 903 steps
Stability Preservation Again|29 lemmas, 102 cases, 565 steps|207 lines, 439 states

Stability Progress Reuse Stability Preservation 285 lines, 7116 states
Weak Stability Preservation [Reuse Stability Preservation 216 lines, 1019 states
Initial Weak Stability Reuse Stability Preservation 221 lines, 1139 states

Weak Stability Progress Reuse Stability Preservation 342 lines, 21804 states

written by a human: the number of lines of HOL code, the number of lem-
mas and definitions, and the number of proof steps. Proof steps were measured
as the number of instances of the HOL construct THEN. The HOL automated
contribution is measured by the number of cases discovered and managed by
HOL. This is measured by the number of THENL’s, weighted by the number of
elements in their argument lists. The complexity of SPIN verification for the
human verifier is measured by the number of lines of Promela code written. The
SPIN automated contribution is measured by the number of states examined
and the amount of memory used in the verification. In our investigations we
have found that SPIN is generally memory bound, that is, it runs out of mem-
ory in a relatively short period of time if the state space it must search is too
large. For our final RIP proofs, however, each of the verifications took less than
a minute and the time is generally proportional to the memory. Most of the lem-
mas consumed the SPIN-minimum of 2.54MB of memory, some required more.
The figures were collected for runs on a lightly-loaded Sun Ultra Enterprise with
1016 MB of memory and 4 CPU’s running SunOS 5.5.1. The tool versions used
were HOL90.10 and SPIN-3.24. We carried out parallel proofs of Lemma 2, the
Stability Preservation Lemma, using HOL only and HOL together with SPIN.

It is important to observe that the SPIN figures were derived from final runs.
The typical process was as follows: attempt to prove a result with SPIN, find
that it is too costly, apply an abstraction that was proved in HOL, and try the
SPIN proof again on the abstracted problem (which presumably has a smaller
set of cases to check). This was repeated until we were happy with the size of
the SPIN state space and the clarity of the abstractions. This use of SPIN was
worthwhile even if the proof was eventually carried out entirely in HOL since
SPIN provided a quick way to ‘debug’ our lemmas. We experimented with the
question of whether to stop with a mixed HOL/SPIN proof or complete the entire
proof in HOL. A proof entirely in HOL arguably provides more confidence since
the relationship between the HOL and SPIN parts of a proof are treated manually
in our study. We proved stability preservation twice, once using HOL/SPIN and
again using only HOL. Table 1 indicates some associated statistics showing that
the complexity of the HOL proof dropped by about 40% at the cost of writing



207 lines of SPIN code. In future work we may attempt to measure programmer
months since this would provide a more complete indication of scalability.

7 Related Work

Combining model checking with theorem proving has long been recognized as
a very promising direction in effective formal methods [2]. There are two ways
in which the methodologies can be combined. Systems like PVS [16] use model
checking as a decision procedure to solve finitary sub-goals in a deductive proof.
On the other hand, model checking can be used to prove a finitary abstraction
of a system where the soundness of the abstraction can be proved in a theorem
prover [13,14]. We use the latter methodology for our proofs—we carry out our
induction and abstraction proofs in HOL90 while the induction step is proved
for a finitary abstraction of the system in SPIN.

A variety of protocol standards have been formally verified. Notable success
has been achieved in verifying cache coherence protocols, bus protocols and
endpoint communication protocols [2]. In the domain of routing protocols, there
has been work on verifying ATM routing protocols [3], where the authors use
SPIN to verify the absence of deadlock of the routing protocol for a few fixed
configurations. An instance verification of an Active Network routing protocol
has been caried out in Maude [18]. Formal testing support has been developed
for multicast routing protocols [7]. Other work has been in the form of manual
proofs of key safety properties [6,15,4, 1].

8 Conclusion

This paper provides the most extensive automated mathematical analysis of an
internet routing protocol to date. Our results show that it is possible to provide
formal analysis of correctness for routing protocols from IETF standards and
drafts with reasonable effort and speed, thus demonstrating that these techniques
can effectively supplement other means of improving assurance such as manual
proof, simulation, and testing. Specific technical contributions include the first
proofs of the convergence of the RIP standard, and a sharp realtime bound for
this convergence. We have also gained insight into strategies for combining a
higher-order theorem prover such as HOL with a model checker such as SPIN in
a unified methodology that leverages the expressiveness of the theorem prover
and the high level of automation of the model checker to provide an efficient but
high-confidence analysis.
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A Code Samples

A.1 Pseudocode for RIP Declarations

process RIPRouter

state:
me // ID of the router
interfaces // Set of router’s interfaces
known // Set of destinations with known routes
hops jest // Distance estimate
nectR oo // Next router on the way to dest
nextlfaceest // Interface over which the route advertisement was received
timer expire .. // Expiration timer for the route
timer garbageCollect est // Garbage collection timer for the route
timer advertise // Timer for periodic advertisements
events:

receive RIP (router, dest, hopCnt) over iface
timeout (erpiregest)

timeout (garbageCollectyest)

timeout (advertise)

utility functions:
broadcast(msyg, iface)
{ Broadcast message msg to all the routers attached to the network on the other side
of interface iface.
}

A.2 Pseudocode for RIP Event Handlers

event handlers:
receive RIP (router, dest, hopCnt) over iface

newMetric < min (1 + hopChnit, 16)
if (dest € known) then

if (newMetric < 16)

hopSgest < newMetric

nextR o5t < router
nextlfacey.s: < iface

set expireqes: to 180 seconds
known < known U {dest}

} else
{ if (router = nextR est) or (newMetric < hopsgest)

hopsgest < newMetric
nextR oot < Touter
nextlfacey.s: < iface

set expire ..+ to 180 seconds
if (newMetric = 16) then

set garbageCollectye.s: to 120 seconds
} else

{

deactivate garbageCollect jest

Frh}

timeout (erpiregest)
{ hopsaest « 16
set garbageCollect et to 120 seconds

}

timeout (garbageCollectyest)



{ known < known — {dest}

timeout (advertise)

for each dest € known do
for each i € interfaces do

if (i = nextlfaceyes:) then

broadcast ([RIP(me, dest, hopsgest)], %)
} else

broadcast ([RIP(me, dest, 16)], 1) // Split horizon with poisoned reverse

set advertise to 30 seconds

A.3 HOL Code for Update Function

val update_DEF = new_definition
("update",
--‘1(src:’router) (net:’network) (rcv:’router) (hopcount:num)
(hops: ’router->num) (nextN:’router->’network) (nextR:’router->’router).
update (hops,nextN,nextR) (src,net,rcv,hopcount) =
let (nh,nn,nr) =
(((nextR(rcv)=src) /\ (nextN(rcv)=net)) =>
(SUC hopcount,net,src)
| (((SUC hopcount) < hops(rcv)) =>
(SUC hopcount,net,src)
| (hops(rcv) ,nextN(rcv),nextR(rcv))))
in ((\r:’router.(r=rcv)=> nh | (hops(r))),
(\r:’router. (r=rcv)=> nn | (nextlN(r))),
(\r:’router. (r=rcv)=> nr | (nextR(r))))‘--);

A.4 Promela fragment for Routing Process

proctype Update(router ME){
mesg adv;
chan in = routerinput[ME];

do
atomic{in?adv ->
if
:: (adv.src == rtable[ME].nextR) &&
(adv.net == rtable[ME].nextN) ->
if
:: adv.hopcount >= INFINITY ->
rtable[ME] .hops = INFINITY
: adv.hopcount < INFINITY ->
rtable[ME] .hops = adv.hopcount + 1
fi
: adv.hopcount + 1 < rtable[ME].hops ->
rtable[ME] .nextR = adv.src;
rtable[ME] .nextN = adv.net;
rtable[ME].hops = adv.hopcount + 1
:: else -> skip
fi}
od



