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Abs t r ac t .  We describe routing algorithms on networks composed of 
optical busses. Using networks with short busses and small degree we 
are able to give very fast routing algorithms. First, we describe a lev- 
eled optical network and routing algorithms for it. Next, we show how 
to simulate this network on high-dimensional meshes of optical busses 
(MOBs). We present algorithms, e.g., for h-relations with runtime be- 
ing double-logarithmic in the size of the mesh, linear in h, and polyno- 
mial in the dimension. Previous results are exponential in the dimension. 
We use a novel type of protocol and analysis inspired by hashing based 
shared memory simulations with redundant storage representation from 
[MSS95]. 

1 I n t r o d u c t i o n  

In recent years, the possibility of using optical devices to build very fast, high 
bandwidth communicat ion networks has at t racted many  researchers, engineers 
as well as (theoretical) computer  scientists. Anderson and Miller [AM88] were 
the first to consider routing algorithms for h-relations using the following model, 
later called the Completely Connected Optical Communicat ion Parallel Com- 
puter (OCPC),  or, as a routing device, the optical bus. It  is motivated by pos- 
sibilities and restrictions of optical communication technology. 
An optical bus of length k connects k processors. In one step, each processor can 
try to send a message to an arbi trary other processor. The sending is successful, 
only if the receiving processor gets no other message in this step. For a discussion 
of this model see [AM88], [GJLR93] and [GJLR94]. Extensions are discussed in 
[DM93] and [MSS95]. 
In order to avoid too long optical busses, 2-dimensional meshes in which rows 
and columns are connected by optical busses are examined in [GJLR94]. These 
meshes are called mesh of optical busses (MOBs). HerE, length k busses suffice 
to obtain an efficient routing device for k 2 processors. 
In this paper  we examine the routing capability of this and other networks of 
optical busses. Formally such a network can be described by a hypergraph whose 
nodes are the processors and whose edges are the optical busses. The following 
parameters  characterize the quality of such a network of size N: 

- the m a x i m u m  length k of the busses 
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- the maximum degree d 
- the routing time for permutations, h-relations, random functions etc. 

Our main results are very fast routing algorithms on certain leveled networks 
of optical busses, the split~zhash networks. They are inspired by high-ary, low 
depth versions of Butterfly networks or Multibutterfly networks [Upf89]. 
We derive a network of busses from such a network by replacing certain sub- 
graphs by optical busses. Furthermore we show how to simulate such split&hash 
networks on high-dimensional MOBs, achieving the fastest known routing algo- 
rithms for them. Our techniques for permutation routing differ significantly from 
those previously derived for MOBs of constant dimension as in [GJLR94]. They 
are inspired by hashing techniques to simulate shared memory on an OCPC as 
described in [MSS95]. 

1 . 1  P r e v i o u s  R e s u l t s  

Anderson and Miller [AM88] present an algorithm for realizing h-relations in 
O(h + logN) expected time on a single OCPC. 
In [GJLR93] Goldberg et al. present an algorithm for h-relations using O(h + 
log log N) time, with high probability, 2 if h < log N. 
The algorithm of Goldberg et al. works on a single OCPC. In [GJLR94] they give 
an algorithm on a 2-dimensional MOB using O(h + log log N) time, with high 
probability, if h < log N. In the same paper they suggest an extension of their 
algorithm to higher dimensions still using O (h + log log N) time, if the dimension 
d is constant. Extensions to higher dimensions result in a runtime exponential 
in d. 

1 . 2  N e w  R e s u l t s  

We present a new Butterfly-like class of networks, the so called split,hash net- 
works, and its realization using optical busses. On such networks we give algo- 
rithms for delivering packets from the N sources to the N sinks. Our algorithm 
for permutation routing requires O(d 2. log d- loglogN) steps on a spli t ,hash 
network of depth d, with high probability. The probability space is described 
by some random choices done for constructing the networks. The main building 
block of our algorithm is an adaption of a scheme presented in [MSS95] where it 
is used and analyzed for obtaining fast shared memory simulations on OCPCs 
and similar machines. 
The algorithm can be extended to route a random function. The running time is 

( ~  1 The last step of the 0 \loglogg/' with high probability, if d = O(log ~ N), ~ < ~. 
algorithm makes use of an algorithm from [GJLR93]. The overall running time 

is optimal, since some sink gets ~ { l~ packets, with high probability. \ log log N ] 

Combining our methods with another technique from [GJLR93] and [AM88] we 
derive an algorithm for h-relations. The algorithm is randomized and requires 
O(d 3 �9 logd �9 loglogN + d 3 �9 h) steps, with high probability, if h < logN, d = 

1 O(log ~ N) and d < 3" 

2 W i t h  high probabi l i ty  means  a probabi l i ty  of at  least  1 - N -~ ,  where 7 > 0 can be 

chosen arbitrary.  
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Simulating a split~:hash network of depth d we obtain algorithms for the d-  
dimensional MOB. 
We get an algorithm using O(d 4 �9 log d �9 log log N) steps, with high probabil- 
ity, to route permutations and an algorithm for random functions using 0 (d 4 �9 
l o g d .  log logN + loglogNJ steps, with high probability. This is optimal for 

1 The MOB version of our h-relation algorithm requires d = O(log ~ N),  5 < ~. 
O(d 5 -log d - log  log N + d 3 �9 h) steps, with high probability, for any h-relation, 

1 for d = O(log e N), 5 < ~. 
Our results show a tradeoff between running time for various routing problems, 
the size of the optical busses and the degree of the network. The size of the 
optical busses in a split&:hash network of depth d is O(d.  N~) and exactly N~ 
in a d-dimensional MOB with N processors. The degree is O(d), both in the 
split&:hash network and in the MOB. 

1.3 O r g a n i z a t i o n  o f  t h e  P a p e r  

In the next section we describe the split~chash networks. Section 3 contains 
the algorithm for permutat ion routing on sp l i t ,hash  networks. The result is 
transferred to the MOB by simulation in Section 4. In Section 5 we give the 
extensions to random functions and h-relations. Most proofs are only sketched. 
Complete proofs are contained in a full version of this paper, available soon as 
technical report [MSS96] 3. 

2 T h e  S p l i t & H a s h  N e t w o r k  

A (N, d)-Butterfly-type network has the following structure. For d = 1 it is the 
complete bipartite network with N sources and N sinks. For d > 1, it consists 

of k = N�89 many (N~-~, d -  1)-Butterf ly-type networks B 1 , . . . ,  Bk and N new 
nodes, the sources. These sources are connected by k identical bipartite graphs, 
called funnels, to the sources of each Bj, j = 1 , . . . ,  k. These k funnels all share 
the same N sources. For an illustration see the picture below. The nodes on level 
0 are the sinks, those on level d the sources. 
(Note: Butterfly and Multibutterfly are (N, log N)-But te r f ly - type  networks.) 
In a But terf ly- type network a packet is sent from an input node to an output  
node by traveling along the unique sequence of sub-Butterf ly- type networks. 
This sequence is called the coarse path of the packet. 

I d-1 

d-2 

N N N N  . . . . . . . .  ~ . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . .  

3 http :/Jwwu. uni-paderborn, de/cs/ellern.html or 
ht tp ://www. uni-paderborn, de/cs/fmadh, html 
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To specify an (N, d)-Butterf ly-type network we have to specify the funnels. 
Let a E iN be fixed. The (N, d, a)-sptit~hash network is defined as follows. 
Between level i + 1 and level i the following (k i+1, k ~, a~)-funnel is used. It 

{ / [[J]} is defined b y a i  := [ a . 4 ]  functions h} : [k i+~] ~ I J-~21+s s ~  k~ 
l_ a i  J "~i ' 

j E [ai] 4. So the k i bo t tom nodes of the funnel are split into ai blocks of equal 
size, each h}, j e [ai], maps to one block, We assume that each h~. is uniform, i.e. 
](h})-l(x)l = [(h})-l(y)[ for all x, y e image(h}). So the funnel has the edges 

{(l, h}(1))l l e e In,l}. 
A random (N, d, a)-split&hash network is obtained by choosing a random per- 

mutat ion ~ : [k i+l] ~ [k i+1] and putting h~(l):= ~(l)mod [ ~ J  + j .  ( [  ~ J  + 1). 

In the remainder of the paper we assume all split,;hash networks to be random 
split~=hash networks. 
Since we want to deal with optical crossbars, we give the following optical cross- 
bar version of the sp l i t ,hash  network. Note that every node of level d, . . . ,  2 is a 
top node of a group of k funnels. Every l- th bot tom node of a funnel in the group 
is connected to the same set of top nodes. So we replace all edges adjacent to 
any l - th  bo t tom node by one opticM crossbar connecting the i-th bot tom nodes 
with the top nodes adjacent to t h e / - t h  bot tom nodes. Due to the choice of the 
functions h( the optical crossbar has length k + k �9 al. Further we replace the 

; d complete bipartite graphs between level 1 an 0 by optical crossbars of length 
2 . k .  
The picture shows the optical crossbar (thick dotted line) replacing the edges of 
two functions in three funnels in a sp l i t ,hash  network for k = 3. 

R e m a r k  A (N, d, a)-spl i t~hash network has depth d, optical busses of length 

O(N~)  and degree O(d). 

3 P e r m u t a t i o n  R o u t i n g  

Our first result is about routing a permutation 7r : [N] -+ [N] from the input 
nodes to the output nodes of a (N, d, a)-split~:hash network, so the (unique) 
packet of the l- th source has to be delivered to the ~(l)- th sink. 

T h e o r e m  1. Let k, d ~ ~V, N := k d. Any permutation can be routed from the 
sources to the sinks of a random (N, d, a)-split~hash network in O(d 2. log d .  
log log N) steps, with high probability, if a is a sufficiently large constant (inde- 
pendent of N). 

4 Ill d e n o t e s  t h e  se t  { 0 , . . . , ~  -- 1} 
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Proof. Fix permuta t ion  ~r. For e > 0 (to be fixed later) we show how to route 
a batch of e �9 N messages which contains the messages with destinations 7r(i) 
where ~( i )mod (1) has some fixed value. The complete routing consists of 
batches. 
The routing of a batch is performed in d rounds. At the beginning of round i all 
packets are on level d - i + 1 in different processors. Round i delivers them to 
different processors of level d - i obeying their coarse path. 
We have to show how a round can be done. The last round delivering the packets 
from level 1 to their destinations on level 0 takes at most  one step, since only 
part ial  permutat ions  on complete bipart i te graphs have to be executed. 
It  remains to show how the other rounds can be realized. We make use of the 
following Funnel Algorithm which is a modification of an algori thm given in 
[MSS95]. The algorithm is executed in all (ki+l,k~,a~)-funnels, i.e. all funnels 
of level i. 
Funnel Algorithm: 
set all processors holding a packet of the actual batch as active 
while there are active processors do 

for k : =  l t o a i d o  
if processor l E [k i+1] is active: try to send the packet to h~(l) 
i f  sending was successful (i.e. only processor l tried to send a packet 
to h~(l)): set processor l as inactive 

Every run through the ' for '  loop is called a round of the algorithm. 

M a i n  L e m m a .  Let i E { 2 , . . . , d } ,  /3 > 1, and e > 0 such that e/3al < 1. The 
following holds for  k large enough. (a) A set of  ~ . m := e - k I+1 packets given 
on arbitrary distinct sources of a random (k i+1, k i, ai)-funnel can be delivered to 

1 rounds, with probability at distinct sinks of the funnel using ti := log(a,-1) - 

least 1 - m - 7 [  ~] for a constant V > 0 depending on a and 1 -~. 
(b) A constant fraction of the e �9 m packets is delivered to distinct bottom nodes 
after a constant number of rounds, with high probability. 
(c) Each round contains ai steps. 
The proof is omit ted due to space limitations. It is based on a proof given 
in [MSS95] for the running t ime of the so called (N, e,a, b, c)-scheme which is 
similar to the Funnel Algori thm given here. Our proof is much simpler than the 
one given in [MSS95] and can also be used in their situation. 
Using this l emma we can bound the running t ime of our routing algorithm. 
For any 7 > 0 the Main Lemma yields a probabili ty of at most k - ( i + l ) 7 [ ~ ]  < 
N -~ for a packet to be undelivered after ti rounds. So the probabil i ty for an 
undelivered packet in any funnel of level i is almost k i �9 N - ~ .  Hence the prob- 
ability for an undelivered packet in any funnel of the split&hash network is at 
most  N-'Y , ~ j - 1  k i <_ N_.y . kd < N_.y+ 1 

Using the Main Lemma the running t ime per batch of e �9 N packets is at most  

d--1 
log log N 

E t i  -ai  _< d- l o g ( a -  1) ' l ~  
i=1  

= 0 (d. log d .  log log N ) .  
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1 = O(d) Theorem 1 follows. As it suffices to chose 7 [] 

4 S i m u l a t i o n  on t h e  M e s h  of  B u s s e s  

T h e o r e m  2. Let k, d, a E ~ ,  N := k d. Any permutation can be routed on the 

d-dimensional MOB of edge-size k using 0 (d 4 �9 log d .  log(a-l) ] steps, with high 
probability, if a is a sufficiently large constant. 

Proof. The proof is done by simulating the split&hash network on the MOB. We 
embed a (N, d, a)-spl i t&hash network into the d-dimensional  MOB of edge-size 

k = N~  in the natural  way, embedding the l - th  node of every level into node 
d l �9 k ~-1 ( l l , . . . ,  ld) of the MOB where )--~-.=1 ~ = I. 

Consider a level i of the split&hash network. Since we define the functions h~. 

as folded permutat ions  we can find partial  permutat ions r t G [ai], so tha t  

(r hji(1)) is an edge of the MOB for one t E [ai] if (l,h~(l)is an edge of 

the split&hash network. 
2 In a preprocessing phase, we initialize the MOB such that  all these E d - ~  a i 

O(d 3) permutat ions  can be routed in t ime O(d). (Note that  the choice of the 
permutat ions  does not depend on the input permutat ion.)  So a step of the Funnel 
Algori thm can be replaced by ai phases, each routing one of the permutat ions  
described above and then sending the packet to the destination sink of the funnel. 
If  a node gets more than one packet while simulating a step it rejects all received 
packets, thus we ensure that  the packets are delivered to distinct nodes. Since 
a~ = O(d), simulating a step of the Funnel Algorithm requires O(d ~) steps on 

the MOB. [] 

5 O t h e r  R o u t i n g  P r o b l e m s  

In Section 3 we showed how to realize a permutat ion on the split&hash network. 
In this section we will extend the results to h-relations and random functions. 
The result for random functions is a corollary of our Theorems 1 and 2: 

C o r o l l a r y  3. A random function can be routed 

(a) from the input nodes to the output nodes of a (N, d, a)-split&hash network 

in 0 \IoglogN] steps, 
(b) on a d-dimensional MOB of edge-size k using O(d 4 .log d. log log N + ~~ log N / 

steps, 
1 

with high probability, if d < log ~ N.  

Proof. We just  have to assure that  each funnel on each level gets no more than 

e. k ~+1 packets. 
Since even the smallest funnels have a size of k = N~ = tg( logN),  a random 
choice of e ~  packets assures for any p > 1 that  at most  c - k ~ packets have to 
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travel through a certain funnel, with high probability, if N} is large enough. So 
we choose batches of size N .  ~ and make use of the Funnel Algorithm to deliver pe 
the packets from level d to level 1. 
After delivering all packets of all batches to level 1 we have to deliver the packets 
to their destinations on level 0. This may be done using the h-relation algorithm 

l ogN since each node of [GJLR93] on the complete bipartite graphs for h = loglogN, 

of level 1 gets at most ~ = O(d) = O \loglogN) packets, and each sink is 

the destination of at most O \loglogN) packets, with high probability. The h-  

relation algorithm is repeated O(d) times, so the failure probability is sufficiently 
small. [] 

T h e o r e m 4 .  Any h-relation can be routed 

(a) from the input nodes to the output nodes of a (N, d, a)-split~hash network 
in O(d 3 �9 log d.  log log N + d3h) steps, 

(b) on the d-dimensional MOB of edge-size k in O0(  d 5. log d.  log log N + d3h) 
steps, 

with high probability, if  h <_ logN,  d < log�89 N and N large enough. 

Proof. ( S K E T C H )  

(a) Consider c .  k i+1 �9 h packets on the input nodes of a funnel. Each node 
to contain at most h packets. We deliver the main part  of the packets to the 
output  nodes of the funnel by a modified version of the so called Thinning Phase 
introduced in [AM88] and also used in [GJLR93]. 
A node is called active if it contains at least one packet. 
Let T E 1N and t~ = 0 (  h + logh). 
Modified Thinning Phase 
for g :-- 1 to logh do 

for j := 1 to ti do 
every active input node chooses a random l E {1, .  h �9 -, 2g - t  }. 
if the node contains at least l packets it takes part at the Funnel 
Algorithm using functions hJo,.. J . ,ha_ 1 for T steps using the l - th 
packet. 

h if a node contains more than ~7 packets it becomes inactive. 

Part  (b) of our Main Lemma assures that  a certain packet has a constant proba- 
bility to be delivered in a constant number of steps of the Funnel Algorithm. SO 
the analysis for the Thinning Phase as given by Goldberg et al. can be modified 

yielding: With probability 1 - ( ~ ) ~  l~ for some 3' > 0 depending only on the 
choice of the T,e and/3 it holds: (i) there are at most k ~ undelivered packets, (ii) 

ki+l 
at most - ~ -  nodes of the splitter become inactive in round k of the outer loop. 
The running t ime is obviously t := O(T-  a i  - log S h + T -  a i . h ) .  To ensure that  
at most h packets are on the node of the next level we use s .  al functions with 
distinct images using each group of ai functions at most h times. 
The routing is performed for each of _z batches chosen as in Theorem 1. For each 
batch the Modified Thinning Phase is applied for d rounds. Round i delivers a 
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main part of the packets at level d - i + 1 to level d - i. After that  the packets 
are delivered from level 1 to their destination on level 0 using the algorithm of 
Goldberg et al. O(d) times. 
Now each funnel of level i contains at most k i packets, with high probability. 
These remaining packets are sent using the random function algorithm. To apply 
this algorithm we distribute the packets of each level, so that  each node contains 
at most two packets, with high probability. This may be done by partitioning the 
top node sets into distinct sets of size O(log 3 ki+l). With high probability, each 
set contains at most 2 - size packets, witch can be distributed using a parallel 
prefix algorithm on each set. After that the remaining packets are delivered to 
their destinations by applying the random function algorithm once for each level. 
To prove part  (b): There are only O(d) additional permutations needed to bring 
together the sets of the partitions used for the redistribution. [] 
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