
R o u t i n g on the P A D A M :
D e g r e e s of O p t i m a l i t y *

B o g d a n S. C h l e b u s * A r t u r C z u m a j * J o p F . S i b e y n ~

Abstract

Routing problems are studied for the Parallel Alternating-Direction
Access Machine. The goal is to investigate what level of optimality can
be achieved depending on loads of packets per memory unit. In the case
of typical moderate loads, our algorithms are optimal to within a small
multiplicative constant; a deterministic and a randomized algorithm are
developed, both faster than the best previously known routing algorithm.
Moreover, for sufficiently large loads, an algorithm which misses optimality
by only an additive lower-order term is designed. We consider also off-line
routing problems, and multidimensional extension of the model.

1 I n t r o d u c t i o n

The Parallel Al ternat ing-Direct ion Access Machine, PADAM, is a mult iprocessor
compute r with memory units, MUs, arranged in a grid s tructure, together with
the processing units, PUs. The two-dimensional n × n P A D A M has n PUs and
n 2 MUs ar ranged according to the pa t t e rn in Figure 1 (notice tha t there are
only n PUs: the PUs marked with the same number are identical).

The P A D A M shares features f rom bo th ordinary meshes and from PRAMs.
The essential differences with meshes are the following:
1. A two-dimensional n × n mesh consists of n 2 PUs, n t imes as m a n y as the
corresponding PADAM.
2. A P U in a mesh can communica te only with its immedia te neighbors, whereas,
in principle, a P U in a P A D A M can communica te with any other P U in constant
time.

*This work was supported by the following contracts: DFG-Graduiertenkolleg "Parallele
Rechnernetzwerke in der Froduktionstechnik" Me 872/4-1, DFG-SFB 376 "Massive Paral-
lelit£t: Algorithmen, Entwurfsmethoden, Anwendungen", DFG Leibniz Grant Me872/6-1, and
EU ESPRIT Long Term Research Project 20244 (ALCOM-IT). This research was partly done
while the first and third authors were visiting Heinz Nixdorf Institut, Universit£t-GH Pader-
born.

tInstytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland.
Email: chlebus@mimuw.edu.pl.

$Heinz Nixdorf Institut und Fachbereich Mathematik/Informatik, Universitgt-GH Pader-
born, 33095 Paderborn, Germany. Emaih artur@uni-paderborn.de.

§Max-Planck-Institut ffir Informatik, Im Stadtwald, 66123 Saarbrficken, Germany. WWW:
http://www.mpi-sb.mpg.de/~jopsi/. E-maih jopsi~mpi-sb.mpg.de.

273

ooo

ooQ

~ eeo
oeo

Figure 1: A PADAM with n PUs and an n × n network of MUs. The large
circles indicate the PUs, the smaller circles the MUs. A PU has direct access to
all MUs in its row and column.

Two existing machines, ADENA and USC/OMP, were direct inspirations
for the PADAM design. For the technical details of ADENA see [7, 8], and
for UCS/OMP see [4, 5]. The ADENA and USC/OMP were built primarily
for numerical, scientific and computer-graphics applications. In these problems,
arrays of numbers need to be processed, and such arrays map naturally onto
arrays of MUs.

The formal PADAM model we consider abstracts from low-level technical
details. It was introduced in [2], where the potential of this architecture as a
general-purpose computer was explored. General applications require greater
flexibility of accessing memory and rearranging information. To facilitate such
tasks, in [2] a routing algorithm was designed, mechanisms of random access to
MUs were developed, and general PRAM simulations were given.

This research concentrates on the problem of routing. The goal is to in-
vestigate the levels of optimality that can be achieved for various loads of the
network. By a load we mean the number r of packets from every MU that have
to be relocated. For the smallest loads, the results are away from off-line optimal
by a logarithmic factor, while for r = w (log n . log log n), the difference decreases
to an additive lower-order term.

2 Prel iminaries
In this section we specify some parameters of the model and introduce the routing
problem.

I n d e x i n g . We restrict our attention to 2-dim PADAM, unless stated otherwise.
On an n x n PADAM, there are n PUs: PUo,..., PUn-l, and n 2 MUs: Mb~x, y],
for all 0 <_ x, y < n.

274

Modes of Operation. The PUs can work in three modes: internal mode, row
mode and column mode. At any time, all PUs operate in the same mode. In the
internal mode, the PUs perform internal computations; in the row mode each
PU can access one MU of its choice in its row; and in the column mode each PU
can access a MU in its column. We assume that synchronization is provided by
the model: when a processor wants to switch the row/column mode, it enters a
s tate of being ready for this, and when all processors are in this s tate then the
mode is changed.

Cost M o d e l . The internal processor computat ions are assumed to take neg-
ligible time. The cost of a memory operation consists of two parts: the t ime to
access a MU (latency), followed by the time to perform a number of reads and
writes in the MU (transfer time). To simplify considerations, we consider one of
these costs for a problem at hand. Usually for on-line algorithms we count MU
accesses, and for off-line algorithms we count writes.

Routing P r o b l e m . We consider the problem of routing r-relations (among
MUs): each MU is the source and destination of (at most) r packets, and the
goal is to route the packets to their destination MUs efficiently (if r = 1 then the
problem is referred to as permutat ion routing). The given basic formulation of
the problem is memory oriented. We also consider a processor-oriented formu-
lation of routing R-relat ions (among PUs), in which every PU is the source and
destination of R = r . n packets (the packets of PUs are parked in the hyperplanes
assigned to PUs).

3 Deterministic Algorithm for Moderate Loads
In this section the problem is of routing r-relations among MUs, the cost is mea-
sured as the number of accesses to different MUs. The exposition concentrates
on the case r = 1, extension to the general case being straightforward.

A sequence x = (x0 , . . . , xn-1) of numbers in [0..n - 1] is an n-sequence. If
xi = s then xi is referred to as s-value. We start with a sequential algorithm to
permute n-sequences. The input is an n-sequence x, where n is a power of 2,
and the output is a permutat ion of x stored in array X[O..n - 1].

A l g o r i t h m DISPERSE

1. Sort x.

2. If n = 1 then place x0 in X[0]; otherwise:

(a) apply Step 2 recursively to xl = (Xo, x l , . . . , xn/2-1} in array Xl con-
sisting of X[0], X[2], X[4] , . . . ;

(b) apply Step 2 recursively to xr = (xn/2, x n / 2 + l , . . . , xn -1) in array Xr
consisting of X[1], X[3], X[5],

L e m m a I Let x and y be two n-sequences such that the number of s-values in
x and t-values in y are equal to/~ > O. Apply the algorithm DISPERSE on X
to obtain x ' and on y to obtain y ' . Let x~l , . . . , x~z be the consecutive s-values

275

in x'. Then, for each segment I among [0..il], [il + 1..i2], . . . , [iz-1 + 1..iz] and
[i~ + 1..n - 1] the number of t-values y~ such that i e I is at most four.

Algorithm AI:

1. In row mode: Each PUi counts the number of packets in its row, which are
to be delivered to column j , for each j E [0..n - 1]. This number is stored
in M[i, j]. The column address is the value of a packet.

2. In column mode: Each PUi reads in M[k,i], for each k, the number t of
packets in row k going to column i, and creates t dummy packets of value
k. These packets are stored in the column one packet per memory unit.

3. In row mode: Each PUi disperses the packets in row i with respect to
values.

4. In column mode: Each PUi disperses the dummy packets in column i with
respect to their values.

5. Each PUi executes the following, for m := 1 to n:

(a) In row mode: It takes the m-th packet and delivers it to its destination
column.

(b) In column mode: It reads the value of the m-th dummy packet, let
it be k. Then it goes to row k and delivers (at most four) packets
waiting there to their destination rows.

6. In column mode: Each PUi scans the column list and delivers all the waiting
packets to their destination columns.

L e m m a 2 Algorithm A1 is correct and delivers all the packets.

To have small constants, the implementation of algorithm A1 can be simplified.
The rows are first sorted by a bucket sort. In the course of this the numbers
of packets in row i going to column j are calculated and stored in M[i,j]. The
permutat ion of algorithm DISPERSE does not need to be performed, because it
is fixed: instead we calculate the original addresses of packets that would be
moved by the algorithm DISPERSE to specific locations.

L e m m a 3 After sorting, algorithm DISPERSE moves a packet from position i
to j in the sequence iff the binary representation of j is the reversed binary
representation of number i.

Hence, if h processor needs to access a packet that would be placed at address l
by DISPERSE then it takes the packet from the original location with address
obtained by reversing the bits of number I.

The modified version of algorithm consists of three phases: (1) sorting the
packets in rows; (2) creating and distributing dummy packets in columns; (3)
delivering packets.

Theorem 1 Algorithm n l can be implemented to run in time 18n, measured as
the number of accesses to MUs.

276

4 R a n d o m i z e d A l g o r i t h m f o r M o d e r a t e L o a d s
We develop a randomized algorithm for permutation routing among memory
units, which has a better constant in the expected-performance bound than A1
in its worst-case performance bound. The cost is again the number of accesses
to different MUs.

A l g o r i t h m A2:

1. In column mode: Each PUi permutes randomly the packets in column i.

2. In row mode: Each PUi builds a row list Ri in row i: this list connects
columns to which there are still packets to be delivered from row i. For each
column k in Ri, all the MUs storing packets addressed to k are connected
in a list, called row-column group G(i, k), the header of this list is placed
in M[i, k].

3. in column mode: Each PUk builds a column list Ck: this list connects such
MUs M[i, k] that in row i there are still some packets that need to be
moved to column k.

4. Repeat for each PU, until routing completed:

(a) In row mode: PUi scans the row list Ri. For each considered column
k, a packet x from the row-column group G(i, k) is retrieved, its MU
is deleted from G(i, k), and packet x is stored temporarily in M[i, k].
(Such a packet x is a waiting packet.) If G(i, k) is empty then column
k is deleted from list Ri.

(b) In column mode: PUk scans the column list Ck. For each processed
M[i, k] in Ck, PUk delivers the waiting packet stored there, if any,
to its final destination MU. If G(i, k) is empty then row i is deleted
from list Ck.

T h e o r e m 2 For each constant c~ > 0 and sufficiently large n, Algorithm A2
operates in time (12 -- e -1 + o(1)), n with the probability at least 1 - n -a .

F a s t e r r a n d o m i z e d i m p l e m e n t a t i o n . Observe that Algorithm A2 performs
many memory accesses for list operations, and in particular, it requires an ex-
pensive preprocessing in Steps 2 and 3. One can obtain a faster implementation
by working with lists maintained implicitly.

T h e o r e m 3 For each constant ~ > 0 and sufficiently large n, Algorithm A2 can
be implemented to operate in time (7+ e - l + o(1)), n with the probability at least
1 - n -~.

5 A l g o r i t h m f o r L a r g e L o a d s
In this section the cost measure is the number of write operations, again we
consider routing r-relations among MUs. For sufficiently large r, we want to

277

match the t ime consumption of the off-line algorithm up to lower-order additive
terms.

Consider first the problem of off-line routing r-relation on an n × n PADAM.
It can be performed by first solving a coloring problem for a bipart i te (multi-)
graph. The n nodes on the left correspond to the rows, the n nodes on the right
to the columns. There is an edge from a node i to a node j for each packet in row
i with destination in column j . All nodes are of degree nr, and hence the graphs
can be colored using nr colors. The colors corresponds to the steps in which a
packets is going to be routed: Consider a packet p with color c, 0 ~_ e < nr,
standing in row i and with destination in column j . In Step c, PUi writes p to
MU[i, j] , and subsequently, p is read by PUj and is written into its destination
MU. The bound in the next Lemma 4 is tight.

Lemma 4 On a two-dimensional P A D A M , r-relations can be routed off-line in
2nr steps.

Our approach for on-line routing for larger load is to simulate the off-line algo-
rithm above. We need to solve a coloring problem on a bipartite regular (multi-)
graph on-line. This problem involves n nodes in both components, and n 2 • r
edges between them. On-line algorithms along these lines have been designed
before for meshes [I0].

A bipartite regular graph with v nodes and m edges can be colored sequen-
tially in (_9(m- log(m/v)) steps [3]. Lev, Pippenger, and Valiant [9] designed a
PRAM algorithm that uses m~ log m PUs and solves the edge-coloring problem
for m / v being a power of two in the optimal t ime O (l o g m . log re~v). This algo-
r i thm can be implemented on the PADAM without loss provided m is sufficiently
large:

Lemma 5 Edge-coloring a regular bipartite graph with v = 2n nodes, m >
n 2 log log n edges and m / n a power of two, can be performed on an n × n P A D A M
in the optimal O (m / n . log(rain)) time.

Substi tut ing v = n and m = n 2 • r shows tha t it would take O (n r • log(nr))
time.

In every PU, the packets with the same destination are grouped together,
and combined into super-packets of size s. For every destination there may be
one super-packet tha t is only partially filled. Thus, for given r and s, there are
at most [nr/s] + n super-packets in every PU.

T h e o r e m 4 For any r = w (l o g n l o g l o g n) , an n × n P A D A M can route r-
relations on-line in 2nr + o(nr) steps.

6 M u l t i d i m e n s i o n a l P A D A M s
The problem considered is R-relation routing among PUs of a multidimensional
PADAM, the cost is the number of writes in MUs.

By a d-dimensional PADAM we mean a d-dimensional grid of MUs, with
all PUs assigned to one face of this grid, this face may change in the course of

278

the computat ion. A PU with index (i t , . . . , / d - l) , denoted PUpi l , . . . ,id-1] can
write to any M U [i l , . . . ,id-l,X], for any 0 _< x < n, and only to these MUs. The
PUs can read from d - 1 sides. The indexing on the sides is such that in an
operation in which the reading is along the j-axis, P ~ i l , . . . , id-1] can read from
M S ~ i l , . . . , i j - l , x , i j + l , . . . , i d - l , i j] , for all 0 _ x < n. In every step every PU
can perform an arbi t rary internal computat ion, one write, and one read. The
reads have to be performed along the same axis.

L o w e r - B o u n d . A correction is the action of moving a packet such tha t one of
its coordinates becomes equal to the corresponding coordinate of its destination.
If initially no packet shares a coordinate with its destination, then (d - 1) . R . n d-1
corrections are needed. Dividing by the number of PUs shows that

L e m m a 6 There are i n p u t s / o r which routing R-relations on a d-dimensional
n × . . . x n P A D A M requires at least (d - 1) • R steps.

Only for d = 2, this bound is sharp. For d = 3, we consider the transposit ion
under which all packets from PO~i,j] have to be routed to PO~j,i]. All the
packets with the same first coordinate have destination in PUs with the same
second coordinate, and vice-versa. Thus, during the first step, only n corrections
can be performed. The remaining 2 • R • n 2 - n corrections tha t have to be
performed require at least 2 • R steps.

Off - l ine A l g o r i t h m . By combining Lemma 4 with the results from [1], we
p rove:

T h e o r e m 5 R-relations can be routed off-line on a d-dimensional P A D A M in
(2. d - 3) . R steps.

Unfortunately, the gap with the lower-bound of Lemma 6 is large.

O n - l i n e A l g o r i t h m for L a r g e R. For turning the off-line algorithm into an
on-line algorithm, the in total (d - 2) + (2 • d - 3) coloring operations must be
performed on-line. The costs can be amortized over the 2. d - 3 routing rounds.
Also the ratio of node, edges and PUs is the same as before. Therefore, the
result of Theorem 4 can be carried on:

C o r o l l a r y 1 On a d-dimensional n × . . . × n P A D A M , /or R = w (n . logn •
log logn) , R-relations can be routed on-line in (2. d - 3). (R + o(R)) steps.

7 C o n c l u s i o n
By a detailed analysis of routing on the PADAM, we have quantified the degree
of optimali ty for routing r-relations among memory units and R-relations among
processors, tha t can be realized for various r and R. For r such that r -- o(log n),
the routing requires an extra factor (_9(log n), for r --= (_0(log n . log log n) an extra
constant factor, and for larger r only an additive lower-order term.

As routing R-relations among processors constitute the basic communication
operation of BSP algorithms, our analysis strengthens the claim tha t a PADAM
is a suitable architecture for general purpose parallel computation. I t was already

279

known that PRAM algorithms could be simulated efficiently [2], but for possible
practical applications the involved constants are of crucial importance. This last
point has been settled now, by showing that even for irregular and non-random
patterns full efficiency can be reached for moderate values of R.

For higher dimensional PADAMs, it remains an open problem to either
sharpen the lower-bound, or to improve the given algorithms. For d = 3, the
optimal time appears to be 3. R, but for d > 4, we do not dare to make a guess.

R e f e r e n c e s
[1] F. Annexstein, M. Baumschlag, 'A Unified Approach to Off-line Permuta-

tion Routing on Parallel Networks,' Proc. 2nd ACM Symposium Parallel
Algorithms and Architectures, ACM, 1990, pp. 398-406.

[2] B.S. Chlebus, A. Czumaj, L. G~sieniec, M. Kowaluk, and W. Plandowski,
'Parallel Alternating-Direction Access Machine,' Proc. 21st International
Symposium on Mathematical Foundations of Computer Science, Springer-
Verlag, 1996, LNCS 1113, pp. 267-278,

[3] R. Cole and R. J. Hopcroft, 'On Edge Coloring Bipartite Graphs,' SIAM
Journal on Computing 11 (1982) 540-546.

[4] K. Hwang and C-M. Cheng, 'Simulated Performance of a RISC-based Mul-
tiprocessor Using Orthogonal-Access Memory,' Journal of Parallel and Dis-
tributed Computing 13 (1991) 43-57.

[5] K. Hwang, P.-S. Tseng, and D. Kim, 'On Orthogonal Multiprocessor for
Parallel Scientific Computations,' IEEE Transactions on Computers 38
(1989) 47-61.

[6] J. J£J~, "An Introduction to Parallel Algorithms", Addison Wesley, Read-
ing, MA, 1992.

[7] H. Kadota, K. Kaneko, I. Okabayashi, T. Okamoto, T. Mimura,
Y. Nakakura, A. Wakatani, M. Nal~jima, J. Nishikawa, K. Zaiki, and
T. Nogi, 'Parallel Computer ADENART - its Architecture and Applica-
tion,' Proc. of the 5th A CM International Conference on Supercomputing,
1991, pp. 1-8.

[8] H. Kadota, K. Kaneko, Y. Tanikawa, and T. Nogi, 'VLSI Parallel Com-
puter with Data Transfer Network: ADENA,' Proc. of the International
Conference on Parallel Processing, Vol. I, 1989, pp. 319-322.

[9] G. F. Lev, N. Pippenger, and L.G. Valiant, 'A Fast Parallel Algorithm for
Routing in Permutation Networks,' IEEE Transactions on Computers 30
(1981) 93-100.

[10] T. Suel, 'Permutation Routing and Sorting on Meshes with Row and Col-
umn Buses,' Parallel Processing Letters 5 (1995) 63-80.

