
R o u t i n g  on the  P A D A M :  
D e g r e e s  of  O p t i m a l i t y  * 

B o g d a n  S. C h l e b u s *  A r t u r  C z u m a j *  J o p  F .  S i b e y n  ~ 

Abstract 

Routing problems are studied for the Parallel Alternating-Direction 
Access Machine. The goal is to investigate what level of optimality can 
be achieved depending on loads of packets per memory unit. In the case 
of typical moderate loads, our algorithms are optimal to within a small 
multiplicative constant; a deterministic and a randomized algorithm are 
developed, both faster than the best previously known routing algorithm. 
Moreover, for sufficiently large loads, an algorithm which misses optimality 
by only an additive lower-order term is designed. We consider also off-line 
routing problems, and multidimensional extension of the model. 

1 I n t r o d u c t i o n  

The  Parallel  Al ternat ing-Direct ion Access Machine, PADAM, is a mult iprocessor  
compute r  with memory  units, MUs, arranged in a grid s tructure,  together  with 
the processing units, PUs. The two-dimensional  n × n P A D A M  has n PUs  and 
n 2 MUs ar ranged according to the pa t t e rn  in Figure 1 (notice tha t  there are 
only n PUs:  the PUs  marked with the same number  are identical). 

The  P A D A M  shares features f rom bo th  ordinary  meshes and from PRAMs.  
The  essential differences with meshes are the following: 
1. A two-dimensional  n × n mesh consists of n 2 PUs,  n t imes as m a n y  as the 
corresponding PADAM.  
2. A P U  in a mesh can communica te  only with its immedia te  neighbors,  whereas, 
in principle, a P U  in a P A D A M  can communica te  with any other  P U  in constant  
time. 
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Figure 1: A PADAM with n PUs and an n × n network of MUs. The large 
circles indicate the PUs, the smaller circles the MUs. A PU has direct access to 
all MUs in its row and column. 

Two existing machines, ADENA and USC/OMP, were direct inspirations 
for the PADAM design. For the technical details of ADENA see [7, 8], and 
for UCS/OMP see [4, 5]. The ADENA and USC/OMP were built primarily 
for numerical, scientific and computer-graphics applications. In these problems, 
arrays of numbers need to be processed, and such arrays map naturally onto 
arrays of MUs. 

The formal PADAM model we consider abstracts from low-level technical 
details. It was introduced in [2], where the potential of this architecture as a 
general-purpose computer was explored. General applications require greater 
flexibility of accessing memory and rearranging information. To facilitate such 
tasks, in [2] a routing algorithm was designed, mechanisms of random access to 
MUs were developed, and general PRAM simulations were given. 

This research concentrates on the problem of routing. The goal is to in- 
vestigate the levels of optimality that  can be achieved for various loads of the 
network. By a load we mean the number r of packets from every MU that  have 
to be relocated. For the smallest loads, the results are away from off-line optimal 
by a logarithmic factor, while for r = w (log n .  log log n), the difference decreases 
to an additive lower-order term. 

2 Prel iminaries  
In this section we specify some parameters of the model and introduce the routing 
problem. 

I n d e x i n g .  We restrict our attention to 2-dim PADAM, unless stated otherwise. 
On an n x n PADAM, there are n PUs: PUo,..., PUn-l, and n 2 MUs: Mb~x, y], 
for all 0 <_ x, y < n. 
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Modes of Operation. The PUs can work in three modes: internal mode, row 
mode and column mode. At any time, all PUs operate in the same mode. In the 
internal mode, the PUs perform internal computations; in the row mode each 
PU can access one MU of its choice in its row; and in the column mode each PU 
can access a MU in its column. We assume that  synchronization is provided by 
the model: when a processor wants to switch the row/column mode, it enters a 
s tate  of being ready for this, and when all processors are in this s tate then the 
mode is changed. 

Cost M o d e l .  The internal processor computat ions are assumed to take neg- 
ligible time. The cost of a memory  operation consists of two parts: the t ime to 
access a MU (latency), followed by the time to perform a number  of reads and 
writes in the MU (transfer time). To simplify considerations, we consider one of 
these costs for a problem at hand. Usually for on-line algorithms we count MU 
accesses, and for off-line algorithms we count writes. 

Routing P r o b l e m .  We consider the problem of routing r-relations (among 
MUs): each MU is the source and destination of (at most) r packets, and the 
goal is to route the packets to their destination MUs efficiently (if r = 1 then the 
problem is referred to as permutat ion  routing). The given basic formulation of 
the problem is memory  oriented. We also consider a processor-oriented formu- 
lation of routing R-relat ions (among PUs), in which every PU is the source and 
destination of R = r . n  packets (the packets of PUs are parked in the hyperplanes 
assigned to PUs). 

3 Deterministic Algorithm for Moderate Loads 
In this section the problem is of routing r-relations among MUs, the cost is mea- 
sured as the number of accesses to different MUs. The exposition concentrates 
on the case r = 1, extension to the general case being straightforward. 

A sequence x = (x0 , . . . ,  xn-1)  of numbers in [0..n - 1] is an n-sequence. If 
xi = s then xi is referred to as s-value. We start  with a sequential algorithm to 
permute  n-sequences. The input is an n-sequence x, where n is a power of 2, 
and the output  is a permutat ion of x stored in array X[O..n - 1]. 

A l g o r i t h m  DISPERSE 

1. Sort x. 

2. If  n = 1 then place x0 in X[0]; otherwise: 

(a) apply Step 2 recursively to xl = (Xo, x l , . . . ,  xn/2-1} in array Xl con- 
sisting of X[0], X[2], X[4] , . . .  ; 

(b) apply Step 2 recursively to xr  = (xn/2, x n / 2 + l , . . . ,  xn -1 )  in array Xr  
consisting of X[1], X[3], X[5], . . . .  

L e m m a  I Let  x and y be two n-sequences such that the number  of s-values in 
x and t-values in y are equal to/~ > O. Apply the algorithm DISPERSE on X 
to obtain x '  and on y to obtain y ' .  Let  x~l , . . . , x~z be the consecutive s-values 
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in x'. Then, for each segment I among [0..il], [il + 1..i2], . . . ,  [iz-1 + 1..iz] and 
[i~ + 1..n - 1] the number of t-values y~ such that i e I is at most four. 

Algorithm AI: 

1. In row mode: Each PUi counts the number of packets in its row, which are 
to be delivered to column j ,  for each j E [0..n - 1]. This number is stored 
in M[i, j]. The column address is the value of a packet. 

2. In column mode: Each PUi reads in M[k,i], for each k, the number t of 
packets in row k going to column i, and creates t dummy packets of value 
k. These packets are stored in the column one packet per memory unit. 

3. In row mode: Each PUi disperses the packets in row i with respect to 
values. 

4. In column mode: Each PUi disperses the dummy packets in column i with 
respect to their values. 

5. Each PUi executes the following, for m := 1 to n: 

(a) In row mode: It takes the m-th packet and delivers it to its destination 
column. 

(b) In column mode: It reads the value of the m-th dummy packet, let 
it be k. Then it goes to row k and delivers (at most four) packets 
waiting there to their destination rows. 

6. In column mode: Each PUi scans the column list and delivers all the waiting 
packets to their destination columns. 

L e m m a  2 Algorithm A1 is correct and delivers all the packets. 

To have small constants, the implementation of algorithm A1 can be simplified. 
The rows are first sorted by a bucket sort. In the course of this the numbers 
of packets in row i going to column j are calculated and stored in M[i,j]. The 
permutat ion of algorithm DISPERSE does not need to be performed, because it 
is fixed: instead we calculate the original addresses of packets that  would be 
moved by the algorithm DISPERSE to specific locations. 

L e m m a  3 After sorting, algorithm DISPERSE moves a packet from position i 
to j in the sequence iff the binary representation of j is the reversed binary 
representation of number i. 

Hence, if h processor needs to access a packet that  would be placed at address l 
by DISPERSE then it takes the packet from the original location with address 
obtained by reversing the bits of number I. 

The modified version of algorithm consists of three phases: (1) sorting the 
packets in rows; (2) creating and distributing dummy packets in columns; (3) 
delivering packets. 

Theorem 1 Algorithm n l  can be implemented to run in time 18n, measured as 
the number of accesses to MUs. 
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4 R a n d o m i z e d  A l g o r i t h m  f o r  M o d e r a t e  L o a d s  
We develop a randomized algorithm for permutation routing among memory 
units, which has a better  constant in the expected-performance bound than A1 
in its worst-case performance bound. The cost is again the number of accesses 
to different MUs. 

A l g o r i t h m  A2: 

1. In column mode: Each PUi permutes randomly the packets in column i. 

2. In row mode: Each PUi builds a row list Ri in row i: this list connects 
columns to which there are still packets to be delivered from row i. For each 
column k in Ri, all the MUs storing packets addressed to k are connected 
in a list, called row-column group G(i, k), the header of this list is placed 
in M[i, k]. 

3. in column mode: Each PUk builds a column list Ck: this list connects such 
MUs M[i, k] that  in row i there are still some packets that  need to be 
moved to column k. 

4. Repeat for each PU, until routing completed: 

(a) In row mode: PUi scans the row list Ri. For each considered column 
k, a packet x from the row-column group G(i, k) is retrieved, its MU 
is deleted from G(i, k), and packet x is stored temporarily in M[i, k]. 
(Such a packet x is a waiting packet.) If G(i, k) is empty then column 
k is deleted from list Ri. 

(b) In column mode: PUk scans the column list Ck. For each processed 
M[i, k] in Ck, PUk delivers the waiting packet stored there, if any, 
to its final destination MU. If G(i, k) is empty then row i is deleted 
from list Ck. 

T h e o r e m  2 For each constant c~ > 0 and sufficiently large n, Algorithm A2 
operates in time (12 -- e -1 + o(1)),  n with the probability at least 1 - n -a .  

F a s t e r  r a n d o m i z e d  i m p l e m e n t a t i o n .  Observe that  Algorithm A2 performs 
many memory accesses for list operations, and in particular, it requires an ex- 
pensive preprocessing in Steps 2 and 3. One can obtain a faster implementation 
by working with lists maintained implicitly. 

T h e o r e m  3 For each constant ~ > 0 and sufficiently large n, Algorithm A2 can 
be implemented to operate in time (7+  e - l +  o(1)), n with the probability at least 
1 - n  -~.  

5 A l g o r i t h m  f o r  L a r g e  L o a d s  
In this section the cost measure is the number of write operations, again we 
consider routing r-relations among MUs. For sufficiently large r, we want to 
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match the t ime consumption of the off-line algorithm up to lower-order additive 
terms. 

Consider first the problem of off-line routing r-relation on an n × n PADAM. 
It  can be performed by first solving a coloring problem for a bipart i te (multi-) 
graph. The n nodes on the left correspond to the rows, the n nodes on the right 
to the columns. There is an edge from a node i to a node j for each packet in row 
i with destination in column j .  All nodes are of degree nr,  and hence the graphs 
can be colored using nr  colors. The colors corresponds to the steps in which a 
packets is going to be routed: Consider a packet p with color c, 0 ~_ e < nr,  
standing in row i and with destination in column j .  In Step c, PUi writes p to 
MU[i, j] ,  and subsequently, p is read by PUj  and is written into its destination 
MU. The bound in the next Lemma 4 is tight. 

Lemma 4 On a two-dimensional  P A D A M ,  r-relations can be routed off-line in 
2nr steps. 

Our approach for on-line routing for larger load is to simulate the off-line algo- 
rithm above. We need to solve a coloring problem on a bipartite regular (multi-) 
graph on-line. This problem involves n nodes in both components, and n 2 • r 
edges between them. On-line algorithms along these lines have been designed 
before for meshes [I0]. 

A bipartite regular graph with v nodes and m edges can be colored sequen- 
tially in (_9(m- log(m/v)) steps [3]. Lev, Pippenger, and Valiant [9] designed a 
PRAM algorithm that uses m~ log m PUs and solves the edge-coloring problem 
for m / v  being a power of two in the optimal t ime O ( l o g m .  log re~v). This algo- 
r i thm can be implemented on the PADAM without loss provided m is sufficiently 
large: 

Lemma 5 Edge-coloring a regular bipartite graph with v = 2n nodes, m > 
n 2 log log n edges and m / n  a power of two, can be performed on an n × n P A D A M  
in the optimal O ( m / n .  log(rain))  time. 

Substi tut ing v = n and m = n 2 • r shows tha t  it would take O ( n r  • log(nr)) 
time. 

In every PU, the packets with the same destination are grouped together,  
and combined into super-packets of size s. For every destination there may be 
one super-packet tha t  is only partially filled. Thus, for given r and s, there are 
at most  [nr/s]  + n super-packets in every PU. 

T h e o r e m  4 For any r = w ( l o g n l o g l o g n ) ,  an n × n P A D A M  can route r- 
relations on-line in 2nr + o(nr)  steps. 

6 M u l t i d i m e n s i o n a l  P A D A M s  
The problem considered is R-relation routing among PUs of a multidimensional 
PADAM, the cost is the number of writes in MUs. 

By a d-dimensional PADAM we mean a d-dimensional grid of MUs, with 
all PUs assigned to one face of this grid, this face may change in the course of 
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the computat ion.  A PU with index ( i t , . . .  , / d - l ) ,  denoted PUpi l , . . .  ,id-1] can 
write to any M U [ i l , . . .  ,id-l,X], for any 0 _< x < n, and only to these MUs. The 
PUs can read from d -  1 sides. The indexing on the sides is such that  in an 
operation in which the reading is along the j-axis, P ~ i l , . . . ,  id-1] can read from 
M S ~ i l , . . .  , i j - l , x ,  i j + l , . . .  , i d - l , i j ] ,  for all 0 _ x < n. In every step every PU 
can perform an arbi t rary  internal computat ion,  one write, and one read. The 
reads have to be performed along the same axis. 

L o w e r - B o u n d .  A correction is the action of moving a packet such tha t  one of 
its coordinates becomes equal to the corresponding coordinate of its destination. 
If  initially no packet shares a coordinate with its destination, then ( d -  1) . R . n  d-1 
corrections are needed. Dividing by the number of PUs shows that  

L e m m a  6 There are i n p u t s / o r  which routing R-relations on a d-dimensional  
n × . . .  x n P A D A M  requires at least (d - 1) • R steps. 

Only for d = 2, this bound is sharp. For d = 3, we consider the transposit ion 
under which all packets from PO~i,j] have to be routed to PO~j,i]. All the 
packets with the same first coordinate have destination in PUs with the same 
second coordinate, and vice-versa. Thus, during the first step, only n corrections 
can be performed. The remaining 2 • R • n 2 - n corrections tha t  have to be 
performed require at least 2 • R steps. 

Off - l ine  A l g o r i t h m .  By combining Lemma 4 with the results from [1], we 
p rove: 

T h e o r e m  5 R-relations can be routed off-line on a d-dimensional  P A D A M  in 
(2. d -  3) .  R steps. 

Unfortunately, the gap with the lower-bound of Lemma 6 is large. 

O n - l i n e  A l g o r i t h m  for  L a r g e  R. For turning the off-line algorithm into an 
on-line algorithm, the in total  (d - 2) + (2 • d - 3) coloring operations must  be 
performed on-line. The costs can be amortized over the 2. d -  3 routing rounds. 
Also the ratio of node, edges and PUs is the same as before. Therefore, the 
result of Theorem 4 can be carried on: 

C o r o l l a r y  1 On a d-dimensional  n × . . .  × n P A D A M ,  /or  R = w ( n .  logn  • 
log logn) ,  R-relations can be routed on-line in (2. d -  3).  (R  + o(R) ) steps. 

7 C o n c l u s i o n  
By a detailed analysis of routing on the PADAM, we have quantified the degree 
of optimali ty for routing r-relations among memory  units and R-relations among 
processors, tha t  can be realized for various r and R. For r such that  r -- o(log n), 
the routing requires an extra  factor (_9(log n), for r --= (_0(log n .  log log n) an extra  
constant factor, and for larger r only an additive lower-order term. 

As routing R-relations among processors constitute the basic communication 
operation of BSP algorithms, our analysis strengthens the claim tha t  a PADAM 
is a suitable architecture for general purpose parallel computation.  I t  was already 



279 

known that PRAM algorithms could be simulated efficiently [2], but for possible 
practical applications the involved constants are of crucial importance. This last 
point has been settled now, by showing that even for irregular and non-random 
patterns full efficiency can be reached for moderate values of R. 

For higher dimensional PADAMs, it remains an open problem to either 
sharpen the lower-bound, or to improve the given algorithms. For d = 3, the 
optimal time appears to be 3. R, but for d > 4, we do not dare to make a guess. 
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