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In this paper the problem of finding efficient orderpicking routes is studied for both conventional warehouses, where pickers have a
central depot for picking up and depositing carts and pick lists, and modern warehouses, where orderpicking trucks can pick up
and deposit pallets at the head of every aisle without returning to the depot. Such environments can be found in many warehouses
where paperless picking is performed from pallet locations with pickers having mobile terminals receiving instructions one by one.
In order to find orderpicking routes with a minimal length in both the situations of a central depot or decentralized depositing, we
extend the well-known polynomial algorithm of Ratliff and Rosenthal [1] that considered warehouses with a central depot. In
practice, the problem is mainly solved by using the so-called S-shape heuristic in which orderpickers move in a S-shape curve along
the pick locations. The performance of the new algorithm and the S-shape heuristic are compared in three realistic orderpicking
systems: (1) narrow-aisle high-bay pallet warehouse; (2) picking in shelf area with decentralized depositing of picked items; and (3)
conventional orderpicking from wide-aisle pallet locations. The new algorithm gives a reduction in travel time per route of between

7 and 34%. It turns out that the reduction in travel time strongly depends on the lay-out and operation of the warehouse.

1. Orderpicking in warehouses

In warehouses and distribution centers, products have to
be picked from specified storage locations on the basis of
customer orders. In general, the orderpicking process is
the most laborious of all warehouse processes. It may
consume as much as 60% of all labor activities in the
warehouse [2]. Especially in distribution environments,
the pick process is usually carried out under time con-
straints. Orders tend, more and more, to arrive late and
have to be shipped the same day at pre-fixed departure
times per area of destination. This leads to peak loadings
and an on-going pressure to carry out the orderpicking
process as efficiently as possible. Therefore, many ware-
houses nowadays use paperless orderpicking systems
rather than picklists containing the picking locations that
have to be collected at a central printer. The most com-
monly used way of paperless orderpicking is via mobile,
handheld or vehicle-mounted, terminals and printers.
Paperless orderpicking systems have the clear advantage
that orderpickers and storers are connected on-line with
the warehouse information system, which results in ac-
curate up-to-date stock information, on-line reaction to
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exceptional situations, and on-line control of progress.
Moreover, the orderpickers can obtain, pick and store
instructions without leaving the storage area. These as-
pects lead to pick-error reduction and increased produc-
tivity. The savings may be substantial in view of the
picking throughput time per destination, but also in view
of the efficient use of expensive special orderpicking
equipment such as high-bay narrow-aisle orderpicking
trucks. The use of mobile terminals offers the possibility
of a more decentralized way of operation. For example,
in warehouses where orderpicking trucks are used and
empty pick carriers are available at the head of all aisles,
orderpicking trucks can drop off full pallets at the head of
each aisle. The transportation of the full pallets is taken
care of by faster and also cheaper equipment, such as
conveyors and forklift trucks. The orderpickers may
therefore finish a picking route in any aisle and proceed
with the new route in the same aisle. In the sequel of the
paper such systems will be called orderpicking systems
with decentralized depositing.

Another way to achieve savings on orderpickers and
equipment is by optimizing orderpicking routes. Given
that the orderpicker has to collect a number of products
in specified quantities at known locations, in what se-
quence should the orderpicker visit these locations in
order to minimize the distance traveled? The problem of



470

finding shortest orderpicking routes for warehouses with
a central depot can be solved in running time as being
linear in the number of aisles and the number of pick
locations [1,3]. In van Dal [4] the algorithm is extended
for different warehouse lay-outs. More recently, Gelders
and Heeremans [5] solved the orderpicking problem by
applying the branch-and-bound algorithm of Little ez al.
[6] to a simplified warehouse lay-out for a particular type
of warehouse. They report reductions on the total walk-
ing distance in the warehouse varying between 9 and 40%
(depending on the number of items to be picked). The
problem of finding a shortest orderpicking route in the
case of decentralized depositing has not been considered
in the literature. In practice, the problem of finding
orderpicking routes in a warehouse is mainly solved by
the so-called S-shape heuristic in which orderpickers move
in a S-shape curve along the pick locations skipping the
aisles where nothing has to be picked. More advanced
heuristics are considered in Hall [7].

In practice, the optimal routing algorithms are infre-
quently used. This is partly due to the fact that the algo-
rithm is not commonly known. Also the application of the
algorithm to lay-outs different to the model containing
parallel aisles and a central depot has not been considered
in the literature. In order to use the algorithm, it has to be
incorporated into the existing warehouse management
system software, which means a change in the core func-
tionality of such a system. Furthermore, the savings
produced by using optimal algorithms in practice are not
clear a priori. We also have to keep in mind that there are
extra expenses and risks associated with implementing the
optimal algorithm, because the algorithm is complex
(based on dynamic programming) and not transparent.
Finally, note that the routing of orderpickers is not in all
cases the process where the largest gain in efficiency may
be obtained. Substantial gains can also be obtained from
proper clustering the orders into routes [8—10].

In this paper, we will show that the polynomial algo-
rithm of Ratliff and Rosenthal [1] can be extended in such
a way that shortest orderpicking routes can be found in
both warehouses with a central depot and warehouses
with decentralized depositing. Moreover, we will investi-
gate the real gain in travel and total route time of the
optimal algorithm in comparison with the S-Shape heu-
ristic. Based on practice, we consider the following three
warehousing situations:

1. Picking with orderpicking trucks in a narrow-aisle
high-bay pallet warehouse;

2. Manual picking from shelf racks with decentralized
depositing on, for example, a conveyor;

3. Picking in a conventional wide-aisle pallet ware-
house using an orderpicking truck without lifting ca-
pability.

The paper is organized as follows: A mathematical model
for the orderpicking problem is considered in Section 2.
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Section 3 presents the extension of the algorithm of
Ratliff and Rosenthal [1]. The numerical results of com-
paring the performance of the new algorithm and the
S-shape heuristic in the three practical orderpicking sys-
tems are discussed in Section 4.

2. The orderpicking problem

A warehouse consists of a number of aisles of equal
length with the items being stored at both sides of the
aisles. Trucks use the aisles to pick up items. They can
traverse the aisles in both directions, and changing di-
rection is not a problem. Each order consists of a number
of items that are usually spread out over a number of
aisles. We assume that the items of an order can be picked
in a single route. Aisle changes are possible at the front
and rear ends of the aisles. Aisle changes with an order-
picking truck or crane to neighboring aisles are often very
time consuming. We assume that the trucks are capable
of simultaneously driving and lifting. In a warehouse with
a central depot the orderpick carts and pick lists can be
picked up and deposited at the depot. In this case the
start and finish point of the orderpicking route are known
beforehand. In paperless orderpicking systems with de-
centralized depositing the orderpick carts and pick lists
can be picked up and deposited at the head of every aisle.
In this case only the start point of the orderpicking route
is known beforehand. In order to determine an order-
picking route of minimum length the travel time between
each pair of locations in the warehouse needs to be
specified. In the specification of the travel time we can
take into account the time for entering an aisle and the
time for accelerating and decelerating while driving from
one location to another. Note that we will only minimize
the travel time as the other orderpicking activities have to
be performed anyway and therefore do not impact the
choice of an orderpicking route. The warehouse lay-out is
shown schematically in Fig. 1.

We will model the warehouse with the orderpicking
locations as an undirected (multi) graph with the vertices
corresponding to the pick locations and endpoints of the
aisles, the edges indicating whether two locations or
endpoints in the warehouse are connected directly, and
the length of the edges indicating the travel times in the
warehouse. A depot vertex is added together with edges
connecting the depot vertex with the head of the aisles.
More formally, let N denote the number of aisles in the
warehouse and M the number of items that have to be
picked in the orderpicking route. We define an undirected
(multi) graph G with the vertex set V" and the edge set £
with vertices v; representing the location of item i, for
i=1,...,M, vertices a; and b; representing the ends of
aisle j, for j=1,..., N, and vertex s denoting the depot.
For each pair of vertices u,v in V' corresponding to ad-
jacent locations in the warehouse, the edges {u,v}, {u,v}
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Fig. 1. Schematic warehouse lay-out. The closed boxes indicate
the section in the rack where items have to be picked. The
dotted lines indicate where the orderpicker may drive.

are introduced (the edge is mentioned twice to stress that
two edges are added to the multi-graph), and the length
of each of these edges, denoted by d(u,v), is defined as the
travel time between the corresponding locations in
the warehouse. In a warehouse with a central depot at the
head of an aisle, say aisle p, the edges {s,b,}, {s,b,} are
introduced. In a warehouse with decentralized depositing
starting from the head of an aisle, say aisle p, the edge
{s,b,} is introduced together with the edges {s,b;} for
j=1,...,N. Figure 2 shows the graph for the warehouse
and pick locations of Fig. 1 in the case of decentralized
depositing starting from by.

Any orderpicking route will be considered as being a
special kind of subgraph of the warehouse graph G, and is

Fig. 2. Orderpicking graph.
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therefore called a routesubgraph. More formally, any
subgraph T of G is called a routesubgraph if the edges
form a cycle in G that includes s and each of the vertices v;
at least once. The length of subgraph T is defined as the
sum of the length of the edges in T. Figure 3 shows a
routesubgraph for the warehouse lay-out of Fig. 1 in the
case of decentralized depositing starting from the head of
aisle 4.

In Ratliff and Rosenthal [1] an algorithm is presented
that constructs an orderpicking route from a given
routesubgraph. The problem of finding a shortest order-
picking route can therefore be solved by finding a
routesubgraph of minimum length. In the Appendix
necessary and sufficient conditions are given for a graph
being a routesubgraph (see Theorem A2).

3. A polynomial algorithm for finding a minimum length
routesubgraph

In this section we extend the optimal algorithm of Ratliff
and Rosenthal [1] in such a way that shortest order-
picking routes can be found in a warehouse with either a
central depot or with decentralized depositing. We wish
to stress that a shortest orderpicking route in a warehouse
with decentralized depositing can not be simply obtained
from a shortest orderpicking route in a warehouse with a
central depot by leaving out some of the edges. Figure 4
shows the shortest orderpicking routes in the warehouse
lay-out of Fig. 1 for both the situations of a central depot
at the head of aisle 4 and that of decentralized depositing
starting from the head of aisle 4. The shortest order-
picking routes have a length of 94 and 88, respectively.
Note that leaving out the connection between aisles 4 and
5 in the shortest orderpicking route in the warehouse with
a central depot at the head of aisle 4 gives an orderpicking

Fig. 3. Example of a decentralized routesubgraph.
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Fig. 4. The shortest orderpicking routes for both the situations
of a central depot and that of a decentralized depositing. The
distance between adjacent aisles is 2 and the distance between
adjacent aisle locations is 1.

route of length of 92 for the warehouse with decentralized
depositing.

3.1. Partial routesubgraphs

Every subgraph of G using only the edges of aisle 1 that
can be extended into a routesubgraph is called a Lq-par-
tial routesubgraph. Any Lq-partial routesubgraph can be
extended with the vertices and edges of aisle 2 in order to
obtain a L,-partial routesubgraph. If we continue in this
way, we finally get the Ly-partial routesubgraphs which
are precisely the routesubgraphs. More formally, define
L, for j=1,...,n,as the subgraph of G that contains the
vertices and edges of the first j aisles of the warehouse
(that is: including all double edges {a@;_;,a;} and double
edges {b;_1,b;} for i<j). We distinguish the following
three subgraphs of L;:

a. The subgraph L that includes a;, b; and the edges
{aj—laaj}a {aj—laaj}a {bj—labj}’ {bj—labj

} as well as the vertices and edges of the first j—1 aisles
(that is: including the edges {b,_;,s}, for i< j-1, of
which one edge is double in case p < j—1);

b. The extension of the L, subgraph, denoted by
subgraph LY, with the vertex s and the edges between s
and bj;

c. The extension of the L? subgraph, denoted by L},
with the vertices and edges of aisle j connecting the
vertices between a; and b;.

Let L be any subgraph of G. The graph G\L is the sub-
graph of G that is obtained by deleting all edges in L. Any
subgraph T of L is called a L-partial routesubgraph if
there exists a subgraph C of G\L such that T U C is a
routesubgraph of G. C is called a completion of T. Any L-
partial routesubgraphs 7'y and T are called equivalent if
each completion C in G\L of T} is also a completion of
T>, and vice versa. For any vertex v in G, the parity of v is
0 if the degree of v is 0, odd if the degree of v is odd, and
even otherwise. Any subgraph T of G is called a compo-
nent of G if for all vertices v,w in T there is a path in T
from v to w and there is no vertex in G\T with a path to a
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vertex in 7. In order to find all equivalent L-partial
routesubgraphs, we can use the following result.

Theorem 1. Any Lipartial routesubgraphs T\ and T, are
equivalent if and only if
1. a; and b; have the same parity in T\ and T>;
2. Ty and T, have the same number of components, and
3. Ty and T, are connected to s by the same number of
edges.

Proof. The proof is similar to the proof of Theorem 3 in
Ratliff and Rosenthal [1]. Condition (3) is added. |

As a consequence of Theorem 1, we can represent the
equivalence classes of L-partial routesubgraphs by the
quadruple (parity of a;, parity of b;, number of components,
number of edges connecting s). The parity of a; and b, can
be 0, e (even) or u (uneven), the number of components
can be 0, 1, or 2, and the number of edges connecting s
can be 0, I, or 2. The number of components of an L
partial routesubgraph can never be more than 2, since the
completion of the graph can only connect via the aisle
ends to two components at maximum. In principle there
exist 3 X 3 x 3 x 3 = 81 possible quadruples. However,
it will be shown in the Appendix that only the following
equivalence classes correspond with L-partial routesub-
graphs.

Theorem 2. The following quadruples are the only equiva-
lence classes of L-partial routesubgraphs:
(0,e,1,0),(e,0,1,0), (u,u,1,0), (e, e, 1,0), (e, e,2,0),

(0707070)7(07u7171)’(u707171)7(u7e7171)7
(u7e727 1)7(e’u’171)7(e7u727 1)’ (07671?2)7(6707172)7
(u,u,1,2),(e,e,1,2), (e, e,2,2).

Now recall that each routesubgraph contains the edge
{s.b,}. Consequently, the L?-partial routesubgraphs in the
equivalence classes (0,e,1,0), (e,0,1,0), (u,u,1,0), (e,e,1,0),
(e,e,2,0) only exist for j smaller than p and the L;’-partial
routesubgraphs in the equivalence classes (0,e,1,2),
(e,0,1,2), (u,u,1,2), (e,e,1,2), (e,e,2,2) only exist for j at
least equal to p. Hence, we can denote the equivalence
classes, without loss of generality, as the triples:

(0,0,0),(0,e,1),(e,0,1), (u,u, 1), (e, e, 1), (e, e,2),
0,u,1), (u,0,1), (u,e, 1), (u,e,2), (e,u, 1), (e,u,2).

Note that in comparison with Ratliff and Rosenthal [1]
the equivalence classes (0,u,1), (u,0,1), (u,e,1), (u,e,2),
(e,u,1), (e,u,2) have been added and the equivalence class
(0,0,1) has been left out. This class is deleted, because we
start in the first and finish in the last aisle containing
items. Note that (0,0,0) is the only equivalence class of
Ly -partial routesubgraphs. Finally, observe that (e,0,1),
(0,e,1), and (e,e,1) are the only equivalence classes of Ly -
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partial routesubgraphs, so that a routesubgraph of
minimal length can be found from the Lj-partial route-
subgraphs in the equivalence classes (e,0,1), (0,e,1), and

(e,e,1) [1].

3.2. Finding minimum length L-partial routesubgraphs

In each of the equivalence classes a smallest Ly-partial
routesubgraph can be found by applying dynamic pro-
gramming [11]. This algorithm starts in aisle 1 and con-
siders the vertices and edges of the following aisle in each
successive step of the algorithm. In order to use dynamic
programming, we have to define the potential states, the
possible transitions between states, and the costs involved
in such a transition. The states correspond to the equiv-
alence classes of L-partial routesubgraphs. In order to
determine the transitions between states when adding the
vertices and edges of a new aisle, we consider the transi-
tion from aisle j—1 to aisle j in three steps: First from L;[l
to Lj, next from L; to L}, and finally from L9 to L. All
transitions can be found by applying Theorem Al in the
Appendix. The cost of each transition is equal to the sum
of the lengths of the edges added in the transition. For
each transition, it holds that in each equivalence class a
shortest partial routesubgraph can be found by taking the
smallest of the partial routesubgraphs that after the
transition end up in this equivalence class. We now con-
sider the three transitions in more detail.

3.2.1. The transition from L} | to L;

This transition determines how to add the edges
{aj_1,a;}{aj-1,a;},{bj—1,b;},{b;_1,b;} to the partial route-
subgraphs in the L, ;" equivalence classes in order to
obtain the partial routesubgraphs in each of the L;
equivalence classes. The eight possible ways to traverse
the corresponding edges are shown in Fig. 5.

Note that the transition from LJf_l to L; does not
change the number of edges connecting the depot vertex.
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Fig. 5. Eight ways to change aisles.

The equivalence classes that we obtain by combining the
eight ways with the partial routesubgraphs in the L;[l
equivalence classes are given in Table 1. For example,
applying possibility (1) to the L;T_l—partial routesubgraph
in the class (u.e,1) gives a L; -partial routesubgraph in the
class (u,0,1). For each L; equivalence class a minimum
length partial routesubgraph is found by taking the
smallest of all partial routesubgraphs that end up in this
equivalence class. For example, a smallest L -partial
routesubgraph in the class (1,0,1) can be obtained by
taking the smallest of the LT |-partial routesubgraphs in
the classes (u,0,1) and (u,e,1), and adding the edge
(a1,

3.2.2. The transition from L; to L?

This transition can change the number of edges con-
necting the depot vertex. Note that the transition depends
on the number of edges between s and b; in the warehouse
graph. If there is no edge between s and b; then the L; -
partial routesubgraphs in each of the equivalence classes
are already the Lio-partial routesubgraphs. Now consider
the case in which there is one edge between s and b;. In
this case we have to choose whether or not to traverse the
edge {s,b;}. These possibilities are labeled (1) and (2) in

Table 1. The transition from thl to L. A (*) indicates a transition that never gives a partial routesubgraph of minimum length.

An empty entry indicates that no transition is possible

thl—>L; (0,00) (0el) (e0,1) (uul) (eel)

(ee2)

(Oul) (u0,1) (uel) (ue?2) (eul) (eu?2)

(0,0,0) 7*
(0,e,1) 7
(e,0,1) 6

(u,u,1) 5

(e,e,1) 7 6 8
(e,e,2)

(0,u,1)

(u,0,1)

(u,e,1)

(u,e,2)

(e,u,1)

(e,u,2)

6*

8*
8*
8*

2*
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Fig. 6. The equivalence classes that are obtained by
combining the two ways with the partial routesubgraphs
in the L equivalence classes are given in Table 2.

Finally, consider the case that there are two edges be-
tween s and b;. Now there are three possibilities to tra-
verse the edges between s and b;, see Fig. 6. The
equivalence classes that we obtain by combining the three
ways with the partial routesubgraphs in the L; equiva-
lence classes are given in Table 3. Note that possibility (1)
is not possible, because at least one edge {s,b;} is included
in every routesubgraph.
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In Table 3 there are two exceptional transitions. Con-
sider first the transition from (u,e,2) to (u,u,1), denoted by
(1), by adding the edge {s.b;}. Any L, -partial routesub-
graph in the equivalence class (u,e,2) has two compo-
nents, one containing a; and s, and one containing b; (see
Lemma A6 in the Appendix). Adding the edge {s,b;}
therefore reduces the number of components by one.
Consider now the transition from (e,u,2) to (e,e,2) de-
noted by (2). In this case any L; -partial routesubgraph
has two components, one containing @; and one con-
taining s and b; (see Lemma A6). Therefore adding the
edge {s,b;} does not reduce the number of components.

3.2.3. The transition from L;’ to L}

This transition determines how to traverse the edges
connecting the items in aisle j. Again, the depot connec-
tion remains unchanged. It appears that there are only six
ways to traverse the edges in aisle j, see Fig. 7.

In possibility (5) only the longest double edge in aisle j
is not traversed. Again, the cost of each possibility is
equal to the sum of the corresponding edge lengths. Note
that transitions (3) and (4) may be applied only if the aisle

Table 2. The transition from L; to L? in the case of one edge between s and b;

L;—)L? (000) (0el) (e01) (uul) (eel)

(ee2)

(Ou,l) (u0,1) (uel) (ue?2) (eul) (eu?2)

(0,0,0) 1

(0,e,1) 1

(e,0,1) 1

(u,u,1) 1

(e,e,1) 1
(e,e,2) 1
0,u,1)

(u,0,1)

(u,e,1)

(u,e,2)

(e,u,1)

(e,u,2)

2
2

Table 3. The transition from L7 to Lj’ in the case of two edges between s and b;. A (*) indicates a transition that does not produce a
shortest routesubgraph, and an empty entry indicates that the transition is not possible. The exceptional transitions are explained

in the text

Ly — L) (000) (0el) (e01) (uwul) (eel)

(ee,2)

(Ou,l) (u0,1) (uel) (ue?2) (eul) (eu?2)

(0,0,0) 3

(0,e,1) 3

(e,0,1)

(u,u,1) 3

(e,e,1) 3
(e,e,2)

(0,u,1) 2

(u,0,1) 2

(u,e,1) 2%

(u,e,2) 2

(e,u,1) 2
(e,u,2)

2
2

o)
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Fig. 7. Six ways to traverse the edges in aisle J.

contains at least one item, transition (5) may be applied
only if the aisle contains at least two items, and transition
(6) may be applied only if the aisle contains no items.

The equivalence classes that we obtain by combining
the six ways with the partial routesubgraphs in the L;
equivalence classes are given in Table 4. For example,
applying possibility (3) to the L?—partial routesubgraph in
the class (0,e,1) gives a L,*—partial routesubgraph in the
class (e,e,2). This concludes the description of the algo-
rithm for finding a minimum routesubgraph. The algo-
rithm considers all aisles and items, and for each aisle and
item a constant number of operations has to be done.
Hence, the time-complexity of the algorithm is
O(max(N,M)).

3.3. Example

We conclude this section by applying the algorithm to the
warehouse and orderpicking locations of Fig. 1 for the
case of decentralized depositing starting from the head of
aisle 4. Recall that the corresponding warehouse graph is
shown in Fig. 3. In Table 5 the length of the smallest
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partial routesubgraph is given for all equivalence classes
and states. The equivalence classes in Table 5 are num-
bered. Each entry in the table has the form / (¢, n ), where
[ is the length of the smallest partial routesubgraph in this
equivalence class that is obtained by extending the partial
routesubgraph in the equivalence class ¢ by traversing the
new edges according to the transition with number 7 (in
Roman numbers). Each entry that does not correspond to
a partial routesubgraph, or a partial routesubgraph that
can never have a minimum length, is denoted by (-). For
example, any partial routesubgraph that does not start in
aisle 4 can never yield a routesubgraph with a minimum
length.

The table is constructed by working from left to right.
Recall that (0,0,0) is the only L; equivalence class. The
partial routesubgraphs in the L{ equivalence classes are
found by applying Table 2, since there is one edge be-
tween s and b;. From the L] equivalence class (0,0,0), we
obtain L{-partial routesubgraphs in the class (0,0,0), by
not adding {s.,b;}, and in (0,u,1) by adding {s,b;}. The
partial routesubgraphs in the L] equivalence classes are
found by applying Table 4. For example, traversing the
edges in aisle 1 according to transition number (IV), at a
cost of 22, gives a minimum length L{ -partial routesub-
graph in the equivalence class (0,e,1). The partial route-
subgraphs in the L; equivalence classes are found by
applying Table 1. For instance, the partial routesubgraph
in the L; equivalence class (0,e,1) of length 26 is found by
adding the edges {aj,a»} and {aj,a»} to the partial
routesubgraph in the L equivalence class (0,e,1). The
minimum length partial routesubgraphs in the L} equiv-
alence classes are found by repeatedly applying the
transition tables.

The last column of Table 5 shows that a smallest
routesubgraph can be found in the L equivalence class
(e,e,1) with a length of 88. Table 5 can also be used to
construct the routesubgraph by working backwards from
right to left (see the shaded boxes). The L partial
routesubgraph in the class (e,e,1) was found from the LY

Table 4. The transition from L? to Lj-*. Transitions marked (*) do not have a shortest partial routesubgraph

L_? — L?’ (0,00) (0e,1) (e0,1) (uul) (ee,l) (ee2) (Ou,d1) (u0,1) (uel) (ue?2) (eul) (eu?2)
(0,0,0) 6 4 3 1 2 5

(0,e,1) 4,6 1 2 3,5

(e,0,1) 3,6 1 2 4.5

(u,u,1) 2*.3.4,5,6 1

(e,e,1) 1* 2%3,4,5,6

(e,e,2) 1 2 3,4,5,6

(0,u,1) 4,6 1 3,5
(u,0,1) 3,6 2 4,5 1

(u,e,1) 2%3,4,5,6 1*

(u,e,2) 2 3,4,5,6 1

(e,u,1) 1* 2%*3,4.5,6

(e,u,2) 1 2 3,4,5,6
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Table 5. Numerical example
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Equivalence Aisle 1 Aisle 2 Aisle 3
class
Ly L Ly Ly L9 Ly Ly L3 Ly
1 (0,0,0) 0() 0 (1,D - - - - - - -
2 0,e,1) - - 22 (1,IV) 26 (2,VID) 26 (2,I) 48 (2,Iv) 38 (5,VID) 38 (2,]) 62 (2,IV)
3 (e,0,1) - - 24 (1,III) 28 (3,VI) 28 (3.I) 48 (3,1I1) 38 (5,VI) 38 (3,D 62 (3,III)
4 (uu,1) - - 15 (1,D 19 (4,V) 19 4,1 374 V) 41@4)YV) 414D 53 (3,D
5 (e,e,l) - - 30 (LLII) 38 (5,VIII) 38 (5,D) 34 (4,1) 42 (5,VIII) 42 (5,1) 56 (4,1)
6 (e,e,2) - — 20 (1,V) 28 (6,VII) 28 (6,]) 44 (2,V) 52 (6,VIII) 52 (6,1) 56 (3,V)
7 O,u,l) - 0 (1,IT) 22 (7,IV) 24 (7,111) 24 (7.1) 46 (7,1V) 34 (1LIII) 34 (7.]) 58 (7,1V)
8 (u,0,1) — - — 17 9, 17 (8,1) 37 (8,III) 39 (8,) 39 (8,1) 63 (8,I1I)
9 (w,e,l) - - 15 (7.1) 21 (9,IT) 19@41H 3709,V) 430J0) 41 @&I) 49 (7.)
10 (u,e,2) - - - - - 35(8,V) 41 (10,I1) 41 (10,) 57 (8,V)
11 (eu,l) - - 30 (7,I) 36 (11,1V) 36 (1L,I) 32 (8,1 38 (11,IV) 38 (11,I) 54 (8,D)
12 (e,u,2) — - 20 (7,V) 26 (12,IV) 26 (12,1) 42 ((7,v) 48 (11,IV) 38 3,1I) 52 (7.V)
Equivalence Aisle 4 Aisle 5 Aisle 6
class Ly L Li Ly LS 2 Ly Lg L{
1 (0,0,00 - - - - - - - - -
2 (0,e,1) 60 (5,VII) 56 (7,I) 56 (2,VI) 60 (2,VID) 60 (2.I) 74 (2,IV) 74 (5,VII) 74 (2,D) 98 (2,IV)
3 (e,0,1) 60 (5,V]) — — 64 (5,VD) 64 (3.1) 80 (3,III) 74 (5,VI) 74 (3,D 100 (3,11I)
4 (u,u,1) 57 (4,V) SL@,I) 51 (4,VID) 55@4V) 554D 69 4,IV) 734YV) 134D 89 (3.I)
5 (e,e,1) 64 (5,VII) 60 (11,I1) 60 (5,VI) 68 (5,VIII) 68 (5,1) 70 (4.,1) 78 (5,VIII) 78 (5,1) 88 (4.I)
6 (e,e,2) 64 (6,VIID) 58 (12,I1) 58 (6,VI) 66 (6,VIII) 66 (6,1) 76 (2,III) 84 (6,VIII) 84 (12,I1) 90 (3,V)
7 0,u,1) 56 (11,III) 60 (2,I) 60 (7,VI) 62 (7,111) 62 (7,) 76 (7,1V) 76 (11,III) 76 (7,) 100 (7,IV)
8 (u,0,1) 51 (9,I) - - 59 (9,1) 59 (8,1) 75 (8,1II) 77 (8,I) 77 (8.1) 100 (8,111)
9 (u,e,1) 55 (9,1I) 57 4,II) 57 (9,VI) 63 (9,1I) 63 (9,1) 77 (7.1) 83 (9,II) 839D 91 (7.1)
10 (u,e,2) 63 (10,II) - - - - 73 (8,IV) 79 (10,IT) 79 (10,I) 93 (8,V)
11 (e,u,1) 60 (11,IV) 64 (5,I) 64 (11,VI) 70 (11,1IV) 70 (1L,L1) 74 (8,1) 80 (11,IV) 80 (11,I) 92 (8,
12 (e,u,2) 58 (12,1V) 60 (3,II) 60 (12,VI) 66 (12,1V) 66 (12,I) 78 (7,1I1) 84 (12,IV) 84 (12,I) 91 (7,V)

partial routesubgraph in the class (u,u,1) with transition
(I), which was found from the Ly partial routesubgraph
in the class (u,u,1) with transition (I), which again was
found from the Ly, | partial routesubgraph in the class
(u,u,1) with transition (V), et cetera. The minimum length
routesubgraph that can be obtained in this way is shown
in Fig. 3 and the resulting orderpicking route is shown in
Fig. 4. Note that the orderpicking route ends at the head
of aisle 1.

4. A numerical comparison between optimal and
heuristic solutions

This section compares the optimal and heuristic solutions
for three practical orderpicking systems; namely: (1)
narrow-aisle high-bay pallet warehouse; (2) picking in
shelf area with decentralized depositing of picked items;
and (3) conventional orderpicking from wide-aisle pallet
locations. In all configurations, we consider the results of
1000 runs each consisting of a fixed number of randomly
distributed picking locations over the aisles in the ware-
house. For each experiment, the travel and total time are
calculated for both the S-shape heuristic and the optimal

algorithm. The resulting average travel (walking or
driving) and total route time are given for both algo-
rithms. The total route time includes not only the travel
time but also the time for other activities such as picking
and remaining tasks including the dropping off and ac-
quisition of pick carriers, administrative tasks and the
like. The S-shape heuristic is adapted for the case of de-
centralized depositing by starting the S-shape curve in the
left or right-most aisle where items have to be picked, that
is closest to the starting point, and the endpoint of the
current route is the starting point of the next route. We
wish to mention here that in warehouses with decentral-
ized depositing, there is in fact an additional opportunity
for savings on travel and total time when a set of orders
has to be picked on an order by order basis by finding the
best sequence of orders. This problem will not be con-
sidered in this paper, and in all experiments the endpoint
of the current route is taken as the starting point of the
next route.

4.1. Narrow-aisle high-bay pallet warehouse

This kind of orderpicking system is often used for the
picking of fairly large, slowly moving, items that are
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Table 6. Average driving and total times for narrow-aisle high-bay pallet warehouses

Configuration Average driving time (in minutes) Average total time (in minutes)
Optimal Heuristic Difference (%) Optimal Heuristic  Difference (%)

3 aisles, 5 items 2.68 2.96 10.4 7.18 7.46 3.9

3 aisles, 10 items 3.19 3.51 10.0 10.19 10.51 3.1

4 aisles, 5 items 3.08 3.47 12.7 7.58 7.97 5.1

4 aisles, 10 items 3.96 4.25 7.3 10.96 11.25 2.6

stored in pallet racks. The aisles are 50 meters long, and
each orderpicking truck has a picking area that consists
of either 3 or 4 aisles with 5 or 10 pick locations. The
average travel speed within the aisles is 1.5 meters per
second and outside the aisles 1 meter per second. The
distance between two neighboring aisles is 4.3 meters. The
time needed to leave or enter an aisle is 15 seconds, and
the time needed for picking operations and remaining
activities is 150 seconds per item. As can be seen in
Table 6 the difference in performance between the opti-
mal algorithm and the S-shape heuristic is much smaller
when the ratio of stops per aisle is high.

4.2. Picking in shelf area with decentralized depositing
of picked items

We now consider a shelf store area where orderpickers
pick items in batch with a small pick cart. They receive
pick instructions via a mobile terminal with a label
printer. At the front end of the aisles, there is a conveyor
where the picked items can be dropped off. After drop-
ping off the picked items, the pickers receive information
about the items to be picked in the next route. The aisles
have a length of 10 meters and each orderpicker has to do
7, 10, or 15 aisles with 20 locations per route. The average
walking speed within and outside the aisles is 0.6 meters

Table 7. Average walking and total times for shelf picking

per second. The distance between two neighboring aisles
is 2.4 meters. No additional time is needed for aisle
changing. The time needed for the picking operations and
remaining activities is 140 seconds per item. Table 7
shows that the savings in walking time obtained by using
the optimal algorithm can be substantial. Again the
savings depend on the ratio of the number of stops per
aisle. However, in this case the relative difference in total
time per route is much smaller.

4.3. Conventional orderpicking

Finally, we consider the orderpicking in wide aisles con-
taining pallet racks where the picking is done from the
lowest levels. No special orderpicking trucks with lifting
capability are necessary. Picking is done with small
orderpicking trucks, in special devices, such as roll cages.
This situation can be encountered in large retailer ware-
houses where the picking is done per customer order, the
customer being a single store or a number of stores. We
assume that the picking is done on the left and right sides
of the aisles in a single move, and we neglect the aisle
cross-over time, although the aisles in such a warehouse
are relatively wide. In such an environment, the roll cages
often have to be picked up and deposited, after picking,
at a central point. The optimal and heuristic solutions are

Configuration Average walking time (in minutes) Average total time (in minutes)
Optimal Heuristic Difference (%) Optimal Heuristic Difference (%)

7 aisles, 20 items 2.08 2.34 12.5 10.75 11.01 2.4

10 aisles, 20 items 2.65 3.07 15.8 11.32 11.74 3.7

15 aisles, 20 items 3.37 4.07 20.8 12.04 12.74 5.8

Table 8. Average travel and total times for conventional orderpicking in wide aisles

Configuration Average travel time (in minutes) Average total time (in minutes)
Optimal Heuristic Difference (%) Optimal Heuristic Difference (%)
8 aisles, 10 items 4.87 6.45 324 12.87 14.15 12.3
8 aisles, 15 items 5.87 7.43 26.6 13.87 15.43 11.2
10 aisles, 10 items 5.46 7.33 34.2 13.46 15.33 13.9
10 aisles, 15 items 6.64 8.63 30.0 14.64 16.63 13.6
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compared for a warehouse with an aisle length of 40 me-
ters, 8 or 10 aisles per truck, and 10 or 15 stops per route.
The central depot is located at the front end of aisle 5.
The average travel speed is 0.8 meters per second within
and outside the aisles. No additional time is needed to
leave or enter an aisle. The distance between two neigh-
boring aisles is 5.5 meters, and the time needed for the
picking operations and remaining activities is 210 seconds
per item. Table 8 shows that for this type of situation
considerable gains can be obtained by using the optimal
algorithm instead of the S-shape heuristic.

5. Concluding remarks

The numerical results suggest that the savings in travel
time may be substantial when using the optimal algo-
rithm instead of the S-shape heuristic. It appears (for
example from Table 7) that the proportional gain in av-
erage travel and total time strongly depends on the av-
erage number of items per aisle. This can be intuitively
argued by realizing that if the density of items per aisle
increases then the likelihood also increases that with the
optimal algorithm the whole aisle has to be traversed.
This does not necessarily mean, that if the ratio of items
over aisles increases, the relative performance of the
S-shape heuristic increases. Table 6 shows that the case of
10 items and 3 aisles (ratio 3.33) has a performance gap in
average driving time of 10.0% and the case of 4 aisles and
10 items (ratio 2.5) has a performance gap in average
driving time of 7.3%. For a fixed number of aisles how-
ever, an increasing number of items means a better rela-
tive performance of the S-shape heuristic.

There are also other factors that influence the pro-
portional gain in travel and total time, for instance the
time needed to enter an aisle. If this time increases, then it
will become unattractive to enter aisles more than once,
and consequently the difference in travel time between the
optimal and heuristic solutions will decrease. The times to
enter aisles used in the simulation experiments are chosen
realistically for the case of orderpicking trucks. If aisle-
changing cranes are used instead of trucks then the time
for entering aisles will be substantially higher.

The difference in performance of the optimal and
heuristic algorithms in high-bay warehouses using or-
derpicking trucks is limited, especially when the total time
is considered and as opposed to solely the travel time. In
practical situations the travel time is often about 50% of
the total time. In many modern warehouses, the narrow-
aisle high-bay orderpicking trucks that have to travel
more than one aisle are replaced by multi-functional
trucks, i.e., the so-called combi-trucks. These combi-
trucks are not only responsible for orderpicking, but also
perform different tasks such as the storage and retrieval
of full pallets. The main advantage of using such trucks
instead of conventional orderpicking trucks lies of course
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in their flexibility. For these multi-purpose trucks, the
potential gain of optimal algorithms is limited. Never-
theless, there are many orderpicking systems where the
optimal algorithm can lead to substantial savings in total
route time and hence in the number of pickers and or-
derpicking devices.

For a real-life implementation, not only the potential
time benefits are important, but also the risks and costs
involved. One such risk is the calculation time. Computer
calculation times may play a role, if real-time performance
becomes important. This may be the case when an error
situation occurs: the item demanded is not available at the
expected location and a new route has to be calculated on
the spot and displayed on the mobile terminal. In many
environments however, real-time performance is not im-
portant. Calculation times of the optimal algorithm do
not play an important role in the investigated situations.
Although the calculation time of the optimal algorithm is
up to 15 times longer for the investigated cases than that
of the S-shape heuristic, it still only takes milliseconds for
a single instance (on a Pentium 120 computer).
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Appendix

In this appendix we will prove Theorem 2. We use the
following results. The following theorem gives necessary
and sufficient conditions for any subgraph of G being a
L;-partial routesubgraph.

Theorem A1l (Ratliff and Rosenthal [1])

Let je{l,...,.N—1}. Any TcL; is a Lypartial
routesubgraph if and only if:

1. for each v; € L;, the degree of v; is positive in T;

2. each vertex in T\{a;,b;,s}, has even degree; and

3. apart from vertices with zero degree, T exists of (a)
zero components, (b) one component with either a;, b;, or a;
and b; contained in this component, or (c) two components
with a; in the one and b; in the other component.

The following theorem gives necessary and sufficient
conditions for any subgraph of G being a routesubgraph.

Theorem A2 (Ratliff and Rosenthal [1])

Any T < G is a routesubgraph if and only if:

1. for each v; € V, the degree of v; is positive in T;

2. for each v € T, the degree is even; and

3. apart from vertices with zero degree, T consists of one
component.

As a direct consequence of Theorem A2, we obtain that
only (e,0,1), (0,e,1), and (e,e,1) are equivalence classes of
Lj-partial routesubgraphs, and consequently a route-
subgraph of minimal length can be found from the Lj-
partial routesubgraphs in these equivalence classes. As a
corollary of Theorem Al, Ratliff and Rosenthal proved
the following result.

Corollary A3 (Ratliff and Rosenthal [1])
For each partitioning (P,P*) of the vertices in a route-
subgraph, the number of edges between P and P* is even.

Applying Corollary A3 to the warehouse graph of
Section 2 gives the following results.

Lemma A4 For j=1,... N,

1. let ai* and b;* be the adjacent vertices in aisle j of a;
and b, respeetlvely If aisle j is non-empty then every L;L
partial routesubgraph contains an even number of edges in

{40/}, {ap,a;*}, 1bypbi*5, (Db

2. every L -partial routesubgraph (j > 1) with zero or
two edges connecting s contains an even number of edges in
{a] laa]} {a]—laaj} {j 1 }’ {bj—l’bj};

3. every L -partial roulesubgraph (j > 1) with one edge
connecting s conlains an odd number of edges in {a;_y,a;},
{aj-r.a5}, {bj-1.b;}, {b-1.b}.

Proof. (1) Let 7;" be any L;-partial routesubgraph, and
let T denote the correspondlng routesubgraph. Define P
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as the set of vertices corresponding to the items in aisle j.
Then, Corollary A3 implies that 7, and hence also Tj*,
contains an even number of edges in {a;a;*}, {a;a*},
{b;,b*}, {b;,b;*}.

(2) Let 7;” be any L, -partial routesubgraph, and let T
denote the corresponding routesubgraph. We first con-
sider the case that there are no edges connecting s. Define
P as the set of vertices in L] . Since there are no edges
between P and s, Corollary A3 implies that 7, and hence
also T, contains an even number of edges in {a;_,a;},
{aj_1.a;}, {bj_1,b;}, {b;_1,b;}. Consider now the case that
there are two edges connecting s. Define P as the set of
vertices in L | together with s. Since there are no edges
between P* and s, Corollary A3 implies that 7, and hence
also T, contains an even number of edges in {a;_,,q;},
la.a, {bj1.bj}, 1hj-1bjj-

(3) Let 7;” be any L; -partial routesubgraph, and let T
denote the corresponding routesubgraph. Define P as the
set of vertices in L} | together with s. Theorem A2 implies
that there is one edge from P* to s. Hence, Corollary A3
implies that T, and therefore 7, contains an odd number
of edges in {aj_l,aj}, {aj_l,aj}, {bj—labj}’ {b],],bj} |
Lemma A4 will now be used to prove an even stronger
result that reduces the number of equivalence classes
drastically.

Lemma AS For j=1,...,N — 1,

1. in each L}, L;), and Lf—parlial routesubgraph with
either zero or two edges connecting s, the degree of a; plus
the degree of b; is zero or even.

2.ineach L; (j > 1), LO and L+—partial routesubgraph
with one edge connectmg s, the degree of a; plus the degree
of b; is odd.

Proof. (1) Suppose, to the contrary, that there exists a L; -
partial routesubgraph with zero or two edges connecting s
for which the degree of a; plus the degree of b; is odd.
From Lemma A4, we know that after the transitions
from L; to Lj’ and from Lj) to L]+ the degree of a; plus the
degree of b; is still odd when the depot connection has not
changed Then Lemma A4 implies that in the transition
from L to L;,; an even number of edges in {a,a;+1},
{aj,a]H} {bbj i1}, {byb;y 1} 1s added to the L}’-partial
routesubgraph But, then either the degree of a; or the
degree of b; is odd in L}, which is a contradiction with
Theorem Al This proves that in each L; L0 and L+
partial routesubgraph with either zero or two edges
connecting s, the degree of a; plus the degree of b; is zero
or even.

(2) Can be proven in a similar way and is therefore
omitted here. u

Combining Theorem Al and Lemma A5 gives the
equivalence classes of Li-partial routesubgraphs in The-
orem 2.
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We conclude the appendix with a lemma that is useful
in the transition from L9 to L}

Lemma A6 Let T be a L;-partial routesubgraph, for
j=1,...,N, with one edge connecting s consisting of two
components. If degree a; is odd and degree b; is even, then a;
and s are contained in one component and b; in the other,
and vice versa.

Proof. Let T be such a partial routesubgraph and let C
denote the completion of 7. Assume that the degree of a;
is odd and the degree of b; is even. Suppose, to the con-
trary, that a; is contained in component 7 and s,b; in
component 7,. Consider the partitioning (P,P*) of the
vertices with P defined as the set of vertices in the union
of C and T,. From Corollary A3, we know that there is
an even number of edges between P and P*. P can only be
connected to P* via a;. Recall that a; has odd degree in 7.
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Hence, g; has also odd degree in 7" U C which leads to a
contradiction by using Theorem A2. Hence, a; and s are
contained in one component and b; in the other. The case
that the degree of g; is even and the degree of b;is odd can
be proven in the same way. ]
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