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Abstract—The introduction of heterogeneous wireless mesh
technologies provides an opportunity for higher network capacity,
wider coverage, and higher quality of service (QoS). Each wire-
less device utilizes different standards, data formats, protocols,
and access technologies. However, the diversity and complex-
ity of such technologies create challenges for traditional control
and management systems. This paper proposes a heterogeneous
metropolitan area network architecture that combines an IEEE
802.11 wireless mesh network (WMN) with a long-term evolution
(LTE) network. In addition, a new heterogeneous routing pro-
tocol and a routing algorithm based on reinforcement learning
called cognitive heterogeneous routing are proposed to select the
appropriate transmission technology based on parameters from
each network. The proposed heterogeneous network overcomes
the problems of sending packets over long paths, island nodes,
and interference in WMNs and increases the overall capacity of
the combined network by utilizing unlicensed frequency bands
instead of buying more license frequency bands for LTE. The work
is validated through extensive simulations that indicate that the
proposed heterogeneous WMN outperforms the LTE and Wi-Fi
networks when used individually. The simulation results show
that the proposed network achieves an increase of up to 200%
in throughput compared with Wi-Fi-only networks or LTE-only
networks.

Index Terms—Heterogeneous networks, long-term evolution
(LTE), next-generation network, reinforcement learning, routing
protocol, wireless mesh network (WMN).

I. INTRODUCTION

INTERNET traffic is expected to increase three to five times

over the next three years due to the growing number of

connected mobile devices. The number of connected devices

and machine-to-machine communications is expected to exceed

the number of the population by a factor of 2 over the next

three years. It is predicted that within the next decade, a more

advanced Internet infrastructure will be required to support this

increase in Internet traffic [1], [2].

Next-generation wireless networks need to address several

challenges, including the cost to cover high-density areas,

crowded events, or large areas, or respond to temporary changes
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in demand, e.g., large sporting events. The cost estimation is

dependent on the number of required base stations and the cost

to rent frequency bands. Interoperability is another challenge

as many devices use different operating systems, protocols, and

access technologies. Network reliability is also an important

issue that needs to be addressed to ensure that systems are able

to tolerate faults in case of disasters [3].

The internetworking of different wireless technologies, par-

ticularly long-term evolution (LTE) and wireless local area

networks, is one of the key opportunities for developing next-

generation wireless networks [3]. LTE is an evolution of the

third-generation standard, which provides wide coverage and

a peak transmission rate ranging from 100 to 326.4 Mb/s on

the downlink (from base station to user equipment) and from

50 to 86.4 Mb/s on the uplink (from user equipment to base

station) depending on the antenna configuration and modulation

depth. Due to the advanced technologies employed in LTE

networks, it is used by major mobile operators around the

world to cope with the high traffic demands. However, LTE

networks employ licensed frequency bands, and therefore, to

provide more bandwidth, an additional cost is introduced to

either buy more frequency bands (which may not be available

in all regions) or invest in a higher density of base stations.

Another promising wireless architecture for the next genera-

tion of wireless networks is wireless mesh networks (WMNs).

The WMN is a paradigm developed to provide wide network

coverage without using centralized infrastructure [4]. There-

fore, WMNs are a feasible choice to provide a backbone

network for metropolitan area networks. In such networks,

gateways (wireless nodes with high-speed wired connection to

external Internet) are employed to provide Internet connection

to the mesh network. This architecture offers cost-effective

ubiquitous wireless connection to the Internet in large areas

through multihop transmission to the gateway, and vice versa.

However, the major drawbacks of using WMNs are their limita-

tions in terms of capacity, system performance, and guaranteed

wireless link quality. The causes of those problems originate in

the multihop nature of the network. When data packets traverse

more hops in a large WMN, they may either fail to reach their

destination or consume too many network resources. Moreover,

in case of link or node failure, some nodes may become isolated

from the network due to the lack of a path to the destination or

gateway and form what is known as an “island node.”

The use of heterogeneous technologies in wireless networks

improves the overall network performance by distributing the

load across different network technologies [5]–[7]. However,

switching from one transmission device to another presents

challenges as each wireless device utilizes different standards
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and data formats. Furthermore, routing packets through a het-

erogeneous network requires a new mechanism to exchange

control messages among the different networks.

In this paper, a new heterogeneous WMN (HetMeshNet)

architecture is proposed to overcome these drawbacks and

provide wider coverage with better quality of service (QoS).

LTE [8] and IEEE 802.11 [9] are employed in each wireless

node to form the infrastructure for the proposed architecture.

In addition, a new routing protocol is developed to enable the

communication among the heterogeneous wireless nodes. A set

of routing tables and control messages is employed to man-

age the interoperability of the proposed heterogeneous WMN.

Moreover, this paper proposes a new heterogeneous routing

algorithm called cognitive heterogeneous routing (CHR) that

enables heterogeneous networks to work as a single network.

The packets are routed through different wireless technologies

based on the QoS metrics of each network. To optimize the

selection of the transmission technology, a new reinforcement

learning algorithm based on Q-learning is developed to allow

each node to learn from previous actions and improve the net-

work performance. Extensive simulations under different sce-

narios and traffic demand in the networks indicate a throughput

gain with up to 200% in the proposed heterogeneous network

when compared with LTE- and Wi-Fi-only networks.

This paper proposes a novel heterogeneous network archi-

tecture that overcomes the drawbacks of each transmission

technology utilized in the network. The use of WMNs increases

network capacity by utilizing unlicensed frequency bands that

reduce the cost of buying more LTE-licensed frequency. The

LTE network is utilized to avoid a low-quality Wi-Fi link or

connect an island node when link failure occurs. To enable com-

munication between WMN and LTE networks, a new routing

protocol is developed that defines a set of routing tables that is

necessary to allow packet exchange between the two different

networks. Then, a cross-layer heterogeneous routing algorithm

called CHR is proposed that employs QoS parameters from

each node with both LTE and Wi-Fi transmission technologies

to select the best radio access technology.

This paper is organized as follows. Section II highlights

related work on heterogeneous networks. Section III introduces

the system architecture. Section IV describes the proposed

heterogeneous routing protocol, which is then experimentally

verified using simulation in Section V. Finally, Section VI

offers concluding remarks and suggestions for future work.

II. RELATED WORK

This section reviews advanced approaches to managing het-

erogeneous wireless networks and discusses the advantages and

disadvantages of each approach. The management of heteroge-

neous networks involves employing different technologies that

cooperate with each other to improve both the system perfor-

mance and the metrics utilized to select the transmission tech-

nology. The proposed work employs WMNs in heterogeneous

network architecture, and therefore, this review first highlights

related work on WMN routing protocols and metrics. This is

followed by a review of heterogeneous network architectures.

A. Routing Protocols in WMNs

There are two types of routing protocols in WMNs. The first

type consists of reactive routing protocols in which the route is

created on demand by flooding the network with route requests.

Route selection is maintained only for nodes that transmit traffic

to a particular destination. Examples of this type of routing are

ad hoc on-demand distance vectors [10] and dynamic source

routing [11]. Reactive routing causes some delay due to the

fact that a route is created only when there are data ready to be

sent. The second type of routing protocol consists of proactive

or table-driven routing protocols. They maintain a table of the

entire destination in the network by periodically distributing an

update of the routing table to all nodes. Destination-sequenced

distance vector [12] and optimized link state routing (OLSR)

[13] are examples of this type of routing protocol. The route

table maintains the route for each destination; transmission

begins with no delay if there are packets ready to be sent.

However, some overhead is added for distributing routing table

information among the nodes in the network. Some routing pro-

tocols, which are known as hybrid routing protocols, combine

reactive and proactive routing to reduce the overhead of route

discovery by employing proactive routing for near nodes and

generating routes for far nodes using on-demand routing [14].

B. Routing Metrics in WMNs

The most widely utilized metrics in WMN routing protocols

select the shortest path to the gateway based on the hop count,

i.e., the number of nodes between the source and the destina-

tion. However, prior research has recognized the shortcoming

of hop count metrics in WMNs because the shortest path metric

results in a congested path [15]. Therefore, many researchers

employ quality-aware metrics, which dynamically evaluate link

quality characteristics to improve network performance. Some

of these metrics employ link loss ratio to select the path to the

gateway. One of the most widely cited measures is expected

transmission count (ETX) [16], which estimates the required

number of transmissions for successful data delivery between

two nodes. ETX does not consider bandwidth, packet size, or

link interference; therefore, the metric does not perform well

with a network that has a high transmission rate and a large

packet size. Expected transmission time [17] enhances ETX by

considering the packet size and the link bandwidth in calcu-

lating the metric. However, this metric does not consider the

load and link interference. Interference and channel switching

(MIC) is proposed [18] as an alternative metric to ETT. MIC is

topology dependent and selects paths with a minimum number

of nodes that share the wireless channel. However, MIC fails

to indicate whether the interferer node has data to transmit,

as the interferer cannot cause interference when there is no

transmission.

Another key link characteristic is the transmission rate.

IEEE 802.11 supports multiple transmission rates; for each rate,

there is a different transmission range and a different interfer-

ence range. The simplest and most widely adopted algorithms

in controlling the transmission rates are based on gathering the

statistics of unsuccessful transmissions on the sender side to
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estimate the interference. The earliest algorithm in this category

is the automatic rate fallback (ARF) [19], which sets a threshold

based on the number of successful and failed transmissions to

increase and decrease the transmission rate. Several enhance-

ments to the ARF have been proposed to avoid unnecessary

updates in transmission rates. For example, adaptive ARF

[20] changes the threshold of switching the transmission rates

adaptively. MadWifi ONOE [21] enhances ARF by assigning

credits to each transmission rate based on the loss rates and then

selects the transmission rates with the highest credits. These

rate adaptation algorithms are developed for infrastructure-

based wireless networks and not for WMNs, and therefore,

they do not consider the competing nodes accessing shared

channels. The recently developed rate adaptation algorithm

based on reinforcement learning (RARE) [22] sets the trans-

mission rate based on the link quality of the neighboring nodes

and the load on the Wi-Fi device. Thus, the transmission rate

estimates the amount of interference and collision with other

nodes and the load on the node. The best link quality is that

which provides a higher transmission rate. This algorithm is

developed for WMNs and designed to work in highly congested

multihop networks.

C. Heterogeneous Network Architectures

This part of the review discusses architectures that utilize

different types of transmission technologies in wireless net-

works. The heterogeneous network architectures are reviewed

according to the type of transmission technologies employed in

the heterogeneous networks (i.e., cellular networks and Wi-Fi

devices).

A cellular/multihop Wi-Fi architecture is proposed to relay

data packets for clients that suffer from low channel quality

or to offload a congested cell by forwarding the traffic from

this cell to other noncongested cells [23]–[26]. These networks

utilize the multihop Wi-Fi network as an auxiliary network to

redirect traffic from one cell to another.

Heterogeneous networks split data among broadband and

Wi-Fi wireless networks [5]–[7], [27]–[31] to increase net-

work capacity. One approach is to distribute traffic among

networks fairly [5] by employing load-balancing algorithms.

Other architectures employ wireless characteristics to distribute

data among networks. For instance, networks with better wall

penetration are utilized for indoor communication, whereas

networks with higher frequency bands are employed for outside

communication [6], [7]. Traffic priority is employed to manage

packet flow in heterogeneous networks [27] in which only

sensitive packets from the Wi-Fi network are forwarded through

the cellular network to avoid unreliable links. Wi-Fi access

points are also utilized to create picocells to offload congested

cells in cellular networks [28].

IEEE 802.11-based vehicular ad hoc networks (VANETs)

and LTE networks are employed to form a hybrid network in

which some nodes in VANETs are elected to work as a gateway

to forward traffic to the LTE base stations [32], [33]. The

access network is selected based on a set of QoS parameters to

improve the network performance throughout the mobile path

of vehicles.

Other recent research aims to improve cellular networks

by employing a mixture of macrocells and small cells, such

as microcells, picocells, and femtocells [34]–[39]. The use

of small cells improves the frequency reuse by employing

lower transmission power, which produces less interference and

increases the data rate of cellular networks.

Heterogeneous wireless ad hoc networks are another type

of heterogeneous networks that employ wireless nodes with

different wireless capabilities and multiple radio devices to en-

hance the routing protocol [40]–[46]. This type of network em-

ploys heterogeneous communication devices (e.g., Bluetooth,

802.11), wireless devices with different transmission ranges, or

different medium access protocols to improve ad hoc networks

without considering the use of broadband networks, such as

cellular, LTE, or WiMAX.

A promising approach is to equip cellular base stations with

different wireless access technologies and frequency bands

to reduce the interference among neighboring cells [47]. The

coverage of each base station is divided into a number of

regions based on the modulation and coding scheme utilized

by each wireless technology in the base station.

The architectures reviewed focus on employing different

wireless technologies either to offload the load on one network

and use the network as an auxiliary network or to provide load

balancing between these two networks. Both LTE and Wi-Fi

networks are employed as two separate networks, and thus, the

user device chooses one of the networks to forward its packets.

The heterogeneous network architecture proposed in this

paper differs from the previously mentioned networks in that

it employs a multihop Wi-Fi mesh network to provide a cost-

effective wide coverage area where only some of the nodes

are connected to the Internet, and the LTE network is tightly

deployed with the Wi-Fi network. The proposed network man-

ages the heterogeneous radio access technologies as a part of

a single virtual network. Thus, the proposed heterogeneous

network utilizes the advantages of using WMN unlicensed free

frequency bands, whereas the LTE network mitigates the issues

that WMN suffers from such as interference and island nodes.

In addition, the Wi-Fi network is utilized to improve the LTE

network on the edge of the cell by propagating data to another

node with better channel quality.

This paper contributes to the body of knowledge in this

area of research by addressing a number of important issues.

First, it proposes a new architecture for heterogeneous networks

by combining WMN architecture with LTE architecture. The

Internet gateway connecting the heterogeneous network to the

Internet is a new feature of this architecture; the WMNs employ

mesh gateways to connect the multihop network to the Internet

through the Internet gateway. The second contribution is the

heterogeneous routing protocol, which prescribes how the het-

erogeneous devices communicate with each other. The purpose

of the proposed protocol is to create the required routing tables

to allow the heterogeneous wireless devices to send packets

between the two networks. The routing protocol specifies the

set of routing tables that each node needs to maintain and the

set of control messages that the heterogeneous nodes exchange

among each other. It also specifies the type of transmission

technology to be used to transmit these control messages. The
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Fig. 1. Heterogeneous mesh network.

third contribution of this work is creating a routing algorithm,

which is called CHR, that defines the steps required to select the

transmission device at the nodes that have both LTE and Wi-Fi

devices. Reinforcement learning is employed to learn from the

previous actions and optimize the network performance.

III. SYSTEM ARCHITECTURE

The proposed heterogeneous WMN (HetMeshNet) considers

the coexistence of multiple wireless technologies as well as a

wired network. It employs the following types of nodes:

• heterogeneous nodes (HetNode)—nodes with both Wi-Fi

and LTE capability;

• mesh gateway nodes—nodes with Wi-Fi and wired con-

nection;

• LTE base stations—also known as evolved NodeB

(eNodeB or eNB);

• Internet gateway nodes—nodes that connect all the net-

works to the Internet using a high-speed wired network;

and

• client nodes—used by end users or sensors.

Fig. 1 shows an example of the proposed HetMeshNet ar-

chitecture. It comprises several types of network components.

First, the LTE network consists of a number of cells distributed

in the region. An LTE base station is located in each cell.

Second, a number of HetNodes are deployed in the network,

each of which is capable of utilizing multiple transmission tech-

nologies. The heterogeneous nodes (HetNodes) are equipped

with Wi-Fi and LTE network interface cards. The mesh gateway

nodes are the third type of nodes, which connect the WMN

to the Internet gateway. The Internet gateway acts as a server;

it provides Internet connection to both the LTE and WMN

networks. Finally, the client nodes could be a human using a

mobile phone, a laptop, or any other device connected to the

Internet (e.g., a sensor sending data to the Internet).

Each heterogeneous node in this architecture can transmit its

data to the Internet using either Wi-Fi or LTE. For example, if

a HetNode sends the packet to a neighboring node via Wi-Fi,

the neighboring node could forward the packet using LTE or

Wi-Fi. Thus, both technologies are employed to mitigate the

disadvantages that each technology could suffer from, including

overloaded nodes or poor-quality wireless channels. By con-

trast, if a node is receiving packets from the Internet (downlink),

the Internet gateway decides whether to forward data via LTE

or WMN. Note that, in contrast to uplink, if Wi-Fi is selected

for the downlink transmission, the intermediate nodes cannot

switch back to LTE.

In this paper, an urban hotspot scenario is considered, in

which a large number of devices wish to access the Internet

simultaneously. No interference is assumed between the net-

works because different frequency bands are employed by the

wireless networks. Each cell in the network employs the same

architecture (as shown in Fig. 1); therefore, this paper is focused

on a single cell of the LTE network.

IV. HETEROGENEOUS ROUTING PROTOCOL

This section provides a detailed description of the proposed

routing protocol of the heterogeneous WMN. The new routing

protocol proposed employs metrics from both networks to switch

dynamically between transmission technologies. The proposed

protocol consists of two main components: the heterogeneous

routing tables and a routing algorithm. In a heterogeneous

wireless network, the routing protocols need to employ metrics

from all the technologies that might be utilized by a node.
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Fig. 2. Flowchart of routing table creation.

A. Heterogeneous Routing Tables

Each type of node uses different transmission technologies,

and each transmission technology employs a different network

address. To route packets between these different networks,

each type of node maintains a routing table to forward data

packets from different networks just as if they were coming

from the same network. First, the Internet gateway node needs

a routing table to forward data packets to and from the Internet

for both WMN and LTE networks. Second, each heterogeneous

node maintains a table of routes to the other heterogeneous

nodes in the network, as well as a list of available mesh gate-

ways and the default mesh gateway to forward heterogeneous

node data. To create this table, an OLSR routing protocol [13] is

utilized to determine the route table for the Wi-Fi mesh network

and employ the hop count as a metric. Then, an extension

to the OLSR is added to support the use of the mesh gateway in

the WMN. The extended OLSR employs two metrics to select

the mesh gateway: the number of hops to the mesh gateway

and the number of nodes connected to it. To achieve this, a

control message is transmitted to the neighboring nodes from

each mesh gateway to advertise its load in terms of the number

of nodes associated with it. Each node selects the mesh gateway

with the shortest path, and if more than one mesh gateway

has the same number of hops, then the node selects the mesh

gateway with lower load. The use of the shortest path to select

the route to the mesh gateway using OLSR will avoid the

occurrence of the route oscillation problem as the node utilizes

only the shortest path to the mesh gateway with no switching

to nonoptimal routes. Another route table is used in the mesh

gateway that lists the addresses of the heterogeneous nodes

associated with it.

Fig. 2 shows the flowchart of creating the routing tables

for each type of node. The flowchart starts by checking the

node type, and then, a set of control messages is exchanged to

maintain the routing table on each node. In the case of a client

node with both LTE and Wi-Fi devices or HetNode, OLSR

[13] is employed to create a routing table for the WMN; then,

it selects the default mesh gateway based on two parameters:

the distance to the mesh gateway in terms of hop count and

the number of heterogeneous nodes associated with the mesh

gateway. Wi-Fi devices in client nodes or HetNodes send con-

trol messages to the Internet gateway that piggyback the node

Internet protocol (IP) address of the Wi-Fi network and the LTE

network using the LTE transmission technology to transmit the

control message to the Internet gateway through the LTE eNB

base station. The Internet gateway employs this information to

create a table of the Wi-Fi IP addresses and the corresponding

LTE IP addresses. This table enables the Internet gateway to

forward Wi-Fi packets using the LTE network, and vice versa.

In the case of mesh gateway nodes, the routing table main-

tains a list of the heterogeneous nodes for which it is responsible

to connect them to the Internet. Each mesh gateway receives

request messages from HetNodes and updates the table of

HetNodes associated with it. The mesh gateways send up-

date messages to the Internet gateway about their new list of

HetNodes. Finally, nodes of type Internet gateway employ this
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information to maintain a table to store the available mesh

gateways and the heterogeneous nodes associated with each

mesh gateway. The LTE base station forwards all the Inter-

net packets to the Internet gateway. In client nodes that are

equipped with either an LTE or a Wi-Fi device, no additional

routing tables are required. The LTE device directly commu-

nicates with the eNB base station, whereas the Wi-Fi device

utilizes OLSR to select the mesh gateway based on hop count

and load on the mesh gateway.

B. CHR Algorithm

The second part of the proposed routing protocol is the

new algorithm developed, referred to here as CHR, which

selects the most suitable transmission technology based on

parameters from both of the utilized transmission technologies.

CHR employs the generated routing tables to select the best

route to send the traffic demands. The CHR is responsible for

selecting the best radio access network, whereas the routing

tables maintained by each node find the route to the Internet.

In case a HetNode selects a Wi-Fi device, it uses the routing

table to send the packets to the next hop on the path of the

selected mesh gateway. CHR adopts a multirate medium access

control (MAC) protocol for 802.11 called RARE [22]. RARE

was developed for a WMN-only environment to consider the

collision and interference in the neighboring nodes. It employs

the transmission rate as a metric to measure the quality of

the Wi-Fi channel. RARE reduces the transmission rate when

interference is identified on the link and increases it when the

interference is low. Thus, the algorithm infers that the wireless

channel quality is good when the transmission rate is high. This

work employs IEEE 802.11a, which supports eight different

transmission rates: 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. A core

element of CHR is the new algorithm developed to estimate

which transmission technology is the best to send traffic. It is

based on reinforcement learning [48] and Q-learning [48].

Reinforcement learning is a machine learning technique,

which learns, through trial-and-error interactions, how to evalu-

ate an action and find the optimal state through a mathematical

formulation. The Q-learning algorithm is one of the most

well-known approaches of reinforcement learning applied to

wireless networks. Q-learning does not need a model of its

environment; instead, it predicts the future rewards of taking

an action. In Q-learning, each time (ti) an action is executed,

a reward R(ti) is calculated based on feedback from the envi-

ronment. Equation (1) [49] recomputes the Q-value, which is

subsequently used to estimate the best action, i.e.,

Q(ti)=(1−α)Q(ti−1)+α [R(ti)+γQ(ti+1)−Q(ti−1)] (1)

where α is the learning rate (0 ≤ α ≤ 1), ti is the current time,

ti−1 is the previous time for i > 1, and γ is the discount value.

If α = 0, then there is no learning in the algorithm; if γ = 0,

reinforcement learning is opportunistic, which maximizes only

the immediate short-term reward.

CHR, which is the algorithm proposed in this paper, is based

on Q-learning to calculate whether the selected transmission

technology is improving the network performance by learning

from previous actions. It selects an appropriate transmission

technology based on parameters from both Wi-Fi and LTE

networks. The algorithm has two parts. The first part is the

uplink routing algorithm, which is responsible for sending data

packets from the heterogeneous nodes to the Internet. The

second part is the downlink, which is in charge of transmitting

data packets from the Internet to the heterogeneous nodes.

Reinforcement learning is employed in both uplink and

downlink transmissions to estimate the probability of transmit-

ting data packets through each transmission technology. For

uplink transmission, each heterogeneous node utilizes CHR

to select either the LTE or Wi-Fi network. In the downlink

transmission, the CHR algorithm is utilized by the Internet

gateway node only.

The LTE network employs both the load and the probability

of successful transmissions of packets through the network as

metrics to measure link quality. The load of the LTE network

is estimated by measuring the buffer length for each node. This

value is obtained from the radio link control (RLC) protocol

layer in the eNB and the heterogeneous node. Two types of

transmission buffers are maintained by the LTE network: one

for downlink transmission and one for uplink transmission.

Thus, the length of the buffer on each node represents its load

level. Equation (2), shown below, is utilized to estimate the load

on each HetNode, i.e.,

LLd(ti) =
BufLd(ti)

BufLmax

(2)

where LLd(ti) is the estimated LTE load on heterogeneous

node d at time ti, BufLd(ti) is the number of packets

in the LTE transmission buffer for node d at time slot ti,

and BufLmax is the maximum number of packets that the

transmission buffer can accept. The higher LLd(ti) is (0 <=
LLd(ti) <= 1), the more congested the node is.

In WMNs, CHR employs both the transmission rate that each

node utilizes to transmit its packets during time slot ti and

the probability to access the channel as metrics to calculate

the wireless channel quality. Equation (3), shown below, is

employed to measure the Wi-Fi channel quality, i.e.,

CQW d(ti) =
RW d(ti)

RWmax

(3)

where CQW d(ti) is the Wi-Fi channel quality for node d at

time ti, and RW d(ti) is the transmission rate for the Wi-Fi

device at node d at time ti. According to RARE [22], which

is the rate adaptation algorithm adopted by CHR, the node

increases the transmission rate if the estimated interference in

the neighboring nodes is low. Thus, a higher transmission rate

means lower interference on the node and higher probability

of sending the packets successfully. RWmax is the maximum

transmission rate that the WiFi transmission technology can

support.

To route the packets from the heterogeneous nodes to the

Internet and vice versa, the CHR algorithm is utilized for both

uplink and downlink transmissions. A new algorithm based on

reinforcement learning is utilized to estimate the probability of
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Fig. 3. Flowchart of the CHR routing algorithm.

transmitting data packets through each transmission technol-

ogy. Fig. 3 shows the flowchart of the CHR algorithm. The set

of notations used is listed in Table I.

The flowchart shows the steps of employing the CHR algo-

rithm to utilize information maintained by each routing table

generated using the proposed routing protocol. The flowchart is
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TABLE I
VARIABLES AND NOTATIONS

divided into two parts. The first part is exploration, in which the

algorithm initializes the parameters used in the algorithm. Then,

the learning stage starts by evaluating each action performed by

the network nodes.

In particular, the algorithm starts by setting the network

parameters to their defaults values, as shown in the flowchart.

The exploration stage involves sending a specific number of

packets using the Wi-Fi network and the LTE network. A flag

variable (FlagW ) is used to indicate whether the Wi-Fi or the

LTE device is being used during the exploration stage. Then, a

counter variable (Expcount) is employed to control the num-

ber of explorations required to be done in this stage. The length

of the exploration does not have a great impact on the system

throughput, as the algorithm will converge during the re-

inforcement learning cycles. After finishing the exploration

stage, the algorithm starts the learning stage in which each node

calculates the probability of transmitting data successfully for

each transmission technology by learning from previous ac-

tions using Q-learning. Equation (4), shown below, shows how

Q-learning equation (1) is adapted for WMNs and incorporated

in the CHR algorithm to calculate the probability of transmit-

ting data successfully, i.e.,

QW d(ti) = (1 − α)QW d(ti−1)

+ α
[

SRW d(ti−1 − ti) + CQW d(ti)−QW d(ti−1)
]

(4)

where QW d (ti) represents the probability of accessing the

Wi-Fi channel for node d at time ti, α is the learning rate

(α = 0 means there is no learning in the algorithm), and

SRW d(ti−1 − ti) is the success rate of node d since the last

update of the transmission rate, which is calculated using (5),

shown below. CQW d(ti) is the Wi-Fi channel quality for node

d at time ti and is calculated using (3). Thus

SRW d(ti−1 − ti) =
STW d(ti−1 − ti)

TTW d(ti−1 − ti)
(5)

where STW d(ti−1 − ti) is the number of successful transmis-

sions from ti−1 until ti, which is a value that is obtained from

the MAC layer of the IEEE 802.11 device on heterogeneous

node d by counting the number of received acknowledgments

for each transmission, and TTW d(ti−1 − ti) is the total num-

ber of transmissions for node d using Wi-Fi from ti−1 to ti.

Q-learning (1) is adopted by the CHR algorithm (6), shown

below, to estimate the probability of transmitting data success-

fully using the LTE network, i.e.,

QLd(ti) = (1 − α)QLd(ti−1)

+ α
[(

SRLd(ti−1−ti)+
(

1−LLd(ti)
))

−QLd(ti−1)
]

(6)

where QLd (ti) represents the probability of accessing the

LTE channel for node d at time ti; α is the learning rate,

SRLd(ti−1 − ti) is the success rate in the LTE device of node d

since the last update of the probability to access the LTE net-

work, which is calculated using (7), shown below; and LLd(ti)
is the estimated load in the LTE device on node d at time ti and

is calculated using (2). Thus

SRLd(ti−1 − ti) =
STLd(ti−1 − ti)

TTLd(ti−1 − ti)
(7)

where STLd(ti−1 − ti) is the number of successful transmis-

sions for node d during a period (ti−1, ti) using the LTE

network, and this information is obtained from the RLC layer

using acknowledgement mode, and TTLd(ti−1 − ti) is the

number of transmissions using LTE during a period (ti−1, ti).
After finishing the exploration stage, each node waits for new

packets ready for transmission and then updates the probability

to select the transmission technology (QLd(ti) or QW d(ti)).
Thereafter, the algorithm selects the transmission technology

with the higher probability to send the packets successfully

(i.e., higher Q-value). Then, CHR updates all the parameters

and waits for the next packets.
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TABLE II
SIMULATION SETUP

V. PERFORMANCE EVALUATION

Here, the heterogeneous WMN is evaluated using the NS-3

simulator [50], which is a widely used tool for evaluating and

validating wireless networks. In particular, this paper uses the

LENA NS-3 LTE Module model [51]. The proposed network

is compared in terms of throughput with LTE-only networks,

Wi-Fi-only networks, and a random network (R) that randomly

allocates an LTE or a Wi-Fi network for each node.

A. Simulation Setup

Table II shows the network parameters used in the simu-

lation. Two types of scenarios are employed to evaluate and

validate the proposed network. The first scenario consists of

grid topologies in which HetNodes are distributed in a grid

with 100 m between each node. The second scenario consists of

random topologies in which all nodes are randomly distributed

in a 1000 m × 1000 m area. In both scenarios, there are five

mesh gateways distributed in the network, and the LTE eNB

is allocated in the center. To analyze the performance of the

proposed network, different loads are applied to the network

using 19 and 30 nodes transmitting simultaneously for both

uplink and downlink transmissions.

B. Evaluating and Validating Results

The performance of HetMeshNet is compared with LTE-

only and random networks, using different numbers of radio

resource blocks (RBs), and Wi-Fi-only networks.

Two types of scenarios are employed to evaluate the pro-

posed system: one to test the uplink and one to test the

downlink. In the uplink scenarios, the nodes (except the mesh

gateway nodes) generate user datagram protocol (UDP) traffic

with the same rate, and the sole destination is the Internet.

This simulates the uplink traffic from customer terminals to the

Internet. Grid and random topologies are employed in the simu-

lation, and two different loads are applied to the network using

19 and 30 nodes transmitting simultaneously to the Internet.

A second scenario is utilized to show how the algorithm adapts

to the change of the load amount during the simulation.

The simulation results for the uplink scenarios indicate sig-

nificant improvement in system throughput for the proposed

heterogeneous system compared with the benchmark networks.

Fig. 4. Uplink grid scenario with 19 nodes.

Fig. 5. Uplink random scenario with 19 nodes.

Fig. 6. Uplink grid scenario with 30 nodes.

Fig. 7. Uplink random scenario with 30 nodes.

Figs. 4–8 show the throughput results for the adopted uplink

scenarios compared with the LTE-only network, the Wi-Fi-only

network, and random networks. Each figure shows the average
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Fig. 8. Different amounts of load during the simulation on uplink.

Fig. 9. Downlink grid scenario with 19 nodes.

throughput for each network; the results are represented by a

box and whisker graph, where the lower box represents the av-

erage throughput quartile lower than the median, and the upper

box represents the average throughputs higher than the median.

The upper and lower whiskers represent the highest and the

lowest value of the results, respectively. In LTE-only and

random networks, two different bandwidths are employed in

the evaluation of the proposed network model. The bandwidth

in the LTE network is represented by the total number of

RBs available for the user equipment in the network. In the

evaluation, 25 and 50 RBs are utilized by the LTE network and

the HetMeshNet in the simulation.

The same scenarios are employed to evaluate the downlink

communication in the HetMeshNet. In downlink scenarios,

UDP traffic is generated from the Internet, and the destination is

the heterogeneous nodes in the networks. The purpose of sim-

ulating downlink traffic is to show how the proposed algorithm

acts when the data are coming from the Internet. In downlink,

if Wi-Fi is selected, the intermediate nodes cannot switch back

to LTE, whereas in the uplink transmission, intermediate nodes

could switch from Wi-Fi to LTE. The simulation results show a

significant improvement in system throughput. Figs. 9–13 show

the throughput results for the downlink algorithm, whereas

Figs. 7 and 13 apply different amounts of load on the network

for uplink and downlink transmissions, respectively, to show

how the network adapts to different traffic demands during the

simulation. Moreover, another set of scenarios is employed to

evaluate the system performance with a different value of α

Fig. 10. Downlink random scenario with 19 nodes.

Fig. 11. Downlink random scenario with 30 nodes.

Fig. 12. Downlink grid scenario with 30 nodes.

Fig. 13. Different amounts of load during the simulation on downlink.
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Fig. 14. HetMeshNet performance with different values of α in a grid scenario
(0 ≤ α ≤ 1).

Fig. 15. HetMeshNet performance with different values of α using different
amounts of load during the simulation (0 ≤ α ≤ 1).

Fig. 16. Average network throughput over time with different numbers of
transmission nodes.

(learning rate in reinforcement learning). If α is zero, it means

that the system utilizes only the current state of the network

with no learning in the system. The simulation results indicate

that the network with no learning shows the worst performance

in terms of throughput compared with other values of α (learn-

ing is presented). Figs. 14 and 15 show the throughput results

of CHR using different values of α to demonstrate how the

network works without learning, from the results α with a

value higher than 0 (learning is presented in the algorithm),

indicates better throughput results compared with the network

with no learning (α = 0). These results indicate that consider-

ing previous network parameters in selecting the radio access

technology improves the network performance. Fig. 16 shows

the behavior of the network throughput at different times with

Fig. 17. Average network throughput with a constant number of nodes and
mobility.

different numbers of transmission nodes. In this scenario, it

shows how the proposed algorithm reacts to the change of load

on the network. The results indicate that the proposed algorithm

outperforms the benchmark networks; for example, when the

number of transmitting nodes is 15, the average throughput

of the CHR is about 1.7 Mb/s with a bandwidth of 25 RB,

whereas the LTE-only network with a bandwidth of 50 RB

is 1 Mb/s (an increase of 70%) and that with a bandwidth

of 25 RB is 0.5 Mb/s (an increase of 240%). Fig. 17 shows

the behavior of the network with a constant number of client

nodes that are allocated to different HetNodes with a mobility

of client nodes to demonstrate how the learning algorithm react

to a change in the bandwidth request. This scenario employs

a random-walk mobility model to simulate the movements of

client nodes in a 1000 m × 1000 m area. The results indicate

that the learning algorithm adapts very well with the change

in load demands in the network compared with the benchmark

networks in terms of network throughput. For example, the

average network throughput of CHR with a bandwidth of

25 RB is around 2 Mb/s, whereas LTE and random networks

with as twice bandwidth as CHR archive around 1 and 1.5 Mb/s,

respectively.

An ANOVA statistical test was performed on the results from

each scenario to verify that there is a systematic enhancement in

the network that causes the throughput improvement. Equation

(8), shown below, is employed to confirm that the algorithms

are statistically different. Thus

F > FCrit (8)

where F is the ANOVA test statistics, and FCrit is the critical

value extracted from the F-distribution table. Another param-

eter from the ANOVA test is p, which is the probability of

having differences that happen purely by chance, and the pre-

ferred value is smaller than 0.05. Thereafter, to verify that the

HetMeshNet has produced higher throughput than the bench-

mark algorithms, the results from each scenario are submitted to

Fisher’s least significant difference (LSD) test. In each scenario,

there are 19 or 30 throughput results for each type of network.

The average throughput value of these results is calculated

for each network (LTE25avr, LTE50avr, Wi-Fiavr, CHR25avr,

and CHR50avr). Next, if |CHR25avr − LTE25avr| > LSD, then

the two averages are statistically different. Table III shows the

ANOVA and LSD results for each scenario.
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TABLE III
ANOVA AND LSD RESULTS

The results show that the average throughput of the

HetMeshNet outperforms the LTE network, even when the LTE

network utilizes twice as much bandwidth as CHR, whereas the

Wi-Fi networks may suffer from high loss due to interference

and collision. In Fig. 4, the CHR algorithm with an LTE band-

width of 25 RB achieves average uplink throughput between

1.6 and 2.3 Mb/s for 50% of the results, whereas the LTE

network with 50 RB achieves between 0.7 and 1.2 Mb/s, which

shows how the CHR outperforms the LTE-only network with

about 183% by employing less bandwidth (half of the band-

width), and in Fig. 8, the CHR25 increases the network through-

put by about 200%.

In the downlink transmission, the throughput improvement

in some scenarios is lower than that in the uplink due to the fact

that in downlink, the LTE network employs a multiple-input–

multiple-output antenna that increases the total throughput of a

connection in the LTE networks. For instance, Fig. 9 shows the

average throughput of the CHR with 50 RB with about 1.7 Mb/s,

whereas the LTE network with 50 RB achieves around 1.3 Mb/s

(the improvement is about 26%). This method improves the net-

work performance and reduces the cost of buying more licensed

frequencies (LTE frequency) by utilizing unlicensed Wi-Fi

frequencies instead. The results obtained from the HetMeshNet

mitigate the poor performance of the Wi-Fi network through

the use of the LTE network, as Wi-Fi-only networks suffer from

interference. Finally, Fig. 17 shows the number of transmission

packets on each transmission device and the number of packets

that initially started with Wi-Fi and then switched back to the

LTE network after one or more hops, for example, in node 4,

about 45% of the packets are switched from a Wi-Fi network

to an LTE network. This figure shows how the networks dy-

namically switch between the transmission technologies. The

HetMeshNet improves the overall network throughput com-

pared with the LTE network that utilizes twice as much band-

width. Furthermore, Fig. 17 shows that many of the nodes

utilize Wi-Fi bandwidth, which is cheaper than LTE because

Wi-Fi frequencies are unlicensed.

The simulation experiments show that the proposed model

enhances node throughput by up to 200% on the uplink and

downlink compared with the LTE and Wi-Fi networks and

overcomes the problem of throughput degradation in WMNs

under high traffic density.

VI. CONCLUSION

This paper has introduced a new heterogeneous network

architecture in which LTE and Wi-Fi wireless devices are

utilized to benefit from the bandwidth of each transmission

technology. In addition, a new routing protocol for heteroge-

neous WMNs has been developed, which dynamically selects

the transmission technology to increase the overall network

capacity and enhance the average throughput. Moreover, a new

routing algorithm has been proposed for the needs of the routing

protocol, which estimates the cost of transmitting the traffic

through each network. The proposed algorithm considers the

traffic load on the LTE network as a metric to estimate the cost

of transmission over LTE and uses transmission rate as a metric

for the Wi-Fi mesh network. The simulation results show that

the proposed network achieves up to 200% more throughput

compared with Wi-Fi-only networks and LTE-only networks.

The heterogeneous network architecture manages the different

wireless devices as a part of a single virtual network. The LTE

network is utilized to avoid congested Wi-Fi nodes and a high-

interference path in the WMN, whereas the WMN offloads

the load of the LTE network, reduces the cost of using more

licensed frequency bands, and forwards the data to another node

when the LTE throughput is degrading. This work provides

the foundation for future research on developing heterogeneous

Wi-Fi/LTE mesh networks and using other wireless technolo-

gies as part of heterogeneous networks. The proposed routing

protocol has the potential to be extended to support other wire-

less technologies by utilizing their parameters in the learning

algorithm. The proposed architecture provides an easy way to

expand the mobile network coverage and capacity and could

contribute to the fifth-generation infrastructure. Moreover, the

heterogeneous networks could be used to connect the Internet-

of-things networks and employed to provide the infrastructure

for smart homes and smart cities.
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