

Routing trains through a railway station based on a
Node Packing model
Citation for published version (APA):

Zwaneveld, P. J., Kroon, L. G., & van Hoesel, C. P. M. (1997). Routing trains through a railway station
based on a Node Packing model. METEOR, Maastricht University School of Business and Economics.
METEOR Research Memorandum No. 030 https://doi.org/10.26481/umamet.1997030

Document status and date:
Published: 01/01/1997

DOI:
10.26481/umamet.1997030

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 24 Aug. 2022

https://doi.org/10.26481/umamet.1997030
https://doi.org/10.26481/umamet.1997030
https://cris.maastrichtuniversity.nl/en/publications/8ade1ba2-c39c-462a-b9ba-f574f52df9df

Routing trains through a railway station

based on a Node Packing model

Peter J. Zwaneveld� Leo G. Kroon� Stan P.M. van Hoeselz

December 9, 1997

Abstract

In this paper we describe the problem of routing trains through a railway station.

This routing problem is a subproblem of the automatic generation of timetables for

the Dutch railway system.

The problem of routing trains through a railway station is the problem of as-

signing each of the involved trains to a route through the railway station, given the

detailed layout of the railway network within the station and given the arrival and

departure times of the trains. When solving this routing problem, several aspects

such as capacity, safety, and customer service have to be taken into account.

In this paper we describe this routing problem in terms of a Weighted Node

Packing Problem. Furthermore, we describe an algorithm for solving this routing

problem to optimality. The algorithm is based on preprocessing, valid inequalities,

and a branch-and-cut approach. The preprocessing techniques aim at identifying

super
uous nodes which can be removed from the problem instance. The character-

istics of the preprocessing techniques with respect to propagation are investigated.

We also present the results of a computational study in which the model, the

preprocessing techniques and the algorithm are tested based on data related to the

railway stations Arnhem, Hoorn and Utrecht in the Netherlands.

This research is sponsored by Railned and Nederlandse Spoorwegen (Netherlands Railways)
�Rotterdam School of Management, Erasmus University Rotterdam, P.O. Box 1738, NL{3000 DR

Rotterdam, The Netherlands; e-mail: pzwaneveld@staf.fbk.eur.nl; lkroon@staf.fbk.eur.nl
zDepartment of Quantitative Economics, Faculty of Economics, University of Limburg, P.O. Box 616,

NL{6200 MD Maastricht, The Netherlands; e-mail: s.vanhoesel@ke.unimaas.nl.

1

1 Introduction

In this paper we consider the problem of routing trains through a railway station. This
routing problem is a subproblem of the generation of a timetable for a railway company.
In a highly utilized and intertwined railway network, such as the Dutch one, the lat-
ter problem is an important one, which is very hard to solve. Figure 1 gives a rough
representation of the Dutch railway network.

Figure 1: The Dutch railway network.

In order to generate a timetable for a railway company, usually a hierarchical approach
is followed. In a �rst step, a tentative timetable is generated, based on the rough layout
of the railway network between the railway stations together with the desired lines, their
frequencies and their connection requirements. Then, in a second step, it is checked
whether the tentative timetable is feasible within the railway stations with respect to
capacity, safety, and customer service. In order to carry out this feasibility check, detailed
routes and schedules for the trains through the railway stations are generated.

Since the generation of a timetable is a task consuming quite a lot of time when carried
out manually, the project DONS (Design Of Network Schedules) was initiated recently
by Railned1 and Netherlands Railways. The aim of this project is to develop a DSS
(Decision Support System), also called DONS, that will assist the planners of Railned
and Netherlands Railways in generating timetables. DONS contains two complementary
optimization modules which are linked together by a database module and a graphical
user-system-interface. The two optimization modules correspond to the two steps of the
timetable generation process mentioned above.

The �rst optimization module, called CADANS, assists the planners in generating a
tentative timetable based on the constraints deduced from the rough layout of the railway
network between the stations, the line system, and the connection requirements at the
railway stations. The timetable determined by CADANS is cyclic with a cycle length of
one hour. CADANS is being developed by Schrijver and Steenbeek [?], see also [?].

1Railned has the task, amongst others, to advise the Dutch Ministry of Tra�c with respect to the

capacity of the Dutch railway infrastructure that will be necessary in the future.

2

The second optimization module, called STATIONS, assists the planners in solving the
problem of routing trains through a railway station. STATIONS considers the stations
one by one. The output of STATIONS is a detailed assignment of trains to routes and
platforms within the observed station. Such an assignment serves as a local feasibility
check for the tentative timetable generated by CADANS. If not all trains can be routed
through the station, then STATIONS also points at the blocking trains. STATIONS is
being developed by Zwaneveld et al. [?].

In this paper we discuss the model and the algorithm that is used within STATIONS
for solving this routing problem to optimality. This paper is complementary to Kroon et
al. [?] in which the computational complexity of several variants of this routing problem
are discussed. Furthermore, this paper is a follow-up of Zwaneveld et al. [?]. In the cur-
rent paper, we improve the model and the algorithm of [?] in several ways. In particular,
we improve the model by including also shunting decisions and preferences of trains for
platforms and routes, and we improve the algorithm by extending the preprocessing tech-
niques. The algorithm described in [?] was not su�cient for solving the routing problem
within the largest Dutch railway stations such as Amsterdam Central Station (CS) and
Utrecht CS. The algorithm presented in the current paper can handle the routing problem
for all railway stations in the Netherlands e�ciently.

2 Description of operational processes

In this section we give a description of the operational processes within a railway station.
This description is necessary for a complete understanding of the next sections. The
characteristics of the operational processes that we describe here pertain to the railway
system in the Netherlands, which is very similar to most European railway systems.

A railway station can be entered by a train at a number of entering points, and it
can be left through a number of leaving points. We only consider the detailed layout of
a railway station between these entering and leaving points. In general, each entering
point can also serve as a leaving point, and vice versa. Furthermore, each of these points
corresponds to a direction of travel. For example, the directions of travel of the Dutch
railway station Utrecht CS are Amersfoort, Amsterdam, Arnhem, 's Hertogenbosch, and
Rotterdam, see Figure 2.

The railway infrastructure of a railway station consists of a large number of track
sections and a number of platform tracks. An inbound route is a sequence of sections
linking an entering point to a platform track. Similarly, an outbound route is a sequence
of sections linking a platform track to a leaving point. A platform track may be adjacent
to a platform, but may also be a parking track or a track by-passing all platforms. Thus,
given the de�nition of a platform track, each train visits at least one platform track. The
platform tracks are part of the corresponding inbound and outbound routes. A complete
route is a combination of an inbound route and an outbound route using the same platform
track. There are often many di�erent routes between an entering point or leaving point
and a platform track, as can be observed in Figure 2.

The arrival time of a train is the time at which the train stops at a platform, after

3

Figure 2: Layout of the railway station Utrecht CS. NB: RICHTINGEN TOEVOEGEN
IN PLAATJE

having travelled along an inbound route. Similarly, the departure time is the time at which
the train leaves the platform along an outbound route. In practice, one can distinguish
between the scheduled arrival and departure time, and the actual arrival and departure
time. However, in the context of generating a timetable, only scheduled arrival and
departure times are considered.

Clearly, the routing of a train through a railway station depends on the routing of
other trains. Most importantly, the safety rules of the Dutch railway system dictate the
following procedure, called the route locking and sectional release system [?, ?]. As soon as
a train arrives at a certain point in the neighbourhood of a station, it claims an inbound
route to a platform. Since any track section can be claimed by only one train at the
same time, a route is not feasible for a particular train if any section of the route has been
claimed already by another train. When a train traverses its claimed route, it sequentially
releases each of the track sections comprising the route. A similar procedure is followed
for an outbound route, or for a complete route if a train does not stop at a platform.

If a railway station is one of the terminal stations of a train, and the length of the
train's standstill interval at the arrival platform exceeds a certain (train-dependent) lower
bound, then the train may be shunted towards a parking area in order to release the arrival
platform. Later on, the train is shunted back towards its departure platform, which may
be di�erent from its arrival platform. Sometimes, a train's departure direction may be
di�erent from its arrival direction.

Finally, a number of service considerations have to be taken into account. First,
convenience considerations towards the passengers may dictate that certain groups of
trains all leave from the same platform. For instance, such a group may consist of all
trains leaving into the same direction. Secondly, one may wish to incorporate certain
transfer possibilities between trains into the schedule. That is, pairs of trains have to use
platforms that are close to each other (preferably cross-platform). Moreover, there must
be a certain minimum overlap in the time intervals spent at the corresponding platforms.

4

3 Problem de�nition

In this section we present a description of the routing problem that is solved by the DSS
STATIONS. The involved timetables are cyclic in nature, and represent an operating plan
for one hour. As was described in the introduction, these timetables have been generated
by CADANS. STATIONS always considers one railway station at the same time. The
problem that is solved for this railway station can be stated as follows:

Given the detailed layout of the involved railway station, and given the sched-
uled arrival and departure times of a set of trains, STATIONS aims at routing
as many trains as possible through the station, taking into account the capac-
ity of the station, the safety system, and several service requirements. The
routing of the trains should minimize the number of shunting operations, and
it should maximize the total preference for the platforms and routes.

In the problem description a hierarchy of objectives is included. The �rst objective is to
�nd a feasible route for as many trains as possible. Since we need to comply with the
overall timetable, basically all trains have to be routed. However, the problem has been
formulated as a maximization problem, because STATIONS should point at the blocking
trains if a solution for all trains can not be obtained.

Furthermore, if all trains can be routed through the railway station, then the second
objective is to minimize the number of shunting movements. A shunting movement is
expensive, since personnel (a train driver and assisting personnel) must be allocated.
Furthermore, a shunting movement also uses capacity of the railway station, because the
routes towards and from the parking area need to be claimed by the safety system.

The last objective is to maximize the preferences of the trains for certain platforms or
routes. The preference of a train for a certain route mainly depends on the total number of
switches in the route, and on the total number of switches in the non-preferred direction.

4 Model formulation

In this section we describe the integer linear programming model that is used to solve the
problem of routing trains through a railway station. We start with the characteristics of
this problem and with some basic assumptions that are made to model these. We also
show that the problem can be described in terms of a Weighted Node Packing Problem
(WNPP).

4.1 Assumptions

A �rst assumption that is used in the model is that for all trains arriving at the railway
station both the departure time and the destination are known. Of course, if the station
is one of the intermediate stations of a train, then these data are provided by CADANS.
However, the latter is not true if the station is one of the terminal stations of a train.
In this case the train may be assigned to one of the return trips of the same line, or

5

the train may be assigned to a trip of a di�erent line into a di�erent direction. In our
model, it is assumed that this joining of the outbound trips to the inbound trips has been
made a priori. We are forced to make this assumption because, in practice, this joining
is determined in a later stage than the routing of the trains through the railway station.
However, it should be noted that the model may be modi�ed in such a way that it also
covers these joining decisions.

If the railway station is a terminal station of a train and the length of the train's
standstill at the arrival platform is too long, then it may be decided to shunt the train
temporarily towards a parking area. In our model, for each train that may be shunted, only
the decision whether or not to shunt it is considered. The detailed shunting movements
themselves are not taken into account explicitly. That is, if it has been decided that a
train is to be shunted towards a parking area, then the train is assumed to have a standstill
of a certain length at its arrival platform, to have a standstill of a certain length at its
departure platform, and to be at a certain parking area between these standstills. On the
other hand, if a train is not to be shunted, then it has a standstill at its arrival platform
from its arrival time until its departure time. In this case, the train's departure platform
is necessarily the same as its arrival platform.

4.2 Notation

The layout of the railway station consists of a set S of track sections. The set of sections
included in a platform track is denoted by P � S. The set R of routes through the
railway station can be determined from the set of sections. We distinguish the set Ri � R

of inbound routes leading from an entering point towards a platform, and the set Ro � R

of outbound routes departing from a platform towards a leaving point. Furthermore,
we distinguish the set Rp � R of platform routes. These platform routes represent the
sections of the platform tracks.

The set of trains to be routed through the railway station is denoted by T . The set
of trains that may be shunted is denoted by T

S � T . For each train t 2 T , CADANS
has determined a scheduled arrival time at and a scheduled departure time dt, usually in
minutes. We consider these arrival and departure times as given and �xed.

Each train has a known entering point and a known leaving point. The inbound,
outbound and platform routes that may be chosen by train t are denoted by R

i

t
, Ro

t
,

and R
p

t respectively. The complete set of all routes allowed for train t is denoted by
Rt = R

i

t
[Ro

t
[R

p

t . The routes that are allowed for train t are selected based on attributes
such as the involved arrival and departure direction and the length of the platform.

The safety rules described in the previous section are represented by de�ning a set Ft;t0

for each pair of trains t; t0 2 T . These sets contain allowed combinations of routes (r; r0).
In other words, (r; r0) 2 Ft;t0 means that, if train t is routed along route r and train t

0

is routed along route r0, then there is no common section of the routes r and r
0 that is

claimed by both trains at the same time. Thus, in order to check whether (r; r0) 2 Ft;t0 , it
is necessary to calculate the exact claim and release times of the track sections of routes
r and r0 by trains t and t0. These calculations are based on the well-known formulas from
the theory of dynamics. For the details of the train dynamics we refer to Zwaneveld [?].

6

It is clear that this model can accommodate a large variety of safety rules (including the
current Dutch ones). Actually, many other constraints can be modeled in the same way.
First of all, we have to guarantee that for each train t the selected inbound, outbound,
and platform route �t together. These constraints can be handled by the sets Ft;t. Indeed,
only compatible pairs of routes are included in a set Ft;t.

Next, convenience considerations towards the passengers may request that all trains
in a certain group leave from the same platform, or that certain transfer possibilities
between trains are created. Obviously, these constraints and requests can also be modeled
by adjusting the sets Ft;t0 appropriately.

Finally, the preferences of a train for certain platforms or routes are recorded as the
preferences of the train for certain routes, since each route includes a platform. The
preference of train t for route r is denoted by �t;r.

4.3 Integer Linear Program

In this section the routing problem is formulated as an integer linear program. The
model of the routing problem that we present in this section is an extension of the model
described by Zwaneveld et al. [?]. In the latter model the decisions whether or not to
shunt trains have not been included.

In order to model the routing problem as an integer linear program, a binary decision
variable is introduced for each allowed combination of a train and a route. Thus the
decision variables are the following:

Xt;r =

(
1 if train t 2 T is routed along route r 2 Rt,
0 otherwise.

Recall that Rt = R
i

t
[Ro

t
[R

p

t . Thus, a train that may not be shunted should be assigned
to an inbound route, a platform route, and an outbound route. A train that may be
shunted should be assigned at least to an inbound route and an outbound route. If such a
train is actually shunted, then it is assigned to an inbound route and an outbound route
only. Otherwise, it is assigned to an inbound route, a platform route, and an outbound
route. The following constraints have to be respected by the decision variables:

X
r2Ri

t

Xt;r � 1 for all t 2 T , (1)

X
r2Ro

t

Xt;r � 1 for all t 2 T , (2)

X
r2Rp

t

Xt;r � 1 for all t 2 T , (3)

Xt;r +Xt0;r0 � 1 for all t; t0 2 T ; r 2 Rt; r
0 2 Rt0 ; (r; r

0) =2 Ft;t0 , (4)

Xt;r 2 f0; 1g for all t 2 T ; r 2 Rt. (5)

7

Constraints (1), (2) and (3) ensure that each train t is assigned to at most one inbound,
one outbound, and one platform route, respectively. Constraints (4) guarantee that only
routes are selected that are allowed with respect to the safety rules, the connection re-
quirements, and the connections of inbound, outbound, and platform routes. Finally,
constraints (5) declare the decision variables Xt;r as binary.

The objective function of the model has the following form.

max
X
t2T

X
r2Rt

�t;rXt;r (6)

As was mentioned already in the problem description, the �rst objective is to maximize
the number of trains that can be routed through the railway station. The second objective
is to minimize the number of shunting movements, and the third objective is to maximize
the preferences for the routes and platforms. Thus, we consider the selection of a necessary
route (that is, an inbound or an outbound route, or a platform route for a train that may
not be shunted) for a certain train as more valuable than not shunting any number of other
trains. Secondly, we prefer to select a necessary route for a certain train over selecting a
more preferred route for all other trains. And, �nally, we prefer to avoid shunting a certain
train over selecting a more preferred route for all other trains. This hierarchical character
of the objectives can be re
ected in the objective function by choosing the coe�cients �t;r
appropriately, see Zwaneveld [?].

4.4 Weighted Node Packing Problem

In this section we show that the problem of routing trains through a railway station can
be formulated as aWeighted Node Packing Problem (WNPP). Formally, the WNPP reads
as follows:

Let G = (V;E) be an undirected graph, where V is the set of nodes and E is
the set of edges. Each node v 2 V has an weight �v. Then a node packing is
a set S � V such that no edge in E joins two nodes in S. The total weight
of a node packing S is given by

P
v2S �v. Now the Weighted Node Packing

Problem is the problem to �nd a node packing of maximum total weight.

The WNPP is thus characterized by an undirected graph and corresponding weights for
the nodes. For the problem of routing trains through a railway station, we de�ne a node
for each variable Xt;r. The weight of the node Xt;r is identical to the objective function
value �t;r. Then the following edges are added to the graph:

(i) Every node Xt;r is connected with all nodes associated with the same train t and
route type, i.e., inbound, outbound or platform.

(ii) Every pair of nodes Xt;r and Xt0;r0 with (r; r0) 62 Ft;t0 is connected with each other.

Here (i) ensures that each train is assigned to at most one route of each type, and (ii)
excludes con
icting combinations of trains and routes.

Obviously, a node packing represents a feasible routing of a number of trains through
the railway station. Similarly, a node packing of maximum weight represents a feasible
routing of trains with maximum value.

8

5 Relevant sections and routes

In this section we show that only a subset of the sections has to be considered in order
to check whether a proposed assignment of trains to routes is feasible from a safety point
of view. Furthermore, we also describe that it is not necessary to consider the so-called
detour routes in a problem instance.

5.1 Relevant sections

A section is called relevant if it contains (i) a switch or (ii) an intersection of tracks, or if
it corresponds to (iii) an entering point, (iv) a leaving point, or (v) a platform.

The set of relevant sections is denoted by S
�. Usually S

� contains signi�cantly less
elements than the set S of all sections. Note that, by de�nition of S�, each section
s 2 S n S� is located between two sections s0; s00 2 S

�, since the �rst and the last section
of each route is a relevant section.

The set of sections within route r is denoted by Sr. The time instants at which
a section s is claimed and released by train t over route r is denoted by S(t; r; s) and
F (t; r; s) respectively. We apply the following conventions for determining the claim and
release times: 0 � S(t; r; s) < 60, S(t; r; s) � F (t; r; s) and the length of the reservation
interval should be equal to F (t; r; s)�S(t; r; s). These conventions are necessary since we
consider a cyclical timetable with a cycle length of one hour. Note that it may happen
that F (t; r; s) � 60. Note further that the length of each time interval has to be less than
60 minutes, due to the cycle length of 60 minutes.

As was mentioned before, the safety rules are represented using a set Ft;t0 for each pair
of trains t; t0 2 T . Such a set contains the pairs of allowable routes (r; r0) for trains t and
t
0. That is, (r; r0) 2 Ft;t0 implies that route r for train t is compatible with route r0 for
train t

0. By de�nition, route r for train t is compatible from a safety point of view with
route r0 for train t

0 if the following conditions are satis�ed:

8s 2 Sr \ Sr0 :

[S(t; r; s); F (t; r; s)) \ [S(t0; r0; s); F (t0; r0; s)) = ;: (7)

[S(t; r; s); F (t; r; s)) \ [S(t0; r0; s)� 60; F (t0; r0; s)� 60) = ;: (8)

[S(t; r; s)� 60; F (t; r; s)� 60) \ [S(t0; r0; s); F (t0; r0; s)) = ;: (9)

Lemma 1 shows that only relevant sections have to be taken into account for determining
the feasibility from a safety point of view.

Lemma 1 Route r 2 Rt for train t is compatible from a safety point of view with route

r
0 2 Rt0 for train t

0 if and only if 8s 2 Sr\Sr0\S� equations (7), (8), and (9) are satis�ed.

Proof. Since the `only if' part of the statement is obvious, we only prove the `if' part.
To that end, suppose conditions (7), (8) and (9) are satis�ed for all s 2 Sr \Sr0 \S�, and
choose a section s2 2 (Sr \ Sr0) n S�.

9

Without loss of generality S(t0; r0; s2) � S(t; r; s2). Thus, condition (9) is valid as
soon as condition (7) is valid. Let s1 be the previous relevant section of route r before
section s2, and let s3 be the next relevant section of this route. Note that route r0 also
contains the sections s1 and s3. Train t

0 may traverse the sections fs1; s2; s3g in the order
(s1; s2; s3), or in the order (s3; s2; s1). These possibilities are considered separately:

Order (s1; s2; s3): Conditions (7) and (9) are valid because F (t; r; s2) � S(t0; r0; s2).
This follows from F (t; r; s2) � F (t; r; s3), S(t

0
; r

0
; s2) = S(t0; r0; s3), and, by assumption,

F (t; r; s3) � S(t0; r0; s3). Condition (8) is valid because F (t0; r0; s2) � 60 � S(t; r; s2).
This follows from F (t0; r0; s2) � F (t0; r0; s3), S(t; r; s2) = S(t; r; s3), and, by assumption,
F (t; r; s3)� 60 � S(t; r; s3). The claim and release times are shown in Figure 3.

�
�

�
�

�
�

�
�

�
�

�
�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S(t; r; s1)

S(t; r; s2)

S(t; r; s3)

S(t0; r0
; s1)

S(t0; r0
; s2)

S(t0; r0
; s3)

F (t; r; s1)

F (t; r; s2)

F (t; r; s3)

F (t0; r0
; s1)

F (t0; r0
; s2)

F (t0; r0
; s3)

60

Figure 3: Claim and release times for routes in identical directions.

Order (s3; s2; s1): Conditions (7) and (9) are valid because F (t; r; s2) � S(t0; r0; s2).
This follows from F (t; r; s2) � F (t; r; s3), S(t

0
; r

0
; s2) = S(t0; r0; s3), and, by assumption,

F (t; r; s3) � S(t0; r0; s3). Condition (8) is valid because F (t0; r0; s2) � 60 � S(t; r; s2).
This follows from F (t0; r0; s2) � F (t0; r0; s1), S(t; r; s2) = S(t; r; s1), and, by assumption,
F (t; r; s1) � 60 � S(t; r; s1). The claim and release times are illustrated in Figure 4. It
follows that equations (7), (8), and (9) are satis�ed for all s 2 Sr \ Sr0. 2

5.2 Detour routes

A route r is called a detour route if it is a detour in comparison with one of the other
routes. The latter route is called the corresponding straight route. The detour routes are
easily identi�ed with the use of the relevant sections that were de�ned in the previous
section. By de�nition, route r is a detour route if the following condition holds:

9r0 : ((Sr0 \ S
�) � (Sr \ S

�)) ^ (8t 2 T : �t;r � �t;r0):

10

�
�

�
�

�
�

�
�
�
�
�
�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S(t; r; s1)

S(t; r; s2)

S(t; r; s3)

S(t0; r0
; s1)

S(t0; r0
; s2)

S(t0; r0
; s3)

F (t; r; s1)

F (t; r; s2)

F (t; r; s3)

F (t0; r0
; s1)

F (t0; r0
; s2)

F (t0; r0
; s3)

60

Figure 4: Claim and release times for routes in opposite directions.

In other words, route r is a detour route in comparison with route r0 if route r0 contains
only a subset of the relevant sections of route r, and if all trains prefer route r0 over route
r. An example of a detour route and a corresponding straight route is given in Figure 5.

�
�
�
�
�� @

@
@
@
@@.

..
..
..
..
..
..
... -.

-. .

Platform

r

r
0

Figure 5: An example of a detour route r and a corresponding straight route r0.

In practice, trains should not be assigned to a detour route, since the reservation of
a detour route puts a greater claim on the capacity of the relevant sections than the
reservation of a corresponding straight route. Therefore, the decision variables involving
a detour route are super
uous and can be deleted from the model. As will be explained
in Section 6.1.1, a detour route is also node-dominated by a straight route. Therefore the
detour route condition is a special case of the node-dominance condition.

6 An LP-based algorithm for the WNPP

In this section, we present a solution method for the problem of routing trains through a
railway station. This method is based on the formulation of the problem in terms of the
Weighted Node Packing Problem (WNPP) as described earlier.

Thus, we have a graph G = (V;E) in which each node represents a combination
of a train and a (partial) route. An edge between two nodes indicates that the two

11

corresponding combinations of routes and trains con
ict with each other. Furthermore,
we have a positive weight function on the nodes: � : V ! IR

+. In this graph G we have
to �nd a maximum weight node packing or independent set.

In the sequel we also use the following notation. For any subset I of the nodes,
�(I) =

P
i2I �i. Furthermore, for a set S and an element i, let S + i = S [fig and

S � i = Snfig. Finally, G � i is the graph G from which node i has been removed,
together with the edges incident to node i. The neighbours of node i are denoted by
N(i) = fj 2 V : fi; jg 2 Eg. Moreover, Nd(i) is the set of nodes at distance at
most d, where distance is measured as the number of edges on the shortest path. Thus,
N0(i) = fig, N1(i) is the set of neighbours of i, i included, etcetera. These de�nitions are
extended to sets; for example, N(S) is the set of nodes connected to some node of S.

We solve the WNPP with a branch-and-cut method using the LP- relaxation of the
problem, strengthened with valid inequalities, as an upper bound in each of the sub-
problems that are created in the branching process. Before this process starts, we try to
remove as many variables from the model formulation as possible, using several prepro-
cessing techniques. Although all developed techniques may be used in all subproblems of
the branch-and-cut tree, only one of the techniques is applied to all subproblems.

In the sequel, the components of the algorithm are described. We start with the ideas
developed for preprocessing, then we describe the branch-and-cut procedure. Illustrative
and real-life computational results are added to each of the described components.

6.1 Preprocessing

Instance reduction by preprocessing receives more and more attention as an indispensable
part of optimization methods. It is usually cheap in computation time and it may be
very e�ective on speci�c (practical) problems. For example, instance reduction for the
(unweighted version of the) Node Packing Problem has been applied by Ho�man and
Padberg [?] in their crew-scheduling application. More complicated ideas have been used
by Mannino and Sassano [?], who show that certain substructures of a graph can be
replaced by smaller structures with a simultaneous reduction in stability number, the
maximum size of a node packing. The conditions on such substructures, however, are not
only restrictive, they are also not easily generalized to the weighted version of the Node
Packing Problem. Therefore, we decided to develop some preprocessing methods that are
applicable to our instances of the WNPP.

All methods presented here aim at removing nodes from the graph, i.e., �xing variables
at the value zero, based on combinatorial arguments. The basic idea is to show that a
certain node i is dominated, i.e., for each solution of the WNPP containing node i we
can �nd an alternative solution that is at least as good and that does not contain node i.
Although this dominance is hard to check in general, we consider some special cases, which
drastically reduce the number of variables in our instances. And, equally important, the
linear programming relaxation can be solved much faster, implying a really better bound.

12

6.1.1 Node-dominance

The node-dominance technique determines whether a node i can be replaced by a single
other node j in all node packings containing node i. If this is possible, then the variable
corresponding to node i can be removed from the problem instance. The de�nition of
node-dominance is as follows:

De�nition 2 Node i 2 V is node-dominated in the graph G = (V;E) by node j 2 V if

for each node packing S containing node i, node i can be replaced by node j without weight

reduction. That is, the node packing S 0 = S + j � i is feasible and �(S) � �(S 0).

Clearly, if node j node-dominates node i, then we can remove node i from G without
reducing the optimal value of the underlying WNPP. This simple idea of node-dominance
turns out to have a dramatic e�ect on the size of the instances of the problem of routing
trains through a railway station. Due to the special structure of these instances, simple
node-dominance reduces the number of variables with more than 70%. Moreover, it is
easily checked, since there are transparent necessary and su�cient conditions specifying
which node node-dominates another. This is described in the following theorem.

Theorem 3 Let i and j be two nodes in G = (V;E). Node i is node- dominated by node

j, if and only if

1. �i � �j (weight condition).

2. N1(j) � N1(i) (neighbour condition).

Proof. The necessity of both conditions is easily established. If �i > �j, then any node
packing containing node i deteriorates by replacing node i by node j. Furthermore, if
k 2 N1(j)nN1(i) then fi; kg 62 E. Therefore, the solution consisting of the node packing
S = fi; kg does not have the property that node i can be replaced by node j, since the
distance of node j and node k is at most 1: if k = j, then there is only one node left
in the new node packing and thus it has smaller weight; otherwise fj; kg 2 E, and thus
S
0 = fj; kg is not a feasible node packing.
Both conditions are also su�cient. Suppose that nodes i and j satisfy them. Consider

any node packing S containing node i. Then S
0 = S � i + j is a feasible node packing:

indeed, suppose that for k 2 S � i we have fj; kg 2 E. Then k 2 N1(j) � N1(i),
and therefore fi; kg 2 E. This is a contradiction with the feasibility of S. Finally,
�(S 0) = �(S)� �i + �j � �(S). So, we can replace node i by node j. 2

Note that the neighbour condition implies that fi; jg 2 E, since j 2 N1(j) � N1(i).
By the removal of a node-dominated node, other nodes, that were not node-dominated

earlier, may become node-dominated. This e�ect is called propagation. Propagation of
node-dominance is illustrated in the example shown in Figure 6.

In this example all nodes have the same weight. Thus, the node-dominance relation
is equivalent to the neighbour condition. Node 1 node-dominates node 2, and there is no

13

n

n

n

n

n

n

n

n

1

2

3

4

5

6

7

8

n n

n

n

n

n

n

1 3

4

5

6

7

8

n n

n

n

n

n

1 3

4

5

6

7

Figure 6: Propagation of node-dominance.

other pair involved in a node-dominance relation. However, after the removal of node 2
from the graph, node 5 node-dominates 8, and thus node 8 can be removed as well.
Next, we will prove that the �nal result of the node-dominance technique is not dependent
on the order in which node-dominated nodes are removed from the graph. We will prove
this using the following two lemmas. The �rst lemma proves the transitivity of node-
dominance, and the second one shows that a node-dominated node loses this property
during the process of deleting nodes only under very special circumstances.

Lemma 4 Consider three di�erent nodes i, j, and k. If node i node-dominates node j

and node j node- dominates node k, then node i node-dominates node k.

Proof. �i � �j � �k, and N1(i) � N1(j) � N1(k). 2

The following lemma plays a key role in the proof of the order independence.

Lemma 5 Consider two nodes i and j, which are both node- dominated in a graph G.

Then node i is node-dominated in G� j, or nodes i and j are identical in G, i.e., �i = �j

and N1(i) = N1(j).

Proof. If 9k 6= j such that node k node-dominates node i in G, then clearly node i is
node-dominated in G� j by node k. Otherwise, node i is only node-dominated by node
j. Moreover, node j is only node-dominated by node i, since otherwise, by transitivity,
node i would have been node- dominated by a node other than node j. However, this
implies that �i = �j and N1(i) = N1(j). 2

Two graphs G1 = (V1; E1) and G2 = (V2; E2) with weight functions �1 and �2 on the
nodes are said to be weight-isomorphic, if there is a one-to-one mapping f of the nodes
from G1 to G2 that preserves adjacency and weight, i.e., for all i 2 V1 : �i = �f(i) and for
all i; j 2 V1 : fi; jg 2 E1 if and only if ff(i); f(j)g 2 E2. Note that weight-isomorphism
is a symmetric relation.

14

Theorem 6 Consider a problem instance of the WNPP on a graph G. Consider two

maximal sequences of node-dominated nodes a = (a1; : : : ; al) and b = (b1; : : : ; bm), i.e.,
G� a and G � b do not contain any node-dominated nodes. Then G � a and G� b are

weight-isomorphic.

Proof. Consider a node-minimal counter example (G; �). We will show that we can
transform the sequence b to a sequence b0 such that a1 is the �rst node in b

0, and G � b

and G� b
0 are weight-isomorphic. This proves the theorem, since G� a1 contains fewer

nodes than G, and thus G� a and G� b
0 are weight-isomorphic.

First, suppose that a1 62 b. Since a1 is node-dominated in G and not in G� b, there is
an index i with 1 � i � m such that a1 is node-dominated in G� (b1; : : : ; bi�1) and not in
G� (b1; : : : ; bi). By Lemma 5, this means that a1 and bi are identical in G� (b1; : : : ; bi�1).
Therefore, if we exchange bi and a1 in b, then the resulting graph is weight-isomorphic
with G� b. Thus we may suppose that a1 2 b.

If a1 = b1, then we are done since we assumed that (G; �) was a node-minimal counter
example. Therefore, suppose that a1 6= b1, say a1 = bj for some j > 1. We will show
that we can exchange bj and bi for some i < j. Doing this repeatedly leads to a1 = b1,
which �nishes the proof by the argument given above. If bj is not node-dominated in
G � (b1; : : : ; bj�2), then there is an index i with 1 � i � j � 2 such that a1 is node-
dominated in G� (b1; : : : ; bi�1) and not node-dominated in G� (b1; : : : ; bi). By Lemma 5,
this means that a1 and bi are identical in G� (b1; : : : ; bi�1). Therefore, we can exchange
bi and bj in b without making any actual changes. Finally, suppose that bj is node-
dominated in G � (b1; : : : ; bj�2). Then both bj�1 and bj are node-dominated. If bj�1 is
node-dominated in G� (b1; : : : ; bj�2; bj), then we can exchange bj�1 and bj. Otherwise, by
Lemma 5, bj�1 and bj are identical, and again we can exchange bj�1 and bj. Concluding,
we can rearrange the order of the nodes in b so that a1 is the �rst one. 2

Implementing node-dominance is fairly straightforward. If we order the nodes in order
of non-increasing weight, breaking ties by ordering the nodes in order of non- decreasing
degree, then it su�ces to check whether a node node-dominates later nodes in the list.
Checking node-dominance for each node pair takes O(jV j) time. The overall running time
is O(jEj jV j), since we only need to check neighbouring pairs of nodes. As this may still
be quite a lot of time, and propagation may force us to restart the process, we reduce the
running time by comparing only nodes corresponding to the same train, the same bound
(inbound, outbound, or platform), and the same platform.

6.1.2 Set-dominance

Set-dominance determines whether a node i can be replaced by one of the nodes of a
given set R in all node packings containing node i. If this is possible, then node i can be
removed from the problem instance. This idea generalizes node-dominance in the sense
that the node that replaces node i can be taken arbitrarily from the set R.

De�nition 7 A node i 2 V is set-dominated in graph G = (V;E) by a set R � V � i if

for each feasible node packing S containing node i, there is a node j 2 R such that the

15

set S 0 = S � i + j is a feasible node packing and has weight greater than or equal to the

weight of S, i.e., S 0 = S + j � i is a feasible node packing, and �(S) � �(S 0).

Obviously, node-dominance is a special case of set-dominance, where the set R consists of
one node only. Below we give an example that shows that set-dominance truly generalizes
node-dominance.

�

��

�

��

�

��

�

��

�

��

0)20)0)20)20)

i

j1

j2

k1

k2

Figure 7: Set-dominance.

In this example all nodes have the same weight. There are two maximal node packings
containing node i, namely, f1; 4g and f1; 5g. In f1; 4g we can replace node 1 by node
3 and in f1; 5g we can replace node 1 by node 2. Thus in both cases we do not need
node 1. After node 1 has been removed, node 4 is node-dominated by node 2, and node
5 is node-dominated by node 3. So, this instance can be solved completely by dominance
techniques, although in the initial graph no node is node- dominated by another one.

Clearly, if the set R set-dominates node i, then we can remove node i from G, without
reducing the optimal value of the WNPP. Set-dominance may reduce the size of the
instances of the problem of routing trains through a railway station with a substantial
amount, even after the application of node- dominance. However, it is more di�cult to
�nd conditions that are necessary and su�cient for a node to be set-dominated.

On the other hand, we can restrict the number of sets to be taken into account for
checking set-dominance of a node i. The following lemma shows that the weights of the
elements of the set R should be su�cient.

Lemma 8 8j2R:�j<�i if R set-dominates node i, then R� j set-dominates node i.

In the sequel we consider only sets R in which all elements have weight at least �i.
Using this result, the de�nition of set-dominance becomes equivalent with the following
statement: for each node packing S � N(R) � N1(i), there is a node j 2 R such that
N1(j)\S = ;. The following lemma shows that we can restrict ourselves to sets containing
only neighbours of node i.

Lemma 9 8j2RnN(i) if R set-dominates node i, then R � j set-dominates node i.

Proof. Suppose that R set-dominates node i and that R� j does not set-dominate node
i, for some j 2 R n N(i). Then, according to the de�nition of set-dominance, there is a
node packing S containing node i, such that S 0 = S � i + j is a feasible node packing.
Moreover, there is no other node k in R� j such that S� i+k is a feasible node packing.

16

However, since nodes i and j are not connected, S + j is a feasible node packing as well.
By the fact that R set-dominates node i, there should be a node k 2 R � j that can
replace node i in S + j. This is a contradiction, since this particular node k would then
be able to replace node i in S as well. 2

From this lemma it follows that we can restrict set-dominant sets to contain only neigh-
bours of the set-dominated node. The following lemma shows that we can restrict set-
dominant sets to all neighbours of node i with su�cient weight, i.e., to R

i

max = fj 2

N(i) : �j � �ig.

Lemma 10 8j2N(i): �j��i if R set- dominates node i, then R + j set-dominates node i.

Proof. The condition that for each node packing S including node i this node can be
replaced by an element of R holds trivially for R + j if it holds for R. Note that j 62 S

since node j is connected to node i. 2

Contrary to the node-dominance technique, the �nal result of the set-dominance tech-
nique may be sequence dependent. However, the result of the set-dominance technique
is sequence independent if all weights of connected nodes are di�erent. The proof of
this result can be found in Zwaneveld [?]. An example of a sequence dependent problem
instance for set- dominance is given in Figure 8.

�

��

�

��

�

��

�

��

�

��

0)20)0)20)20)20)

1

2

3

4

5

Figure 8: Sequence dependent propagation.

�

��

�

��

1

4 �

��

�

��

�

��

�

��

2

3

4

5

Figure 9: The results.

In the above example all nodes have the same weight. Clearly, node 1 node-dominates
nodes 2 and 3. After the removal of nodes 2 and 3, node 4 node-dominates node 5, so that
node 5 can be removed as well, and we are left with two unconnected nodes. On the other
hand, the set f2; 3g set-dominates node 1. If we remove node 1 we are �nished. Thus

17

the di�erent orders result in one of the graphs shown in Figure 9, in which no further
set-dominance can be detected.

We conclude the description of set-dominance with an algorithm that determines for
a node whether it is set- dominated by a subset of its neighbours. Consider an arbitrary
node i for which we want to determine whether it is set-dominated. Let Ri

max = fj 2

N1(i) : �j � �ig. The recursive algorithm described below determines whether or not
node i is set-dominated by Ri

max.
The algorithm maintains a partial node packing S in N2(i)�N1(i). If S is a so-called

blocking node packing, i.e., a node packing in which each node is connected with a node
from R

i

max, then the algorithm stops: we have a proof that node i is not set-dominated by
R

i

max, since it can not be replaced by a node of R
i

max in the node packing S+ i. Otherwise,
we try to show that any extension of S has no edge with at least one node from R

i

max,
i.e., no extension of S is blocking.

In this algorithm we use three sets. Besides the set S, the set R � R
i

max is used
to show that any extension of S is set-dominated. Finally, we maintain a set O which
contains the nodes from N2(i)�N1(i) that need not be considered in extensions of S.

The procedure AUGMENT(S, O, R) determines if any extension of S with nodes
from N2(i)�N1(i)�O is a blocking node packing. Its �rst call is with empty sets only:
AUGMENT(;, ;, ;).

AUGMENT(S, O, R)

if 8j2Ri
max

�R : S \N(j) 6= ;

then STOP: S is a blocking node packing
�

Let j 2 R
i

max � R : S \N(j) = ;

Let K = fk 2 (N2(i)�N1(i)) \N(j) : k 62 N(S) [Og

while K 6= ;

do

Select k 2 K;
AUGMENT(S + k,O,R + j);
O+ = k; K� = k;

od

return The extensions of S (not using O) are not blocking.

In this algorithm, we select a node j from R
i

max and we consider all extensions of S using
neighbours of node j. If all neighbours of node j have been checked, then we are �nished
since any other extension of S contains only nodes that are not connected to node j. Note

18

that the selection of node j 2 R
i

max�R is not speci�ed. If we select node j such that K is
minimal, then we determine immediately whether a node is node-dominated by another
one. Thus, node-dominance is a special case of set-dominance, as was noted earlier.

The running time of the algorithm to determine set-dominance for a single node by a
set R is O(jEjjRj). We implemented two versions of the set-dominance technique. In the
�rst implementation we restrict the set R of alternatives to nodes corresponding to the
same train, the same bound and the use of the same platform. In the other implementation
the set R holds nodes corresponding to the same train and the same bound. In the latter
implementation we allow a maximum CPU time of 0.01 seconds per variable. For test
instances the obtained number of set-dominated variables was not increased when we
allowed a maximum of 300 seconds per variable.

6.1.3 Iterative set-dominance

If the set-dominance algorithm fails to �nd set-dominated nodes, then for each node i

and corresponding set Ri

max, there is at least one blocking node packing S. We may,
however, be able to alter such a blocking node packing without changing its weight or
extendibility, in such a way that the resulting node packing is not blocking anymore.
Consider the following example.

�

��

�

��

�

��

�

��

�

��

�

��

�

��

i

j1

j2

k1

k2

k3

k4

Figure 10: Iterative set-dominance.

In the �gure above, the nodes 1, 2, and 3 have weight 2; the other nodes have weight
1. No node is set-dominated by some set of other nodes. If one tests the set-dominance
of node 1 by the set f2; 3g, then the node packing S causing trouble would be f4; 5g.
However, suppose that we want to replace node 1 by node 2. In the node packing f4; 5g,
we may replace node 4 by node 6. Thereafter we may replace node 1 by node 2. Thus it
may be concluded that the node packing f4; 5g is not a problem after all, and thus node
1 can be removed from the graph.

In general, we can check for each blocking node packing S whether it is possible to
replace some of its nodes by other nodes until the obtained node packing is not blocking
anymore. Although we do use this technique in the implementation of our algorithm, we
refer the reader interested in the further details to Zwaneveld [?].

6.1.4 Combining nodes

Two nodes are combined into one node if the fact that one of the nodes is selected in the
node packing implies that the other node must be selected in the node packing as well,

19

and vice versa. The arguments for combining nodes are based upon the interpretation of
the problem as the problem of routing trains through a railway station. We identify the
following situations:

- If only one inbound and one outbound route lead to and from a platform for a
speci�c train, then the nodes corresponding to the inbound, outbound and platform
route can be combined into one new variable.

- Each remaining node corresponding to a platform route for a speci�c train can be
combined with a compatible node corresponding to an inbound route for the same
train.

- If only one node corresponding to an inbound (outbound) route towards (from) a
speci�c platform for a particular train remains, then this node can be combined
with all compatible nodes corresponding to an outbound (inbound) route for the
considered platform and train.

6.1.5 E�ects of Preprocessing

In this section we present computational results for the preprocessing techniques that
were described in the previous sections. The computational results are obtained on a SUN
LX workstation with 50 Mhz, and we used ANSI C for programming. The computational
results are presented for three railway stations in the Netherlands, namely Arnhem, Hoorn,
and Utrecht CS.

- Arnhem (Ah) is a medium sized railway station in the eastern part of the Nether-
lands. This station is visited by about 40 trains per hour. Arnhem has 16 platform
and through-going tracks and consists of 102 track sections of which 74 are relevant.

- Hoorn (Hn) is a small railway station in the north- western part of the Netherlands.
This station is visited by about 12 trains per hour. Hoorn has 6 platform and
through-going tracks and consists of 61 track sections of which 32 are relevant.

- Utrecht CS (Ut) is the largest railway station in the Netherlands, located in the
center of the country. This station is visited by about 80 trains per hour. Utrecht CS
has 40 platform and through-going tracks, and consists of 264 track sections of which
201 are relevant, see Figure 2.

The problem instances are taken from studies of the Capacity Planning department of
Railned, which involve future railway network designs for the year 2005. For each railway
station three instances (timetables) have been generated and analyzed. It turned out that
for each railway station the sizes of these problem instances were almost identical.

The sequence in which the preprocessing techniques are applied is as follows:

1. Detour routes.

2. Node-dominance.

20

3. Combining variables.

4. Set-dominance with the set R restricted to nodes representing the same train, the
same bound, and the use of the same platform. We refer to this set R as Rsmall.

5. Iterative set-dominance.

6. Set-dominance with the set R restricted to nodes representing the same train and
the same bound. We refer to this set R as Rlarge. The maximum CPU time spent
on each variable is set to 0.01 seconds.

All preprocessing techniques are repeated whenever a variable has been removed. Before
any technique is repeated, all previously mentioned techniques are executed as well.

It turns out that the order in which the preprocessing techniques are executed in-

uences the number of removed variables. However, the size of the remaining problem
instances after applying the techniques in di�erent orderings did not di�er more than
4% from each other. The sequence that we apply is determined by the e�ect of each
preprocessing technique and the CPU time necessary for executing each technique.

Table 1 presents the e�ects of the preprocessing techniques with their corresponding
CPU times. For each railway station the results are an average over the three studied
problem instances. The percentages in this table are in comparison with the average
initial problem size.

Station Ah Hn Ut Average
nodes CPU nodes CPU nodes CPU perc. CPU

initial 5930 165 9328 100%

detour -3053 3 -9 0.01 -1025 3 -26% 2
node -2389 22 -38 0.02 -6695 117 -59% 46
comb. var -168 1.6 -71 0.2 -779 10 -7% 4
set, small -47 0.2 -0.3 0.00 -55 1 -1% 0.4
iter. set -3 0.1 -0 0.00 -36 1 -0.3% 0.4
set, large -33 0.4 -2 0.01 -32 10 -0.4% 3

�nal 215 27 45 0.2 706 142 6% 56

Table 1: Cumulative e�ect on the number of variables by each preprocessing technique
and the CPU times in seconds.

In most cases the preprocessing techniques are able to reduce the initial problem size
by over 90%. Furthermore, the e�ects of the preprocessing techniques di�er over the
railway stations. In general, set-dominance and iterating set-dominance have the largest
e�ect on the larger problem instances. Node-dominance is the largest consumer of CPU
time, because it has to consider much more nodes than the techniques which are applied
later on. Propagation is very important for node-dominance: about 25% of the node-
dominated nodes are node-dominated due to propagation. Node-dominance is repeated
up to 10 times to remove all node-dominated variables. Table 1 shows that the increase
of the CPU time for the larger problems is acceptable.

21

6.2 The complete algorithm

In this section we describe the complete algorithm for solving the problem of routing
trains through a railway station, based on the formulation of the problem as a WNPP.
Very generally, the algorithm reads as follows:

The complete algorithm

1. Initialization: generate all routing possibilities (t; f), and determine all con
icting
combinations of routing possibilities.

2. Preprocessing: try to reduce the problem instance in advance, thereby using the
techniques that were described earlier in this section.

3. Formulate the routing problem as an integer programming problem and tighten its
LP-relaxation by adding valid inequalities.

4. Apply a branch-and-cut procedure to obtain the optimal solution to the problem.

In Step 0 of the algorithm the (useful) routing possibilities for all trains as well as the
admissible pairs of them are determined. This step involves many travel time calculations
and searching for overlapping reservation intervals of sections. For the implementation
details of this step we refer to Zwaneveld [?]. The computing time for performing this step
is linear in the number of con
icting routing possibilities or, equivalently, in the number
of edges of the node packing formulation.

In Step 1 we apply the previously explained preprocessing techniques in the order as
described in Section 6.1.5.

Step 2 involves the derivation of many clique inequalities. As is well-known, the LP-
relaxation of a WNPP is very bad in general, and needs improvement by the addition of
valid inequalities. Standard valid inequalities for the Node Packing Problem are clique
inequalities and (lifted) odd-hole inequalities, see Padberg [?]. Ho�man and Padberg
[?], and Nemhauser and Sigismondi [?] give implementations based on these inequalities.
Due to the special structure of our problem (a high edge- density) we will be concerned
with generating (violated) clique inequalities in successive LP-relaxations only. For more
details on the generation of these clique inequalities we refer to Zwaneveld et al. [?].

The corresponding cliques cover all edges, such that the inequalities (4) (and (1), (2),
(3)) can be removed from the problem formulation. Cliques are initially based on nodes
representing two trains with the same direction. Each clique is lifted by extending it to a
maximal clique. The sequence in which the connected variables are considered is chosen
randomly, based on a uniform distribution over these variables.

The branch-and-cut procedure in Step 3 may require an exponential amount of time.
The main aspects of this procedure are:

1. Applying set-dominance with the set Rsmall.

2. Solving the LP-relaxation.

22

3. Applying a rounding heuristic to the solution of the LP-relaxation to obtain a fea-
sible solution.

4. Searching for violated clique inequalities.

5. Selecting the branching variable.

All LP-relaxations are solved from scratch by the LP-solver of CPLEX 3.0 [?]. Since the
objective function coe�cients of the variables di�er strongly from each other, degener-
acy hardly occurs. Moreover, the strong di�erences between these coe�cients help the
LP-solver to select the optimal set of basic variables and therefore they speed up the
calculation of the LP-relaxation.

The rounding heuristic greedily constructs a node packing by considering the vari-
ables in order of decreasing value. When all variables with a strictly positive value have
been considered, the constructed node packing is lifted to a maximal node packing by
considering all other variables (i.e. with value zero in the solution of the LP-relaxation)
in random order.

The search for violated clique inequalities can be restricted to the set of variables with
a fractional value. The fractional variables are ordered in order of non- increasing value.
Starting with the �rst variable, we try to �nd a violated clique inequality containing this
variable by adding the variables in the given order. If a clique of fractional variables is
found with total value exceeding one, then we have found a violated clique inequality.
Subsequently, we lift this clique randomly to a maximal clique, remove the fractional
variables from the list, and continue the search. If no violated clique with the �rst variable
from the list exists, then we remove this variable from the list and we also continue our
search. When all variables from the list have been considered as part of a violated clique,
then we add the corresponding constraints to the LP formulation and recalculate the LP-
relaxation.

The branching scheme follows the depth-�rst-search strategy. The branching variable
is the variable with a fractional value in the solution to the LP-relaxation and with the
smallest index.

6.3 Computational results of the complete algorithm

The results of the complete algorithm with respect to the problem instances that were
described in Section 6.1.5 are presented in Table 2. Again the computational results are
obtained on a SUN LX workstation with 50 Mhz.

On average, the clique inequalities reduce the number of constraints from 4733 initial
constraints, see m in Table 2, to 532, see mv. The initial constraints are the constraints
(1), (2), (3), and (4). The resulting LP-formulation is quite tight, as can be observed
from the small di�erence, see bLPc - Opt, between the truncated solution value of the
LP- relaxation and the optimal solution. We are allowed to use the truncated value of
the LP- solution, since we restricted the objective function coe�cients to integer values.
In the table, `size tree' indicates the number of branches which are investigated in the
branch-and-cut tree. The maximum depth of the tree is denoted by `depth tree' and the

23

number of useful violated clique inequalities, which existed in the branch-and-cut tree is
indicated by `cuts'. The total number of set-dominated nodes is indicated by `# set in
tree'. The number of trains in the timetable is denoted by `jT j'. The number of routed
trains in the optimal solution is denoted by `jT j routed'. The CPU time for the branch-
and-cut algorithm is indicated by `CPU b&c'. The total CPU time, see `CPU total',
includes the time to read all input data from �le, as well as the time to generate the
problem instance and the clique inequalities.

Timetable Ah Hn Ut Average

m 2452 118 11629 4733
mv 324 40 1231 532
size tree 4 1 21 9
depth tree 2 1 3 2
cuts 1 0 4 2
set in tree 1 0 50 0.3%
bLPc - Opt 6995 2664 23993 11217
Opt 2103514 581879 13899361 5528251
jT j 39 15.3 79 44
jT j routed 29 14.6 75 40
CPU prep. (s) 27 0.2 142 56
CPU b&c (s) 4 0.1 116 40
CPU total (s) 37 0.4 287 108

Table 2: Results of the Cutting-plane algorithm.

Furthermore, it can be mentioned that the described model formulation and algorithm
have been implemented in the DSS STATIONS that was described in Section 1. This
DSS is in operation within the Dutch organizations for railway transport: Railned and
Netherlands Railways. Up to the mid of 1997, STATIONS has been used to solve over 500
practical problem instances. The planners reported an average computing time of about
1 minute for the larger railway stations. These computing times are quite acceptable for
the planners when they use STATIONS interactively.

Altogether, it can be concluded that the complete algorithm is very well able to solve
even the largest practical problem instances that occur in the Dutch railway network.

7 Summary and conclusion

In this paper we explained the problem of routing trains through a railway station as well
as its practical context. We described the relevant aspects of the operational processes that
have to be taken into account to solve the routing problem in practice. We showed that
these aspects can adequately be taken into account in the formulation of the problem as a
Weighted Node Packing Problem (WNPP). Furthermore, we developed a branch-and-cut
algorithm to solve the problem to optimality.

24

We described several preprocessing techniques to reduce the problem size a priori.
Three techniques, namely node-dominance, set-dominance, and iterating set-dominance,
are applicable to all WNPPs. These techniques aim to prove that a certain node can be
replaced by some other node in all feasible solutions. We derived several characteristics
of the techniques with respect to propagation. The techniques had a large e�ect on the
sizes of the problem instances for which we presented computational results in this paper.
Due to the high e�ectiveness of the preprocessing techniques, all problem instances that
we studied could be solved to optimality. An interesting direction for further research is
the application of these techniques to other problems that can be formulated as a WNPP.

Based on their experiences with the DSS STATIONS so far, the planners have formu-
lated several desirable extensions of the system. One extension involves the possibility
to solve the routing problem for two railway stations at the same time. This is particu-
larly interesting if two railway stations are located close to each other. Another extension
involves the possibility to use di�erent safety systems for route locking and sectional re-
lease. A �nal extension involves the possibility that STATIONS provides the planners
with suggestions for the modi�cation of the arrival and departure times of trains if a
feasible solution for all trains with the given arrival and departure times does not exist,
see Zwaneveld [?].

Although the mentioned extensions do not change the mathematical formulation of
the routing problem, they may enlarge the instance of the WNPP to be solved. Therefore,
it will be interesting to further investigate the range of the sizes of the routing problem
that can be handled by the described techniques.

25

