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Abstract
We present a routing paradigm called PB-routing that utilizes steep-
est gradient search methods to route data packets. More specifically,
the PB-routing paradigm assigns scalar potentials to network elements
and forwards packets in the direction of maximum positive force. We
show that the family of PB-routing schemes are loop free and that
the standard shortest path routing algorithms are a special case of
the PB-routing paradigm. We then show how to design a potential
function that accounts for traffic conditions at a node. The resulting
routing algorithm routes around congested areas while preserving the
key desirable properties of IP routing mechanisms including hop-by-
hop routing, local route computations and statistical multiplexing. Our
simulations using the nssimulator indicate that the traffic aware rout-
ing algorithm shows significant improvements in end-to-end delay and
jitter when compared to standard shortest path routing algorithms. The
simulations also indicate that our algorithm does not incur too much
control overheads and is fairly stable even when traffic conditions are
dynamic.

Categories & Subject Descriptors: C.2.2 Routing Protocols.
General Terms: Algorithms.
Keywords: Congestion, Potential, Routing, Steepest Gradient, Traffic
Aware.

1. Introduction
Routing mechanisms in the Internet have typically been based on

shortest-path routing for best effort traffic. This often causes traffic
congestion, especially if bottleneck links on the shortest path severely
restrict the effective bandwidth between the source and the destination.

Traditionally, congestion control in the Internet has been provided
by end-to-end mechanisms. An example is the TCP congestion con-
trol mechanism that works by adjusting the sending rate at the source
when it detects congestion at a bottleneck link (for details, see [25]). If
multiple traffic streams share the same bottleneck link, each gets only
a fraction of the bottleneck link bandwidth even though there may be
bandwidth available along alternate paths in the network. Moreover,
queueing delays at the bottleneck link can add significantly to end-to-
end delays. Finally, varying traffic conditions can make this queueing
delay variable, thereby adding to jitter.
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One way to address the problem of end-to-end delay and jitter is
to use traffic engineering (TE) techniques in conjunction with circuit-
based routing. In this case, the routing process assumes that the traffic
demands between source-destination pairs are known apriori and com-
putes end-to-end paths (circuits) satisfying the traffic demands. End-
to-end circuits are then set up along the computed paths using a re-
source reservation protocol such as RSVP [13]. Data packets are now
source routed along these pre-computed paths.

There are some drawbacks to this kind of circuit-based routing.
First, if traffic sources are bursty (which is mostly the case in the
Internet — see, for example, [21]), resources may be reserved un-
necessarily, thereby negating the benefits of statistical multiplexing.
Second, traffic demands between network nodes are hard to estimate
apriori. Also, if traffic patterns change, it is possible that a global re-
computation is necessary to determine the most optimal routing. Third,
when future demands are unpredictable, it is difficult to route current
demands such that a future demand has the maximum chance of be-
ing routed successfully without requiring the rerouting of existing de-
mands. Indeed, it can be shown that this problem is NP-hard even for
the simplest cases [12].

In this paper, we present an alternate methodology for traffic-aware
routing that is based on steepest gradient search methods. We call this
methodology potential based routing, or PB-routing. It preserves the
hop-by-hop routing philosophy of the Internet, and does not require a
priori knowledge of traffic demands between network nodes. At the
same time, PB-routing is able to route packets around the congested
hot-spots in the network by utilizing alternate routes that may be non-
optimal. This reduces end-to-end delays and jitter and increases the
bandwidth utilization in the network. Since packets are not source
routed, PB-routing can adapt to changes in traffic conditions without
requiring any global recomputation of routes. Furthermore, end-to-end
resource reservation is not required — hence, the benefits of statistical
multiplexing are still available. Note that PB-routing can only pro-
vide performance improvements of a statistical nature, and not explicit
worst-case bounds on delay and jitter (as opposed to TE techniques).
However, our simulations indicate that there is significant improve-
ment in delay and jitter for most traffic streams when PB-routing is
used.

The key idea in PB-routing is to define a scalar field on the network,
which is used to define a potential on every network element (NE).
The routing algorithm at each NE now computes the route to the des-
tination as the direction (i.e., the next hop) in which the potential field
decreases fastest (direction of maximum force or steepest gradient).
We show that by assigning the NE potentials differently, a whole fam-
ily of routing algorithms can be designed. For example, the standard
shortest path algorithm can be shown to be a special case of PB-routing
if the potential at each NE is set to be a linear, monotonically increas-
ing function of the shortest distance from the NE to the destination.
The routing algorithm can be made traffic-aware by setting the poten-
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tial at each NE to be a weighted sum of the shortest path potential and
a metric that represents the traffic potential at the NE. We show how to
define such a metric later in the paper.

More intuitively, the PB-routing algorithm views the entire network
as a terrain, with many negotiable obstacles created by congestion.
The high obstacles represent areas of the network with high congestion
(and therefore, high potential). The idea is to find a path from the
source to the destination by avoiding the high obstacles as much as
possible.

Since PB-routing depends on traffic information at the various NEs,
it is necessary that this information be disseminated efficiently without
compromising end-to-end packet delays and jitter. In our simulations,
we adapt a link-state routing protocol for this purpose. We also de-
scribe an optimization that significantly reduces the control overheads
of this protocol without sacrificing the performance of the routing al-
gorithm.

The main contributions of this paper are as follows. While steep-
est gradient search methods have been well-studied, the novel idea
in this paper is the design of a potential field for traffic-aware rout-
ing that guarantees desirable properties such as loop-free routing. We
demonstrate that our design of a potential function, which is a hybrid
of traffic metrics and link costs, ensures that packets avoid congested
areas but do not traverse the network using random walks. In fact,
how far the path of a packet deviates from the standard shortest path
can be controlled by a configurable parameter. In our simulations, we
have observed significant improvements in end-to-end delay and jit-
ter over a variety of networks and traffic conditions without requiring
too much control overheads. We believe that the general framework
of PB-routing could be adapted for optimizing various other metrics
through careful design of potential functions. This is especially true
of overlay networks (see, for example, [2]) where application specific
metrics that require optimization could be converted into appropriate
potential functions.

The rest of the paper is organized as follows. In the next section,
we describe the PB-routing model in greater detail and prove some
of its properties analytically. This is followed by Sections 3 and 4
where we describe our implementation of traffic-aware routing using
the PB-routing paradigm and evaluate its performance. We then de-
scribe related work in Section 5 and conclude in Section 6.

2. The PB-routing Paradigm
In this section, we present the key theoretical ideas underlying the

PB-routing paradigm. We emphasize here that the PB-routing paradigm
represents a family of network routing algorithms. Hence, we first
provide a description of the generic PB-routing algorithm. Using this
generic formulation, we prove the key properties that are common to
all the algorithms in the PB-routing family. We then describe two spe-
cific instantiations of the PB-routing paradigm. The first instantiation
is the standard shortest path algorithm — we refer to this as SPP. We
then show how SPP can be modified to be traffic-aware (called the
PBTA algorithm) and analyze its desirable properties.

System Model. In order to describe the PB-routing paradigm, we
first need to define some terminology and a system model. We model
a network of nodes connected by bidirectional links as a directed graph
G = (N;E). The set of nodes in the network is represented by the
set of vertices N in G. Similarly, the set of edges E in G corresponds
to the set of links in the network, where euv is a directed edge from
vertex u to vertex v with cost metric cuv that is strictly positive. Since
the network links represented by the edges in E are bidirectional, it
is easy to see that if edge euv 2 E, then evu 2 E. For the rest of
this paper, we shall use the terms nodes (links) and vertices (edges)
interchangeably. Each node v can act as a traffic source and/or sink.

Furthermore, every node v has a set of Z(v) neighbors denoted by
nbr(v). Thus, the indegree and outdegree of any node v are both equal
to Z(v).

2.1 Routing with Potentials
The PB-routing paradigm defines a scalar field on the network over

which packets are routed. The potential at any node v is a function of
v and the destination d for which we need to find a route. More for-
mally, with each node v (and destination d), we associate a potential
V d(v) that is single-valued. Note that if the destination d changes, the
potential function for v changes as well. We prove all the properties
of PB-routing assuming that the destination d is fixed. Since the po-
tential functions for different destinations are independently defined, it
follows that our assumption about a fixed destination is not restrictive.
For the rest of this paper, we shall use V (v) to denote the potential at
a node v when the destination is clear from the context.

Now consider a packet p at a node v whose destination is node d.
In order to reach d, p must be forwarded to one of the Z(v) neighbors
of v. To determine this “next hop” neighbor, we define a “force” on
the packet p at v based on the potentials at v and its neighbors. For a
neighbor w 2 nbr(v), we can define the force Fv!w as the discrete
derivative of V with respect to the link metric as

Fv!w =
(V (v)� V (w))

cvw
(1)

The packet p is now directed to the neighbor x 2 nbr(v) for which the
force Fv!x is maximum and positive. In other words, each packet fol-
lows the direction of the steepest gradient downhill to reach its destina-
tion. We now prove the following general property of the PB-routing
paradigm.

THEOREM 2.1. The PB-routing paradigm is loop-free if the poten-
tial functionV (v) is time invariant.

Proof: We prove this by contradiction. Consider a packet p that is
routed along a closed loop on the network, beginning and ending at
node v. Let this closed loop be the directed path v = v0 ! v1 !
v2 ! � � � ! vk�1 ! v0 = v. For p to be routed along this path,
the work done defined by the forces in equation (1) must be strictly
positive. This is because the routing algorithm always directs packets
in the direction of the maximum positive force. More formally,

k�1X
i=0

Fvi!v(i+1) mod k
� cviv(i+1) mod k

> 0 (2)

Using equation (1), we get

k�1X
i=0

V (vi)� V (v(i+1) mod k) > 0 (3)

Since V (v) is a time invariant, single valued function of v, the LHS of
equation (3) must be identically zero, which is a contradiction. Hence,
the PB-routing paradigm is loop-free as long as the potential function
is single-valued and time invariant.

Now consider any packet p at a node v. Since p always moves in
the direction of the maximum positive force, p will be forwarded to a
neighbor w that satisfies the following

V (v)� V (w) > 0 (4)

However, this is not possible if v is a local minima,1 i.e., we have

8w 2 nbr(v) V (v)� V (w) < 0 (5)

1The term local minimameans that the potential of p is lower than that
of any of its neighbors.
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In other words, p will get stuck at a node v if v is not the destination
but is a local minima. This implies the following

LEMMA 2.2. If the potential function has a minimum only at the
destination and no other local minima, all packets will eventually reach
their destinations.

2.2 The SPP Algorithm using PB-routing
We now describe SPP in detail. In the traditional shortest path algo-

rithms, a packet traverses the shortest path from source s to destination
d. Typically, shortest paths can be computed using well known algo-
rithms (e.g. Dijkstra’s shortest path algorithm [7]).

Now, let p be a packet at a node v going to destination d, and let
Dvw be the length of the shortest path in the network graph connecting
nodes v and w. We set the potential at node v to be

V
d(v) = V (Dvd) (6)

where V (x) = ax + b; a > 0, is a single-valued, monotonically in-
creasing, linear function of x. To reach destination d, a packet p at
node v selects the next hop w 2 nbr(v) such that the force

Fv!w =
V (Dvd)� V (Dwd)

cvw
(7)

is maximum and positive. It is now easy to see that SPP is loop-free
by Theorem 2.1 in the absence of topology changes since the potential
function V is single-valued and time invariant everywhere.

To show that each packet p eventually gets to its destination if SPP
is used, we first prove the following lemma.

LEMMA 2.3. The potential functionV has no local minima.

Proof: The proof is by contradiction. Let v be a node that has a local
minima. In other words, we have

8w 2 nbr(v) V (Dvd) < V (Dwd) (8)

Since v is a monotonic increasing function of Dwd, equation (8) im-
plies that

8w 2 nbr(v) Dvd < Dwd (9)

Now let u be the next hop on the shortest path from v to d. Then, using
the properties of the shortest path computation algorithms, we have

Dvd = cvu +Dud (10)

where cvu represents the cost metric for the link evu. However, since
u 2 nbr(v), using equation (9), we have

Dvd < Dud (11)

Using equations (10) and (11), we conclude that cvu < 0 which con-
tradicts the assumption that link metrics are strictly positive.

Now consider the destination d. Using the fact that link metrics are
strictly positive, and that V is a monotonically increasing function, we
have V (Ddd) = V (0) < V (Dvd), where v 2 N and v 6= d. We
therefore conclude that the potential function has a minimum at the
destination, and no other local minima. Using Lemma 2.2, we assert
that every packet p is guaranteed to eventually reach its destination.

Finally, we show that SPP does indeed route using the shortest path.
To prove this property, we use the following lemma.

LEMMA 2.4. For any nodev, and destinationd, if the next hop
computed by the shortest path algorithm isu, then the next hop com-
puted bySPP is alsou.

Proof: Wlog, let w 2 nbr(v) be such that w 6= u. Then, by the
shortest path property, we have

cvu +Dud = Dvd � cvw +Dwd (12)

This implies that

Dvd �Dwd

cvw
� 1 (13)

and
Dvd �Dud

cvu
= 1 (14)

Using equations (13) and (14), we get

Dvd �Dud

cvu
�
Dvd �Dwd

cvw
(15)

Using equation (15) and the fact that V (x) is a monotonically increas-
ing linear function of x, we conclude that

V (Dvd)� V (Dud)

cvu
�
V (Dvd)� V (Dwd)

cvw
(16)

In other words, the force in the direction of u is maximum and positive.
Therefore, SPP chooses u as the next hop. Note that we make the
implicit assumption here that if there are multiple paths with the same
minimum cost, both algorithms use the same deterministic procedure
to break ties.

COROLLARY 2.5. Let V be of the formV (x) = ax + b; a > 0.
Then, for any nodev, and a nodeu 2 nbr(v), we haveV (Dvd)�V (Dud)

cvu
�

a.

It is now easy to see that SPP simulates the standard shortest path
routing. We know that both the algorithms compute the same next hop
at every node for every packet with destination d. Thus, every packet
from source s to destination d follows the same sequence of links in
both cases. Therefore, we have the following property

THEOREM 2.6. SPP correctly simulates the standard shortest path
routing algorithms.

2.3 Generalizing Potentials to be Traffic-Aware
We now show how the PB-routing paradigm can be used to con-

struct traffic-aware routing algorithms. In order to do this, we have to
design a potential that includes a traffic component. For the purposes
of this paper, we use the outgoing queue sizes at a network node v as a
measure of traffic at that node.2 In the rest of this section, we describe
the design of the traffic potential in greater detail followed by proofs
of its relevant properties.

2.3.1 Design of the traffic potential.
In order to design a traffic potential, we first introduce some more

notation. Let Qvu denote the queue length on the outgoing link evu
adjacent to node v in the original network graph. The quantity Quv
is defined similarly. Let BWvu be the bandwidth associated with evu
— we assume that BWvu = BWuv and cvu = cuv , where cvu is the
cost metric associated with the link evu in the network graph. Finally,
let the normalized queue length on a link evu in the original graph be

qvu =
Qvu

BWvu
(17)

The normalized queue length on a link represents the time it will take
for the current queue on that link to drain. For the rest of this paper, we
use the terms queue lengthand normalized queue lengthinterchange-
ably.
2Note that instead of the outgoing queue sizes, some other metric may
also be used as a measure of traffic.
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Figure 1: (a) A network represented by a directed graph, and (b) the
corresponding transformed graph over which the traffic potentials are de-
fined. The square boxes in (b) are the nodes that correspond to the edges
in (a). The lines with double arrows represent two directed edges.

Graph Transformation. In order to design a traffic potential based
on queue lengths, we need to take into account the fact that queues
exist on network links and not on network nodes. This is because the
queues for buffering packets reside on the linecards in most modern
routers. For simplicity, we assume that there is a 1-1 mapping between
router linecards and links. For this purpose, we define a transformation
on the original graph G = (N;E) that represents the actual network.
Let the transformed graph be G0 = (N 0; E0), where N 0 and E0 are
defined as follows

N
0 = fevujevu 2 Eg (18)

E
0 = f(evu; euw)j(evu 2 E ^ euw 2 E)g (19)

Thus, the nodes of the transformed graph G0 are the directed edges of
the network graph G. The edges of the transformed graph represent
common nodes between edges in the original graph. Two edges in the
original graph have a common node iff the head of the first edge is the
tail of the second edge. It is easy to see that any node evu in N 0 has an
outdegree Z(u), and an indegree Z(v). The generalized degree Z(e)
of the node e = evu is defined as

Z(e) = Z(evu) =
Z(u)

cvu
(20)

We denote the maximum generalized degree of a node in G0 as Zmax.
A network graph and the corresponding transformed graph are shown

in Figures 1(a) and (b), respectively. Each square box in the trans-
formed graph corresponds to an edge in the original graph. The edges
in the transformed graph obey the rules in (19). The circles in Fig-
ure 1(b) are the nodes from the original graph that have been super-
posed — they are not part of the transformed graph. The dotted lines
connect a superposed node to each of its outgoing edge nodes in the
transformed graph.

Next, we define a matrix operator A on the transformed graph G0 as
follows

Avu;xw =

�
1

cvu
if u = x

0 if u 6= x
(21)

The matrix element between the node evu and the node euw is the
inverse of the cost metric for the edge evu in the original network
graph.3 Note that this matrix A is not symmetric.

We are now ready to define a traffic potential �vu on each node evu
of the transformed graph G0. This means that the traffic potential is
3If there are multiple edges connecting v to u, there will be separate
rows in A for each such edge.

really defined on every edge evu of the original network graph G. We
require that the traffic potential at each node evu inG0 be the maximum
of qvu and the solution to the discrete laplace’s equation (see [17])X
w2nbr(u)

Avu;uw(�uw � �vu) + (Zmax �Z(evu))(0��vu) = 0

(22)

The physical interpretation of the second term in the sum is that
for every vertex evu on the new graph G0 with generalized degree
Z(evu) � Zmax, there are Zmax � Z(evu) ghost nodesconnected
to evu with edges of unit cost. We require that the value of the scalar
field at these ghost nodes is zero, which defines the boundary condi-
tions for the discrete laplace’s equation above. The equation (22) then
has a unique solution (see [14] for a proof).

We now present a more intuitive picture of the traffic potential. The
traffic potential function corresponds to the surface of a taut elastic
membrane that covers the network like a tent. The queues on the links
can be thought of as vertical poles that hold up the membrane, which is
“pegged down” at the ghost nodes. This implies that the tent surface is
“propped up” by the larger queues and the smaller queues do not touch
the tent surface. Hence the potential at a node evu in the transformed
graph is the larger of the solution to equation (22) and the normalized
queue length on the edge evu in the original network graph. More
formally,

�vu = max

0
@ 1

Zmax

X
w2nbr(u)

Avu;uw�uw; qvu

1
A (23)

Let r(v) be the ratio of the maximum link cost metric to the minimum
link cost metric among all the outgoing links adjacent to node v. Then,
we can define the potential �v at a node v in the original network graph
as

�v = max

0
@ 1

Z(v)

X
w2nbr(v)

�vw;
r(v)�max +�min

r(v) + 1

1
A (24)

where �max is the maximum traffic potential on an outgoing link ad-
jacent to node v, and �min is the minimum. In other words, the traffic
potential on any node in the original network graph G is the maximum
of two quantities — the average of the potentials on the outgoing edges
of the node, and a weighted average of the maximum and minimum
potentials on the outgoing edges of the node.

2.4 PBTA — Traffic-Aware Routing with Poten-
tials

We now describe how to route packets on the network graph using
the traffic potential. Consider a packet p at node v with destination d.
We define an effective potential on the graph that combines the effect
of traffic load with the standard shortest path routing algorithm. The
value of this potential at node v given by

V(v) = (1� �)V (Dvd) + ��v (25)

and its value on the edge evu given by

V(vu) = (1� �)V (Dud) + ��vu (26)

where V is the shortest distance potential function defined in equation
(6), and �vu and �v and defined by the equations (23) and (24). The
parameter � (0 < � < 1) sets the relative weights of the traffic po-
tential � and the shortest distance potential V . We can then define a
“force” on the packet p at node v towards a neighbor u 2 nbr(v) as

Fv!u =
V(v)�V(vu)

cvu
(27)
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This equation can be rewritten as

Fv!u = (1� �)Fspp(v; u) + �Ft(v; u) (28)

where Fspp(v; u) =
V (Dvd)�V (Dud)

cvu
is the shortest path component,

and Ft(v; u) = �v��vu
cvu

is the traffic component. The packet at v is
then transmitted on the the edge evw towards which the total force is
maximum and positive.

2.5 Properties of the routing Algorithm
If the traffic patterns (and hence, the queue sizes) are stationary, and

the network topology does not change, then the single valued potential
function V is time invariant. Thus, by Theorem 2.1, the PBTA algo-
rithm is loop free. We address the issue of dynamic traffic patterns in
Section 2.6.

We now show that the PBTA algorithm is stable. Following [26], we
define stability to mean that no single queue length grows unbounded
independently. The stability property ensures that the network load is
evenly distributed — no single queue is allowed to become a bottle-
neck. To prove this property, we first prove the following lemma.

LEMMA 2.7. Let the potential function for shortest path be of the
formV (x) = ax + b; a > 0. Then,jFspp(v; u)j � a for any pair of
nodesv; u such thatu 2 nbr(v).

Proof: From the definition of Fspp(v; u), we know that

Fspp(v; u) =
V (Dvd)� V (Dud)

cvu
(29)

From Corollary 2.5, we know that Fspp(v; u) � a. Furthermore, we
know by the shortest path property (applied to node u) that

Dud � cuv +Dvd (30)

Using the fact that cuv = cvu, we have

�1 �
Dvd �Dud

cvu
(31)

This, together with equation (29), and the fact that V (x) = ax + b

implies that

�a �
V (Dvd)� V (Dud)

cvu
= Fspp(v; u) (32)

Therefore jFspp(v; u)j � a.

THEOREM 2.8. The queue length on any single link never grows
without bound independently.

Proof: We prove this by contradiction. Consider a link evu that has the
largest queue length, say qmax. Let qmax be much higher compared
to the queue length qwx on any other link ewx such that the resulting
traffic potential at all links except evu satisfy the condition �wx >

qwx. Thus qmax is large enough such that no other queue besides
itself has any effect on the traffic potential.

To add to the queue length qmax on link evu, packets must be sent
along the link evu by node v to some destination d (say). Now, we
know that

Fv!u = (1� �)Fspp(v; u) + �Ft(v; u) (33)

as defined earlier. We observe that Ft(v; u) is really the slope of the
surface corresponding to the traffic potential field. The force Ft(v; u)
from v to u must be negative since the largest queue lies in the di-
rection from v to u. Hence, the maximum value of Ft(v; u) is given
by

Ft(v; u) � �
qmax

Dmax

(34)

where Dmax is the maximum shortest path distance between any two
nodes in the network. Combining equations (33) and (34), we have

Fv!u � (1� �)Fspp(v; u)� �
qmax

Dmax

(35)

Using Lemma 2.7, we have

Fv!u � (1� �)a� �
qmax

Dmax

(36)

Thus, if qmax >
�
1��
�

�
aDmax, then the net force from v to u is

negative. This means that every packet is directed away from the queue
from v to u when the queue grows sufficiently large. Therefore, no
queue on the network can grow unbounded independently.

Finally, we show that the effective potential field has no minima.
This implies that no packet ever gets stuck at any node except the des-
tination.

THEOREM 2.9. There is no nodev in a graph (except the ghost
nodes) where the force on a packet due to the combined shortest path
and traffic potentials is negative in all directions.

Proof: Consider a node v in the network graph that is not a ghost
node. Let the shortest path potential function V be of the form V (x) =
ax+ b; a > 0. By definition, and using equation (27), the force from
v in the direction of evu is

Fv!u = (1� �)Fspp(v; u) + �Ft(v; u) (37)

Now consider the shortest path direction. It is possible to show that if
u is the next hop node in that direction, we have

Fv!u = (1� �)a+ �Ft(v; u) (38)

If this force is positive, v is not a local minima. Otherwise, we have

(1� �)a+ �
�v � �vu

cvu
< 0 (39)

Since (1 � �)a is positive, the second term must be negative, and we
have

(1� �)a < �
�vu � �v

cvu
(40)

Now consider the link evw such that

�vw = min
x2nbr(v)

�vx = �min (41)

Then the total force in the direction of evw is

Fv!w = (1� �)Fspp(v; w) + �
�v � �min

cvw
(42)

Using Lemma 2.7, we can show that

Fv!w � �(1� �)a+ �
�v ��min

cvw
(43)

Using equation (40), the definition of r(v), and the definition of �v ,
we have

�(1� �)a+ �
�v � �min

cvw

> �

�
�v � �min

cvw
�

�vu � �v

cvu

�

>
�

cvw
((�v � �min)� r(v)(�vu � �v))

� 0

Therefore, the force Fv!w is positive, and v is not a local minima,
which proves the theorem.
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2.6 Stability Issues
Earlier, we have proved that the PBTA algorithm is stable (implic-

itly) assuming that the queue length information is instantaneously
available at all nodes whenever a change occurs. In other words, the
stability properties that we have proved may not hold if network nodes
have stale (queue length) information. Since the packet propagation
delay across a network is finite, it is possible that very rapid changes
in queue lengths will cause instabilities in the routing algorithm. How-
ever, in our simulations (described in Section 4), we have observed that
the PBTA algorithm continues to be stable. We now provide some
physical arguments as to why this is the case.

The nature of the PBTA algorithm is such that the effect of a large
queue on the traffic potential is spread out over the neighbors of the
queue. Consider, for instance, a graph with nodes on a regular square
lattice, with exactly one queue of size q. Then, the scalar field � at a
point at distance d from the queue satisfies � � q ln(1

d
). Similarly,

for a regular cubic lattice, we have � � q
d+1

. Thus, at least for regular
graphs, we see that the scalar potential � due to a queue decays slowly
with distance from the queue. While it is difficult to compute such
expressions for arbitrary graphs, we postulate that the nature of the
decay is qualitatively the same. A slow rate of spatial decay means
that a large queue will influence the shape of the potential surface even
at points that are not in the immediate neighborhood.

Following the tent analogy, the large queues are the high “poles” that
poke into the taut elastic tent fabric, propping it up and determining the
shape of the surface. In contrast, smaller queues (i.e. queues for which
qvu < 1

Zmax

P
w2nbr(v) Avw;wx�wx) do not touch the tent fabric

and therefore have no effect on the contour of the potential surface.
We also observe that the relative changes in large queues occur at a

slow rate — more specifically, for a large queue of size q, �q
q

changes
slowly since q is large. Thus, we can say that the shape of the potential
surface is almost wholly determined by the large queues, which change
relatively slowly.. For the most part, we have observed that the rate
of this change is slower than the mean packet (carrying queue length
information) propagation delay across the network.

Furthermore, the flooding optimizationdescribed in Section 3 shows
that the network can (in effect) be partitioned into “sub-domains”. A
key property of such a partition is that the queue lengths on links
outside the sub-domain do not affect the traffic potential field inside
the sub-domain. Given that a sub-domain is typically smaller than
the whole network, the mean packet propagation delay across a sub-
domain is much smaller than the time required to flood queue length
information across the whole network. Hence, it is even more unlikely
that the shape of the potential surface changes faster than it takes for a
packet (containing queue length information) to traverse a sub-domain
(on an average). In other words, it is very improbable that the traffic
potential field computed using (possibly stale) queue length informa-
tion at a node would be significantly different from the field computed
with the latest queue length information. Therefore, it is highly un-
likely that the PBTA algorithm will exhibit instability.

In summary, we note that a key requirement for the PBTA algorithm
to be stable is that the traffic potential surface changes slower than the
time it takes for a packet to traverse a sub-domain. While this could
be viewed as a limitation, we have informally argued above that for
most realistic network scenarios, such is not the case. This is reflected
in our simulations, which show stable performance even in the face of
stale queue length information. Of course, a more formal analysis of
the regimes where the PBTA algorithm is stable for arbitrary network
topologies and traffic matrices is intractable.

2.7 Other Traffic-Aware Routing Algorithms
It is possible to define other traffic-aware routing algorithms as al-

ternatives to the PBTA algorithm. However, we are not aware of any

such algorithm that provides the following key benefits:

� Provable stability properties — no single queue height diverges
independently when the PBTA algorithm is used. As we have
argued in Section 2.6, the stability properties hold in a dynamic
setting so long as the mean packet propagation delay within a
“domain” is smaller than the rate at which the potential surface
within a domain changes.

� We provide a physicalcriterion for deciding which queue lengths
are relevant for the route computation process, without using any
heuristic rules. Consequently, we are able to develop a flooding
optimization (see Section 3) that limits the regions over which
queue length information has to be propagated. This reduces
overheads significantly without compromising performance.

We provide a more concrete illustration of the advantages of the PBTA
algorithm by comparing it to a heuristic that uses shortest path routing
where the link metrics are set to be proportional to the queue lengths
on the links. A detailed analytical examination of the properties of
this heuristic is beyond the scope of this paper. However, qualitatively
speaking, the queue length based approach has the following disad-
vantages:

Bottlenecks. Since the link metrics in shortest path computations
are additive, a path with many medium queues may be rejected in fa-
vor of a path with mostly small queues and a single large one. This
means that individual links may become bottlenecks causing the cor-
responding queue lengths to diverge independently. In contrast the
PBTA algorithm is able to distribute the network load more evenly
over all queues.

Avoiding Congested Areas. The queue length algorithm deter-
mines the link metrics based solely on the queue lengths on the link,
and does not take into account neighboring links. Consequently, pack-
ets may avoid congested links by minimal deviations around them.
Therefore, the packets do not avoid areas of congestion from far enough
away (as in the PBTA algorithm, where the effect of large queues can
be felt far enough away). As a result, large queues on congested links
can take longer to drain, causing bottlenecks to last longer.

2.8 Limitations
We now discuss some limitations of the PBTA algorithm. The first

limitation is related to how fast the senders transmit packets. Clearly,
if the sending rates are low compared to the link capacities, queues do
not build up significantly. Therefore, no significant improvements in
end-to-end delays is observed. On the other extreme, if sending rates
are extremely high compared to link capacities, it is possible that all
links in the network get saturated, and there are no alternate paths left
for packets to traverse. In such a case also, the PBTA algorithm fails
to improve performance. While it is difficult to estimate (for arbitrary
network topologies) the range within which the improvements shown
by the PBTA algorithm are significant, we have actually been able to
verify this using simulations.

The second limitation relates to the nature of end-to-end delays. We
know that the PBTA algorithm improves performance by attempting
to route around large queues in the network. Therefore, significant
improvements in end-to-end delays will not be observed in networks
where queueing delays are very small compared to link latencies, such
as in satellite networks. Furthermore, if the link propagation delays
are very long, the routing algorithm may not be able to adapt to chang-
ing network conditions fast enough, thereby causing instabilities (see
Section 2.6 for details).

Finally, if the network graph is sparsely connected (a linear graph in
the worst case), the PBTA algorithm does not perform any better than
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the standard shortest path algorithm. This is because typically, there
are no alternate paths to the destination. In some cases it is possible
that there is a bottleneck link which mustbe traversed in order to get
to the destination, i.e., a cut-edge connecting two biconnected com-
ponents. In such a case, if the link has a very high queue size, there
are two possible alternatives for a packet wishing to traverse the link.
The first possibility is to add to the queue irrespective of its size, and
potentially get dropped. The other possibility is to go into a “holding
pattern” (by traveling in some other direction away from the destina-
tion) till the bottleneck queue drains. In practice, the choice of the
alternative depends on the setting of �, the maximum queue size, and
the TTL (time to live) parameter of a packet. These can be tuned to
achieve the desired behavior.

3. Implementation
In this section we describe our implementation of the PBTA algo-

rithm using the nssimulator and elaborate on some of the implementa-
tion issues that arose. The ns-based implementation is used to evaluate
the performance of the PBTA algorithm in the next section.

The implementation of the PBTA algorithm is based on a link-state
routing protocol (such as OSPF [19]). Routers running a link-state
protocol compute routes to different destinations based on information
obtained from a link-state database. Each router (i.e., network node)
has a copy of the link-state database that reflects the state of the net-
work — the copies of the link-state database at the different routers are
kept consistent by the routing protocol. Whenever the network state
changes (for example, if a link fails), the network node that detects
the change floods this information across the entire network by encap-
sulating it in a link state advertisement packet (or LSA). When new
information is received, a network node recomputes routes to various
destinations (typically) using a shortest path algorithm.

Our implementation modifies both the route computation algorithm
and the information dissemination process. The route computation al-
gorithm uses the link metric information and the queue length infor-
mation in the link state database to compute routes, as described in
Section 2.4. The information dissemination process propagates queue
length information in addition to other link-state information. This
raises three main issues: when and how frequently are link state up-
dates (especially, queue length updates) sent out, how is the parameter
� (the parameter that assigns the relative weights of the shortest path
and traffic potentials) determined for a network, and how far is a given
link state update (carrying queue length information) propagated.

Frequency of Update Information. The link-state update pro-
cess is “trigger-based”. Whenever a link/node failure or recovery oc-
curs, a new LSA is flooded across the network. In addition, each node
monitors the queue length associated with each of its outgoing links.
An LSA is sent out whenever the relative change in queue length ex-
ceeds a pre-configured threshold value, qf , where 0 < qf < 1.

In addition, when a link state update is scheduled for transmission,
the packet encapsulating it is always placed at the head of the appropri-
ate outgoing queue. Thus, control packets are given priority over data
packets in the implementation. This ensures that LSAs are dissem-
inated across the network in a timely manner without being slowed
down by heavily congested queues. Such a practice is fairly common
in modern routers.

Configuring �. The setting of � is more involved. Obviously, �
depends to some extent on the network topology. We now describe a
criterion that can be applied without detailed knowledge of the network
topology.

Let the shortest path distance between maximally separated nodes
in the graph be Dmax. In response to a change �q at the queue q on

(a) (b)

Figure 2: Choice of �: (a) shows a potential surface when � is low – the
SPP metric has more significance here which is reflected by the higher tilt
of the plane. (b) shows a potential surface when � is high — the tilt is
lower since the traffic potential has more significance. The dark line on
each surface shows a route avoiding the high peaks, which are areas of
high congestion.

link e, the force due to the traffic potential at a neighboring node u will
change at least by

�F � �
�q

Dmax

(44)

This worst-case scenario is achieved if the graph is effectively one-
dimensional. For example, in an effectively two dimensional graph,
we have a smaller change in F given by �F � � �q

Dmax lnDmax
.

Using equations (25) and (26), we can conclude that the maximum
force is totally dominated by the traffic component (no matter what the
shortest path related potential is) if

�F � �
�q

Dmax
� (1� �) (45)

This means that the packets can get routed in a fashion that tries to
avoid large queues as much as possible, without any regard to what the
shortest path is. Hence, � should be set such that � �q

Dmax
� (1 � �).

We therefore choose � to be

� = �0 �
Dmax

�q +Dmax
(46)

where 0 < �0 < 1 is an initial value that is scaled by a factor given
by the rest of the expression in (46). In our implementation, we set
�0 = 0:33. The effect of choosing different values of � on the po-
tential surface is shown in Figure 2. In our simulations we found that
for a large variety of networks, �0 can take on values over a fairly
wide range (between 0 and 1) and still provide (close to) optimal per-
formance. Therefore, it does not seem necessary to carefully tune the
initial value �0 by trial and error for a given network.

Distributing the Update Information. We now describe a way
to reduce the control overheads by restricting how far a particular
queue length update is sent from the originating node. We call this
optimization the flooding optimization.

To understand qualitatively why such an optimization works, con-
sider the behavior of the traffic potential � due to the queue on some
link e. As explained earlier (see Section 2.6), this potential � decays
(albeit slowly) with distance d from the actual queue. If indeed, as we
postulate earlier, this decay obeys the power law, we can say that the
change in traffic potential �� at a distance d from the queue whose
length has changed by �q scales as �q

d

. Thus, the change in force �F ,

derived from the expression in equation (27) is given by

�F � (1� �)C + �
�q

d

(47)
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queue

pdate source

Figure 3: The shaded area represents the sub-domain to which the update
source sends information about the queue length. This is more efficient
than flooding, which would require the queue length information be sent
to every network node.

where the first term is due to the shortest path potential. From Lemma 2.7,
we know that jCj � a, where the shortest distance potential V is of
the form V (x) = ax+ b; a > 0. Thus, beyond a distance

dmax(�q) �

�
�

�q

a(1� �)

� 1



(48)

the scale of the force due to the traffic potential becomes smaller than
the scale of the force due to the shortest path potential, and hence does
not affect the route computation any more. Therefore, the changes in
the queue information do not have to be transmitted to the nodes on the
graph beyond dmax. This distance decreases with decreasing value of
�. Thus, the graph is divided into (�-dependent) sub-domains and the
exchange of traffic information is localized among nodes in the same
sub-domain (see Figure 3).

In our implementation, we simplified this process as follows. Each
node that detects that the relative queue length has changed by more
than qf , sends an update to each of its neighbors. Every neighbor
(i.e., all the nodes that are one hop away from the origin of the up-
date) recomputes its routing table using the new information. If there
are no changes in the routing table, the update is suppressed — this
is the boundary of the current sub-domain. Otherwise, the update is
forwarded, and the process repeats. Note that the topology related up-
dates are flooded across the entire network.

The intuition behind neversuppressing queue length updates at the
source of the update is as follows. Consider a network that has exactly
one link with a very large queue. Let the set of nodes adjacent to this
bottleneck link be S. Since the other queues in the network are much
smaller, the shape of the potential surface is exclusively determined
by the bottleneck queue. Thus the potential at every node v 2 S is
dominated by the traffic component, and is higher than at any node
u 62 S. As the bottleneck queue keeps growing, none of the nodes v 2
S will observe any changes in their routing table, being at the highest
points in the potential surface (such that everything appears downhill
from there). If all the nodes v 2 S were to suppress their update
packets, then none of the nodes u 62 S would receive information
about the congested link. Hence, they would continue to route packets
through the congested link.

Computational Complexity. At every update, for a network with
jN j nodes and jEj edges, the computation of the shortest path related
potential takes O(jN j3) time using the Floyd Warshall “all pairs short-
est path” algorithm [1]. The computation of the traffic potential at the
node receiving the update takes O(jEj) time [22].

Topology related updates that require recomputation of shortest paths
are infrequent. Queue length updates are more frequent, but are sub-
ject to the flooding optimization. The computation time for the field
� is an overestimate because we assume that the initial value for the

iterative process is � = 0 everywhere. With every update, we do not
expect � to change drastically. Hence, the solution should converge
faster when initialized with the previous values (i.e., before the update
occurs) of � .

The computation time at a node v is further reduced because the
solution for � does not need to converge beyond a distance dmax(�q)
from v (since beyond that distance, queues do not affect the traffic po-
tential). Thus at every update, if Nd is the typical number of edges
connected to nodes within the radius dmax(�q) of node v, the compu-
tation time should be O(Nd) which is smaller than O(jEj).

Finally, we consider the issue of storage space. As explained earlier
in Section 2.4, the force exerted on a packet at node v towards node u
has two components: the traffic component (Ft(v; u)) and the shortest
path component (Fspp(v; u)). To compute Ft(v; u), each node must
know the queue lengths on each of the edges in the network — this re-
quires O(jEj) storage. To compute Fspp(v; u), each node must know
the routing tables of all its neighbors, along with its own. This requires
O(Z(v)jV j) storage, where Z(v) is node degree. Thus the total stor-
age required is O(Z(v)jV j+ jEj).

4. Performance Evaluation
In this section, we evaluate the performance of the PBTA algorithm

using simulations. The simulations were performed using the network
simulator ns [20]. We used three different network topologies and
both constant bit rate (CBR) as well as bursty traffic sources. We first
describe the network topologies, followed by the experimental results.

4.1 Network Topologies
In order to evaluate the PBTA algorithm, we use three different net-

work topologies. The characteristics of each topology are summarized
in Table 1. The first two topologies were generated using the BRITE
topology generator [18], and the third topology is based on a real ISP
topology. In each case, we only used a single-level hierarchy of routers
(i.e., a single AS consisting of multiple routers) since we envision our
algorithms to be useful for intra-domain routing.

The first topology, labeled WAX , was generated using the Wax-
man [29] model, with randomly placed nodes on a 2-dimensional plane.
Nodes were added incrementally, with each new node connecting to 2
existing nodes. The values of the Waxman-specific � and � parameters
were set to 0.15 and 0.2, respectively.

The BA topology was generated using the Barabasi-Albert model [4].
This model postulates that a common property of large networks is
that the vertex connectivities follow a scale-free power-law distribu-
tion. As before, the nodes for the BA topology were randomly placed
on a 2-dimensional plane, with each new node connecting to 3 existing
nodes.

Finally, the ISP topology is based on the network topology of a real
Internet Service Provider (ISP). Owing to scaling limitations of ns, we
have only used a representative subset of the entire topology. This
subset consisted of all the nodes in the core of the ISP network. The
nodes at the edge were removed since there was little redundancy in the
topology near the edges. Furthermore, we have slightly modified the
topology for reasons of confidentiality. For uniformity of comparisons,
we have set the link cost metrics to 1, the link bandwidths to 1Mbps
and the delays to 5ms in all the three topologies, even though the link
costs, bandwidths and delays in the ISP topology were not identical
for all the links.

Experimental Methodology. We ran simulations over all the three
network topologies shown in Table 1. In each case, half of the nodes
sent traffic to the other half for 60 seconds. During this time, the
sender-receiver node-pairs were chosen at random and changed ev-
ery 10 seconds. The simulation then continued till all the data packets
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Label Nodes Links Type BW Delay
WAX 35 70 Waxman 1Mbps 5ms
BA 35 99 Barabasi-Albert 1Mbps 5ms
ISP 28 56 real ISP 1Mbps 5ms

Table 1: The three network topologies that were used in the simulation
experiments.

in transit reached their destinations. By choosing the sender-receiver
node-pairs in this fashion, we were able to ensure that the generated
traffic was not restricted to some specific part of the network topology.
Therefore, the routing algorithms were not able to leverage the spe-
cial characteristics (if any) of a specific part of the network to improve
the end-to-end packet delays and jitter. For the rest of this section,
we refer to the set of source-destination pairs (randomly) selected for
generating traffic in this manner as the set of viablesource-destination
pairs. For all these experiments, we set �0 to 0.33 and qf (trigger for
queue length update LSAs) to 0.9. Finally, the relative change in queue
length was computed as jcurr�lastj

last
, where curr is the current queue

length and last is the queue length the last time an LSA was sent out.
To bootstrap this process, the first queue length update packet was sent
out when the queue length exceeded 90000 packets for the first time.

To compare the performance of the PBTA algorithm to the stan-
dard shortest path algorithm, we ran the simulations after setting the
maximum queue size at each network node to infinity. In other words,
the queues at each node were allowed to grow without bounds. This
enabled us to make meaningful comparisons between the delay (or jit-
ter) values for viable source-destination pairs when the two different
routing schemes are used.

Note that if the maximum queue sizes were set to some finite value
apriori, the end-to-end delay under heavy load would max out at some
function of this maximum value. Once this happens, it would no longer
be possible to fairly compare the delay and jitter values generated by
the two routing schemes. Of course, in such cases, the packet loss
rate would be a good indicator of performance. We first focus on the
end-to-end delay and jitter metrics — loss metrics are discussed later.

Once the per packet data was obtained for each network using simu-
lation runs, we computed the average delay and jitter for all the viable
source-destination pairs for both the PBTA algorithm and shortest path
routing. The same set of (randomly chosen) source-destination pairs
were used in all the experiments. The average delay and jitter data
for each network were then converted to two scatter plots, one for de-
lay and the other for jitter. We discuss the performance of the PBTA
algorithm for both CBR and bursty sources in the next subsection.

4.2 Performance Analysis

CBR Traffic. We first show the performance data for constant bit
rate (CBR) traffic. We tested each of the three networks with 5 differ-
ent sending rates — 0.5Mbps, 0.8Mbps, 1Mbps, 1.2Mbps, and 1.5Mbps.
We show the data for a subset of these data rates in Figures 4(a) through
(f).4 Each graph represents either the mean end-to-end delay or jitter
for one of the three topologies in Table 1. The Y-axis (labeled SPP)
shows the mean delay (respectively, jitter) for shortest path routing,
and the X-axis (labeled PBTA) shows the mean delay (respectively,
jitter) for the PBTA algorithm. Each point in the graph represents a vi-
able source-destination pair for the given topology. The Y-coordinate
of the point indicates the mean delay (or jitter) for shortest path rout-
ing and the X-coordinate indicates the value of the same metric for the

4We were able to run the simulations for the BA topology for a max-
imum sending rate of 1Mbps. For higher data rates, ns ran out of
memory.

PBTA algorithm. The diagonal line indicates the break-even point,
where the average delay (or jitter) for the PBTA algorithm is the same
as that for shortest path. The sector above and to the left of the diag-
onal denotes the regime where the PBTA algorithm outperforms the
shortest path algorithm.

The scatter plots show that a large majority of points lie above the
diagonal for each data rate shown. Therefore, we can conclude that for
the majority of the viable source-destination pairs in each network, the
PBTA algorithm outperforms the shortest path routing scheme with re-
spect to both delay and jitter. As the sending rate increases, the PBTA
algorithm typically performs better than shortest path routing. This is
because at low sending rates, there is not enough queue buildup in the
network for the PBTA algorithm to really differentiate itself.

Bursty Traffic. We now come to the bursty traffic scenario. For
this we used the same scenario as in the CBR experiments, except that
the traffic sources sent out traffic using a Pareto distribution instead
of at a constant rate. The Pareto distribution has been shown to be
a good approximator of Internet traffic which is inherently bursty in
nature [21]. The sources in our experiments sent out traffic in bursts
for 800ms (“on” time) followed by 200ms of no traffic (“off” time).
The three burst rates used were 1.5Mbps, 1.2Mbps and 1.0Mbps, and
the value of the shape parameter was set to 1.4 (it must lie between 0
and 2).

The results are shown in Figures 5(a) through (c). This time, we
only present the mean end-to-end delay times due to lack of space. The
improvements in jitter numbers are similar. We find that with bursty
traffic also, the performance improves for all the three networks. We
conclude that the PBTA algorithm can potentially improve end-to-end
delay and jitter if deployed in the Internet.

Interaction with TCP. One of the interesting aspects of the PBTA
algorithm is that it may route different packets belonging to the same
traffic flow5 over different paths in the network. This can happen if
some link along the current path gets congested and the routing com-
ponent chooses a different path. Consequently, packets may arrive at
the destination out of order.

Such an event may be detrimental for congestion control algorithms,
notably TCP, that use out-of-order packet arrivals as a sign of conges-
tion. Whenever a TCP receiver gets an out-of-order packet, it sends a
duplicate acknowledgment to the sender. If the sender receives three
duplicate acknowledgments in a row, it considers this as a sign of
congestion and goes into congestion avoidance mode or slow start
mode [25]. As a consequence, the sending rate gets reduced.

Clearly, this could be a serious problem with the PBTA algorithm
(and the PB-routing paradigm in general) since the algorithm depends
on finding alternate paths for routing packets (possibly belonging to
the same flow) in order to avoid congestion. In order to determine the
effect of packet re-ordering, we performed experiments on all three
networks using TCP sources. In each case, we ran an FTP sender
over TCP that sent out back-to-back packets to its destination. The
source-destination pairs were chosen at random and changed every 10
seconds for a total of 60 seconds, as in the previous two experiments.
We then computed the number of packets that arrived out of order at
their destinations. The results are shown in Table 2.

From the results, we observe that the percentage of packets that ar-
rive out-of-order is very small. Hence we do not expect the PBTA
algorithm to pose severe penalties in terms of bandwidth utilization
due to packet re-orderings in individual TCP flows. In that sense, the
PBTA algorithm (or more generally, the PB-routing paradigm) can be
described as compatible with TCP.

5We assume that packets belonging to the same traffic flow have the
same source/destination address/port numbers as well as protocol ID.
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Figure 4: Performance Numbers: (a) through (c) show the mean end-to-end delay times for various sending rates using CBR traffic, (d) through (f) show
the jitter in the end-to-end delay times for various sending rates using CBR traffic.

Network Total packets Out-of-order % of out-of-order
packets packets

WAX 78677 102 0.13
BA 100880 102 0.10
ISP 69341 84 0.12

Table 2: Number of out-of-order packets received when the PBTA algo-
rithm is used with TCP traffic sources.

Control Overhead. The PBTA algorithm requires the dissemina-
tion of queue length information across the network. This information
is used to compute the traffic related potential on each link and node,
as shown in Section 2.3. The less stale this information is, the more
accurate is the route computation. Thus, there is a tradeoff between the
quality of the computed paths (and hence end-to-end delays and jitter)
and the frequency of queue length updates which translates to control
overheads.

In Section 3, we proposed a flooding optimization that reduces the
control overhead without compromising end-to-end delays and jitter.
To determine how effective our flooding optimization is, we estimated
the control overheads by computing the ratio of the number of routing
protocol packets that are sent out to the number of data packets that
reach their destination (in the experiments described earlier). During
flooding of LSAs, each leg in the flooding was counted as a separate
control packet. The control overheads for the optimized algorithm are
shown in Table 3. We see that the control overheads typically vary
between 2 and 4%. We also note that the control overheads mostly
decrease as the data send rate increases. This is because the triggering
process uses relative changes in queue lengths to send updates. Hence,
as the sending rates increase, the queue lengths increase, and the up-

Topology/ CBR Pareto
Rate

WAX 1.5Mbps 2.37% 2.95%
WAX 1.2Mbps 2.72% 3.20%
WAX 1.0Mbps 3.06% 3.72%
BA 1.2Mbps NC 3.69%
BA 1.0Mbps 3.12% 4.00%
ISP 1.5Mbps 2.22% 2.66%
ISP 1.2Mbps 2.65% 2.97%
ISP 1.0Mbps 2.65% 3.09%

Table 3: Control overheads as a percentage of successfully received data
packets. These numbers are for the optimized flooding algorithm. NC
stands for not complete, i.e., ns ran out of memory.

dates go out less frequently. In other words, the rate at which updates
get sent out by the triggering process increases much more slowly than
the sending rates. Finally, the overheads for the bursty traffic sources
are slightly higher than that for the CBR sources — this is to be ex-
pected since bursty sources cause more unpredictable changes in traffic
patterns than CBR sources.

The effect of the flooding optimization is shown in Figure 6 for
the bursty traffic sources only. For each topology, we have shown
the comparison figures for the highest sending rate for which ns was
able to complete execution in the non-optimized case without running
out of memory. We see that there is a 7-fold improvement in terms
of the percentage of control packets while the improvements in the
delay and the jitter times were similar in both cases (the delay and the
jitter data for the unoptimized case are not shown here due to lack of
space). We point out here that all the previous results were shown for
the optimized version of the PBTA algorithm.
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Figure 5: (a) through (c) show the mean end-to-end delay times for the three networks using a Pareto traffic generator.
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Figure 6: The effect of the flooding optimization on control overheads for
bursty sources. The bars show the percentage of control overheads in both
the optimized and the unoptimized cases.

We also note that these results indirectly indicate that for any net-
work node v, the routes to destinations that are distant change much
less frequently than routes to destinations that are close by. In other
words, route fluctuations are confined to destinations that are close to
v and thereby improves the stability of routes.

Packet Loss Rates. Finally, we estimated the effect of the PBTA
algorithm on packet losses in the network by running simulations on
all the networks using both CBR and bursty traffic sources. The queue
size for each scenario was set to 10000 packets. In Table 4, we show
the results corresponding to the maximum send rates for which we
could run ns without running out of memory. The numbers in the ta-
ble show the ratio of the number of packets dropped using the shortest
path algorithm to the number of packets dropped using the PBTA al-
gorithm. We see that the number of packets dropped improved by a
factor of 3 to 5 when the PBTA algorithm was used. The improve-
ment factor is approximately the same for both CBR and bursty traffic
for all the three topologies.

Summary. We have shown that the PBTA algorithm produces sig-
nificant improvements in end-to-end delay, jitter, and packet loss rates,
has very reasonable control overheads, and reorders a small fraction of
TCP packets. These characteristics make the PBTA algorithm an at-
tractive alternative for routing in the future Internet.

5. Related Work
The steepest gradient search method [23] has been well studied in

the past. This method has been extensively used for optimization prob-
lems and has had applications in such diverse disciplines as path plan-
ning in robotics [8, 15], artificial intelligence [30], and monte-carlo

Topology Rate CBR Pareto
WAX 1.2Mbps 3.03 3.00
BA 1.2Mbps 4.81
BA 1.0Mbps 5.00
ISP 1.2Mbps 3.14 4.44

Table 4: Loss rate improvements for the three topologies. All sending
rates were 1.2Mbps, except the CBR rate for the BA topology, which was
1.0Mbps (ns ran out of memory for the 1.2Mbps rate). The table shows the
factor by which the number of dropped packets went down.

simulations in statistical physics [6]. The basic idea in steepest gra-
dient search is to optimize a (non-linear) function by evaluating the
function at an initial point and then moving towards an optimal point
by executing small steps in the direction of the steepest gradient. In our
work, we have adapted this method to identify the direction in which
to route packets in a data network such that highly congested areas in
the network are avoided. This is accomplished by assigning carefully
designed potentials based on traffic experienced at a network node.

The area of traffic-aware routing (i.e., routing techniques that take
into account traffic conditions) has also been studied extensively both
from both practical and theoretical perspectives. One practical ap-
proach [2] uses probe packets to estimate delays and loss rates that are
used to compute long term averages of these metrics. These averages
are then used to route packets over paths with low delays and/or loss
rates. A different method is to use emergency exits [28] where, on en-
countering congestion, a packet is routed along a previously computed
alternative path to the destination.

Another work has proposed the idea of splitting the traffic into long
lived and short lived IP flow patterns [24]. Traffic-aware (or load sen-
sitive, as this work calls it) routing is used only for the long lived flows.
Such a technique improves the stability of the routing algorithm and
the allocation of resources for long lived flows. This is achieved by pe-
riodic (but rare) distribution of link-state updates that limits the control
overheads. We believe that it is possible to use PB-routing in conjunc-
tion with the methods described in this work to route the long lived
flows.

From a theoretical perspective, almost all of the algorithms that have
been developed require a point-to-point traffic demand matrix to be
specified. One class of algorithms uses link utilization as a measure
of traffic and attempts to minimize the maximum (or worst-case) link
utilization, given a set of point-to-point traffic demands. These algo-
rithms are known as “maximum concurrent flow” algorithms for which
both exact [1] and approximate [9, 11] solutions are known.

Other algorithms have attempted to minimize end-to-end delay mod-
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eled as a convex function of traffic. One of the earliest works in this
area was Gallager’s minimum-delay routing algorithm [5]. Modifica-
tions to this work assume minor fluctuations of traffic about an other-
wise “equilibrium pattern” [3, 27]. A similar work in this area [16]
uses a closed queueing model to optimize network delays.

A different technique is to reduce delay (and congestion) by assign-
ing static OSPF link weights based on a known traffic demand ma-
trix [10]. All of the algorithms that optimize delay assuming known
(and static) traffic patterns can be shown to be optimal (or close to
optimal), typically by following Gallager’s bounds. Our work com-
plements these algorithms in the sense that it tolerates more dynamic
traffic patterns but provides performance improvements that are of a
statistical nature.

6. Conclusion and Future Work
In this paper, we have applied the idea of steepest gradient based

search to Internet routing to develop a routing paradigm called PB-
routing. The key concept here is to define a scalar potential field on the
network and route packets in the direction of maximum force (steep-
est positive gradient in the potential field). We have described how
this idea can be adapted to provide dynamic, traffic-aware routing by
designing a traffic-based potential. Since our traffic-based potential is
dominated by large, (and hence) slowly-varying queues, our routing al-
gorithm is relatively stable and tolerant of dynamic traffic conditions.
Using a combination of analytic methods and simulations, we have
shown that this methodology produces loop-free routes and causes sig-
nificant improvements in end-to-end delays and jitter without requiring
too much control overhead.

We believe that the general PB-routing paradigm can be adapted for
a variety of applications. First, we can envisage providing differenti-
ated services by setting the relative weight of the traffic-based potential
differently for different traffic classes. Priority traffic would thus ex-
perience lower end-to-end delays and jitter. Second, it is possible to
apply similar techniques to adhoc networks. For example, we can use
PB-routing to compute paths to route around congested areas, and even
create new links on the fly to alleviate congestion by following direc-
tions of maximum force. Third, PB-routing could be used as an alter-
native routing methodology for overlay networks by using application
specific metrics as potential functions. These and other applications
would be the subject of future work in this area.
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