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ABSTRACT

Packet duplication is discussed as a means of incre asing network re liability in an environme nt whe re
packe t loss exists. Sever al methods of routing the duplicates are prese nted, one of which-- the st-
numbering--is shown to have the combined adva ntage of using disjoint paths and more eve n utilization of
network resour ces.

An additional mecha nism, delibera te packe t elimination, is introduce d as a means of controlling
congestion that may re sult, in par t, fr om the duplication.

A compre hensive model is defined enc ompassing the proce ss of pac ket duplication together with
both forms of pac ket elimination. Within this model a cost func tion, based on ave rage pac ket delay, is
defined. A quasi-static distributed algorithm is develope d that is optimal, dea dlock-fr ee and loop-fr ee.
Extension of the model to include pac ket retr ansmission is consider ed.



I. INTRODUCTION

In some computer networks or internetwor ks a phenomenon of pac ket loss takes place . This

phenomenon may be due to a node or a link becoming inopera tive, in which case all packe ts passing

through it are lost. Another ca use of pac ket loss may be statistical, such as shortage of resour ces. For

example, gatew ays in an internetwor k may destroy pac kets at will [1,2,3] , in which ca se not all packe ts

passing through that node are destroyed. This pape r addr esses the phenomenon of the sec ond kind.

In such an environment we propose to improve the network’ s re liability by re sorting to packe t dupli-

cation, allowed both at the source node and at any node along the route. Of cour se, such duplication is not

free : eac h duplicate consumes re source s that must be conse rved. The incre ased load may cr eate conges-

tion, a problem that ca n be alleviated by deliber ate elimination of packe ts.

The main questions associa ted with the proc ess are thus-when and wher e packe ts should be deli-

bera tely eliminated; when and where they should be duplicated; and how the duplicate s should be routed.

One method of routing the duplicate s consists of simply sending all duplicate s along the ‘‘be st"

route. This is proba bly inefficie nt, as the circumstanc es that lead to pac ket loss are not likely to change

quickly (e .g., buffe r shortage typically lasts longer than a pac ket’s lifetime). A better way would be to

send the duplicate s along separ ate routes. Since all member s of a duplicate set trave rse the network at

almost the same time, it is adva ntageous to ensure to some extent that their routes do not cr oss, say for a

cer tain number of hops. While this localize s the duplication proc ess, the nodes are re quired to re member

all message s that pass through them. A pref era ble way is to use complete ly disjoint routes. Her e, mes-

sages have to be rec orded only at the endpoints, which is done anywa y for the purpose of windowing and

sequenc ing. We shall return to disjoint-path routing in Section II.

In consider ing the question whether to duplicate a pac ket, we must take into ac count the trade -off

betwee n the additional load cause d by the duplication (whic h may be the ca use of incre ased pac ket loss)

versus the chanc es that a nonduplicated pac ket may be lost. As this additional load should be ac counted

for, the duplication-routing algorithm pre sented here should be one of a cla ss in which eac h node considers

the eff ects of its dec isions on the future perf ormanc e of the entire network. Typica l exa mples of such rout-

ing algorithms are given in the literature [4,5,6]. A similar trade- off betwe en load and reliability exists

when delibera te elimination is considere d. To quantify these trade -off s, we consider the packe t cost as a

combination of the dela y incurre d by the copies of a pac ket that arr ive at the destination and a penalty for

eac h packe t lost. Two appr oache s ar e pre sented: in one retra nsmission of lost pac kets is not considere d; in

the other it is.

Section II is devoted exc lusively to the problem of routing through disjoint paths. A gene ral

approa ch for modeling the duplication-routing environme nt is discussed in Section III while the exa ct

model and ana lysis are prese nted in Section IV. Section V pre sents a duplication-routing algorithm. Sec-

tion VI discusses the case in which re transmissions take place .



II. ROUTING THROUGH DISJOINT PATHS

To achie ve the purpose in question we need an algorithm which not only ensure s that the duplicates

of a given pac ket trave rse diffe rent paths, but identifies the best paths for them (e .g., by attaching a cer tain

cost, not nec essar ily fixed, to eac h link). We propose three diffe rent scheme s. The first permits us to

define a forma l problem to which an optimal solution ca n be found; the solution, howeve r, is rather compli-

cated. The sec ond scheme is ea sier to implement but may result in inefficient use of network re source s.

The third sche me is limit ed to two disjoint paths but is over comes the deficienc ies of the other two

schemes.

A. Max Flow Min Cost Approach

The following is one way tpo define the problem forma lly. Given: (1) a direc ted graph G (V ,E ,Γ)

repre senting a network in which V is the set of nodes, E the set of links, and Γ={ γe  e ∈E } the set of link

costs; (2) a source node s ∈V and a termination node t ∈V whose node conne ctivity is m . Find a set of k

(k ≤m ) node-disjoint paths betwe en s and t , such that the sum of the link costs of all paths will be minimal.

A quite simple solution to this problem is based on the path augmentation algorithm (PAA) for

finding a minimum-cost maximum flow in a graph [7]. Our algorithm is composed of three par ts: first,

expand the given graph G into a new graph G̃ (since the PAA deals with link conne ctivity, while we are

conce rned with node connec tivity), then exec ute the PAA on G̃ , and finally map the paths found in G̃ into

paths in G .

Part A--G raph expansion:

Define a new graph G̃ (Ṽ ,Ẽ ,Γ̃) in the following way: with ea ch node v ∈V associate a new node v′ , thus

cre ating a set of nodes V ′={v′  v ∈V }.* Ṽ is now defined as

Ṽ =V ∪V ′ .

The set of links Ẽ is construc ted by conne cting eac h node v′ ∈V ′ to the node v ∈V with which it is associ-

ated, and ea ch w ∈V to ea ch v′ ∈V ′ iff (w ,v )∈ E . The cost γ̃ẽ of a link ẽ =(w ,v′ ) equa ls that of link (w ,v ),

and the cost γ̃ẽ of all links (v′ ,v ) is 0.

Obviously, an m node conne ctivity betwe en any two nodes x and y in G implies an m link connec -

tivity betwee n x and y in G̃ .

Part B--M odified Path-Augmentation Algorithm:

Assume that ever y link in G̃ has unit ca pac ity. Apply the PAA of [7] to nodes x and y in G̃ for k itera-

tions. Let Φ̃ be the set of paths computed by the PAA.

____________________________________
*Existence of a one-to-one and onto function f : V →V ′ such that for every v ∈V , f (v ) describes the node ’associated with’ v is

implici tly assumed. This assumption holds throughout the rest of this work.
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Part C--Re verse Mapping:

Define a set of paths Φ betwee n x and y in G by joining direc tly eve ry v ,w ∈V that is conne cted through a

node v′ ∈V ′ in Φ̃.

Lemma: Φ is a set of k node-disjoint paths in G betwee n x and y with minimal cost.

Proof: It was shown [7] that at its i -th iteration (i ≤m ), the path-augme ntation algorithm finds a set of

i link-disjoint paths betwee n s and t at minimum cost. Beca use k ≤m , Φ̃ is a set of k such paths. Suppose

now that the paths of Φ are not node- disjoint. This implies that there exist paths p 1 and p 2 in Φ and nodes

w 1,w 2,v in V such that (w 1,v )∈p 1,(w 2,v )∈p 2; but this implies that there exist paths p̃ 1 and p̃ 2 in Φ̃, for

which: (w 1,v ),(v ,v′ )∈p̃ 1,(w 2,v ),(v ,v′ )∈p̃ 2. Thus Φ̃ is not link-disjoint, which is a contradic tion. 

This algorithm has a seve re disadvanta ge: the routing is source -depe ndent--i.e ., routing decisions to

the same destination may vary depe nding on the pac ket source . Figure 1 demonstra tes such a situation:

node x 1 sends two duplicates destined for node y along the paths x 1→l →y and x 1→k →r →y ; node x 2

does the same along the paths x 2→k →l →y and x 2→r →y ; node k is thus see n to route pac kets destined

for y in two diffe rent ways. This fe ature makes the routing algorithm exce ssively complex, in terms of

both information and communications.

B. Multiple Tree Approach

To overc ome the complexity of the solution pre sented in the previous subsection, we see k an algo-

rithm that will find a set of node-disjoint paths from which sourc e-indepe ndent routing ca n be derive d. A

tempting approa ch is to define for eac h destination node a set of direc ted spanning tree s, all of which have

the destination node as their root, there by making all paths from any node to the root along the tree s node-

disjoint. Routing of duplicates along node- disjoint paths in such a networ k is obviously source -

independent, as a node nee d only know along which tree (among those having the destination as their root)

eac h duplicate should be routed.

Figure 1: Source Depe ndence of Routing Using PAA
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Edmonds’ theore m [8] defines the conditions for the existenc e of such tree s. It states that

If v is a vertex of a digraph G (V ,E ) in which the link connectivity between any node w ∈V (w ≠v ) and v

is not less than k , then there are k link-disjoint directed spanning trees of G rooted at v .

An algorithm for finding such tree s is given in [9] . Note that the theore m dea ls with link conne c-

tivity, so we use the same expa nsion method as we did in the PAA. The complexity of the algorithm is

O (k 2nm 2) for building k trees in an n -node, m -link gra ph; as the algorithm is to be exe cuted for ea ch des-

tination, we have an over all complexity O (k 2n 2m 2) and for a typical communica tion network O (k 2n 4),

which is acc eptable . The amount of memory requir ed by ea ch node to per form the routing (per destina-

tion) is O (kn ), which is also acc eptable .

The tree appr oach gives rise to sever al problems, such as building the best tree s in a re asonable

number of steps. Moreove r, it is deficie nt in its use of network re source s since cer tain links may re main

unused for routing duplicates to cer tain nodes.

C. st -Numbering Approa ch

If we restric t ourselve s a maximum of two duplicate s for eac h pac ket and to bidirec tional links, a

better solution to the node- disjoint-path problem can be found. This solution, based on the st -numbering

algorithm (or st algorithm), is desc ribed in [10,11] . As it is used throughout the re st of this paper , we

describe it here in more detail.*

Given two adjac ent nodes s ,t of a graph G (V ,E ) for which ea ch v ∈V is nonsepar able from s (i.e.,

has node connec tivity of at least two with respe ct to s ), a one-to- one func tion g : V → {1,2,.., V   } is ca lled

an st numbering if the following conditions are satisfied:

1. g (s )=1.

2. g (t )= V .

3. For eve ry v ∈V − {s ,t } there ar e adjac ent nodes u and w such that g (u )< g (v )< g (w ).

The st -numbering offe rs an exc ellent solution for routing duplicates along node-disjoint paths. Sup-

pose st -numbers are given to all nodes in the network with respe ct to some destination node s . To handle

duplicates destined for s , one duplicate is routed through nodes with dec rea sing st -numbers and the other

through nodes with incre asing st -numbers (using the conve ntion that node s has a higher st -number re la-

tive to those of its neighbors that do not have any higher numbere d neighbor). Such routing is cle arly

disjoint-path and sourc e independe nt. Moreove r, the possibility of some links remaining unused (a s in the

tree appr oach) is obviated.

The st -numbering algorithm re fer red to above is also applica ble for our more gene ral case , in which

we demand nonsepar ability only with re spect to s .

We now proce ed to desc ribe the exa ct way in which the st -numbering is used for duplicate routing in

a networ k G (V ,E ).
____________________________________

*Use of the st numbering scheme in routing is discussed in [12], in the context of routing through link-di sjoint paths in trees.
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We conc entrate on a cer tain destination j ∈V . As there may be nodes in V that are separ able from j ,

we identify first the subnetwork Gj (Vj ,Ej ) of all nodes that ar e nonsepar able from j (including j ), and the

links conne cting these nodes (i.e., Ej ={(v ,w )  v ,w ∈Vj ,(v ,w )∈E }). The st -numbering algorithm is

applied to Gj (having j play the role of the s node, and any of its neighbors the role of the t node), and for

eac h i ∈Vj , i ≠j , two nonempty sets Hi (j ) and Li (j ) ar e defined as follows:

Hi ′(j )=
∆ 



k 

(i ,k )∈Ej ,stj (k )> stj (i )



,

Hi (j )=
∆






{j }

Hi ′(j )

Hi ′(j )=∅

Hi ′(j )≠∅
, Li (j )=

∆ 


k 

(i ,k )∈Ej ,k ∈ ⁄ Hi (j )




where stj (l ) stands for the st number given to l having j as the s node. Thus Hi (j ) groups neighbors of

node i with number higher than that of i with re spect to j . Li (j ) similarly groups neighbors with lower

numbers.

When a pac ket is duplicate d, eac h duplicate is marked H or L . Node i (i ≠j ) routes H duplicates

only to nodes in Hi (j ) and L ones only to nodes in Li (j ).

For a node i ∈V , i ∈ ⁄ Vj , we set Hi (j )=Li (j )≡∅; such a node ca nnot duplicate packe ts destined for j .

Howeve r, packe ts passing through i en route for j might be duplicated later on their wa y; this happe ns if a

path from i to j passes through node k ∈Vj and the packe t is duplicated at k . Figure 2 depicts such a situa-

tion.

Figure 2: Duplication of Packe ts Originate d Outside Vj
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Finally, a word about optimization. Gene rally, there might exist sever al st numberings for a given

network, eac h re sulting in a differ ent networ k perf ormanc e. In these circ umstances, choosing a numbering

and simultaneously sec uring optimal per formanc e is a complicate d task. Our approa ch consists in arbitra ry

choices of a numbering and optimization of the per formanc e with respe ct to it. (A heuristic approa ch to

selecting a "good" st numbering is prese nted in [13]).
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III. THE APPROAC H

We prese nt a model that descr ibes the ef fec ts both of pac ket elimination and pac ket duplication.

Within this model, we define a cost func tion, minimization of which reflec ts our intent to minimize the

aver age delay while simultaneously incre asing the network’ s re liability. In this section we prese nt our

approa ch qualitatively. A quantitative insight is given in Section IV.

Our approa ch follows closely Gallage r’s model and algorithm prese nted in [5] (to which we re fer as

the "basic" algorithm) which is a distributed, quasi-static algorithm for minimum aver age dela y routing.

Essentially, eve ry node maintains--f or ea ch destination--a set of routing var iables, spec ifying the

corre sponding fra ction of the node’s outflow routed towar ds ea ch of the node’s neighbors. In ea ch iteration

of the algorithm ea ch node adjusts its routing varia bles so that part of its out-flow is diverted from "expen-

sive" links (i.e., with high delay), to "chea per" ones. It is shown that under the presc ribed conditions this

leads to minimization of the cost function.

We extend the basic model in seve ral direc tions so as to include all proc esses (duplication, elimina-

tion, and routing of originals and duplicates). An important part of the extension is mapping of these

proce sses into flows and link costs, which is descr ibed subsequently.

Routing

We assume that an st numbering proce dure was previously applied to ever y node in our network

with respe ct to eve ry destination, and that ever y node i rec ognizes its sets Hi (j ) and Li (j ) with respe ct to

ever y destination node j . Every pac ket ca rries a label: a pac ket that has not bee n duplicated is labeled and

refe rre d to as a normal (or N) pac ket, and the two duplicate s gene rate d from it are ref err ed to as an H-

packe t and an L-pa cket. Consequently, three types of flow ar e obser ved, one for ea ch of the packe t types

(N, H, L).

Routing is perfor med in a way similar to that of the basic algorithm. Eac h node maintains three sets

of routing varia bles, one for ea ch type of flow. The routing varia bles at node i are computed so that H-

packe ts destined for node j are forwa rde d only to neighbors belonging to Hi (j ), and L-pa ckets, similarly,

to neighbors belonging to Li (j ).

Elimin ation

Packets may be eliminated in two kinds of circ umstances: (1) randomly (or incidently), due to situa-

tions only partially under the node’ s control, or (2) whene ver the node deems it useful. We thus distinguish

betwee n randomly eliminated packe ts (re -pac kets), and deliberately eliminated pack ets (de -pac kets).

Apart from the above distinction we are also intereste d in distinguishing betwee n eliminated packe ts hav-

ing a duplicate which arr ives at the destination and packe ts that do not have one. The latter ar e termed

costly packe ts bec ause of the cost involved (we pay a pena lty for them), while the for mer are termed free.
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We thus have a total of four types of eliminated packe ts: randomly eliminated costly and fre e, and deli-

bera tely eliminated costly and fre e (respe ctively rc, rf, dc, and df pac kets).

It should be noted that deliber ate elimination is in fa ct nec essitated by the prese nce of random elimi-

nation in order to avoid undesire d phenomena as exe mplified in Figure 3. In this figure node s sends pac k-

ets to node t via nodes i and k . Let w 1,w 2,w 3 be the costs per pac ket for trave rsing the links and w 4 the

penalty for eliminating a pac ket at node i . We assume that no delibera te elimination is allowed and that

w 2> >w 1,w 3,w 4. Under these circ umstance s, node’ s k best policy would be to route pac kets bac k toward

node i in the "hope" that they will be eliminated. This is cle arly an unac ce ptable policy; it would be

prefe ra ble to allow node i to eliminate packe ts deliber ately (note the routing loops forme d!).

In a manner similar to that of [14] we model pac ket elimination by ‘‘r outing" eliminated pac kets

toward their destinations through fictitious links adde d for that purpose . This ena bles us to consider elimi-

nation as a regula r ca se of routing (see Section IV.A) .

Duplication

To compensa te for pac ket elimination, nodes are allowed to duplicate pac kets. Only a single dupli-

cation is allowed along a pac ket’s path. The duplication proce ss is modeled by defining for eac h node i --

per destination node j --a duplication variable di (j ) which specifies the fra ction of the N-pa cke ts destined

for j that is duplicated in node i . As part of the algorithm, eac h node will deter mine a proper value of

di (j ). Clearly, no duplication can take place at a node unless both Hi (j ) and Li (j ) ar e nonempty; the algo-

rithm will ensure that di (j )≡0 empty Hi (j ) or Li (j ).

Cost function

Our cost function is composed of the total ave rage delay incurr ed by packe ts arr iving at the destina-

tion and by the penalties paid for lost packe ts. Whe n a single duplicate arr ives at the destination, the cost is

its dela y; when two duplicate s arrive , the cost is some combination of their dela ys. Whe n all duplicates are

eliminated, the cost is the pena lty paid for that lost packe t.

Figure 3: The Nee d for Delibera te Elimination
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Thus, to eve ry link, rea l and fictitious, a weight is attac hed signifying the cost of flow through it. To

calcula te the cost of eliminated packe ts, a mapping is nee ded betwe en the pac ket type (N,H,L) and its cost.

Eliminated N-pa cke ts ar e cle arly all costly; eliminated H- and L-pa ckets are harde r to dea l with, as deter -

mination of their cost requir es knowledge of the fate of the sibling. This difficulty is overc ome by defining

a quantity β(j ), rela ted to the elimination probability of any duplicate on its way from any source to desti-

nation j . Now, ea ch node rega rds a portion β(j ) of its eliminated H- and L- packe ts destined towar d j as

costly, and the re st as fre e.

Algorithm

Following the basic algorithm (a nd also [6]) we find nec essary and sufficient conditions for a set of

routing and duplication varia bles to minimize the cost function. The algorithm is then der ived direc tly

from the conditions for optimality.

The algorithm consists of a protocol to ca lculate the marginal costs and exc hange messages among

neighbors, and a duplication routing (DR) algorithm to update the routing and duplication var iables at eac h

node. In eac h itera tion, and for eac h type of flow, the DR algorithm reduc es the traf fic on expensive links

and incre ases it on the chea p ones. Furthermore , it levels the amount of duplication and of delibera te elimi-

nation ac cording to the marginal gain in the cost function involved in ea ch of these proce sses.

Note that extensions of the basic algorithm eff ecte d with a view to incre asing its spee d of conve r-

gence (such as that in [15]) , or for other purposes (as in [16]) are applicable to our model. For the sake of

clarity, howe ver, our prese ntation is confined to the basic algorithm.
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IV. THE MODEL

A. General

Let our network be of fixed topology and composed of the set of nodes V 0 and the set of links E 0.

We assume that eac h link (i ,k )∈E 0 has finite ca pac ity Cik > 0 and consider full duplex links, i.e., (i ,k )∈E 0

implies (k ,i )∈E 0. We denote by ri (j ) the expec ted traf fic (in bits per second) entering the networ k at node

i and destined for node j , and assume that this input traf fic forms an er godic proc ess. The random elimina-

tion proce ss is modeled by ei (j ), the probability of a packe t on its way to node j being (ra ndomly) elim-

inated while in transit through node i .

To fac ilitate the ana lysis we construct an augmented networ k in which all flows (of both re al and

eliminated packe ts) ar e conser ved. We model pac ket elimination by adding fictitious links car rying the

flow of eliminated pac kets direc tly to their destinations--e ach type of eliminated packe t through a differ ent

fictitious link. Howeve r, although we originally defined four types of eliminated pac kets, only three nee d

be consider ed since (as will be shown subsequently see Section V.C) there is no need for deliber ate elimi-

nation of duplicated pac kets (d f flow is nonexistent).

To avoid having more than one link betwee n two nodes, fictitious nodes are also adde d. Thus, an

eliminated packe t is routed from the node in which it is eliminated through a fictitious link towar d a ficti-

tious node associa ted with the intended destination of the pac ket, and then towar d the destination itself.

Figure 4 shows the fictitious nodes and links associate d with some node j , as well as the fictitious links

connec ting some node i to them. The total sets of nodes and links in the augmented networ k are denoted

by V and E respe ctively.

Figure 4: Fictitious Nodes and Links
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To complete the desc ription, we must spec ify what packe ts are routed along which links and what

the associate d costs are .

B. Routing and Duplication

From the node’ s activity standpoint, we distinguish betwe en packe ts over which the node has control

(i.e., noneliminated and delibera tely eliminated) and the re st (ra ndomly eliminated). Eac h of these will be

treate d separ ately. Nonc ontrollable pac kets ar e obviously routed direc tly towar d the destination over the

appropria te fictitious links. Controllable pac kets ar e routed acc ording to a routing func tion that diverts a

portion of the traf fic to ea ch eligible neighbor. Formally, let Zi be the set of node i ’s rea l neighbors (from

V 0) plus the fictitious nodes toward which delibera tely eliminated packe ts ar e routed ( jde in Figure 4); node

i routes a fra ction φNik (j ) of the outflow of N-pa ckets at node i and destined for node j over link (i ,k )

where k ∈Zi . The amount of delibera tely eliminated packe ts is there fore controlled by φNi j
de
(j ). A similar

approa ch is adopted for H- and L-pa ckets, exce pt (as noted bef ore) that these packe ts will not be deli-

bera tely eliminated and the eligible neighbors ar e those belonging to Hi (j ) and Li (j ) re spectively.

To sum up, for ea ch node i , we have three sets of numbers { φNik (j )}, { φHik (j )}, and { φLik (j )} con-

trolling the routing and the delibera te eliminations, and one set di (j ) controlling the duplication proc ess.

Figure 5 descr ibes in detail the pac ket flow through node i . Note the definition of t̃̃Ai (j ), t̃Ai (j ), and

tAi (j ) (whe re A is one of N , H , L ) which repr esent the flow enter ing the node, the flow after random elimi-

nation, and the flow af ter duplication, respe ctively. These flows obey the following re lations:

Figure 5: Packe t Flow Through Node i
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(1)

t̃Ni (j )=[1−ei (j )]
l
Σ[1−dl (j )]t̃Nl (j )φNli (j )+ri (j )

tNi (j )=[1−ei (j )][1−di (j )]
l
ΣtNl (j )φNli (j )+[1−di (j )]ri (j )

tHi (j )=[1−ei (j )]
l
ΣtHl (j )φHli (j )+di (j )t̃Ni (j )

tLi (j )=[1−ei (j )]
l
ΣtLl (j )φLli (j )+di (j )t̃Ni (j )

Equations (1) uniquely define the flows as a function of the duplication and routing varia bles[5,13].

C. Cost Function

Denote by f Nik ,f Hik ,f Lik the flow of N-, H-, and L-pa ckets respe ctively in link (i ,k ), and use the

shorthand f ik_ __ =
∆

(f Nik ,f Hik ,f Lik ). In addition we define f ik =
∆

f Nik +f Hik +f Lik . Let Tik (f ik ) be the dela y (per

bit) func tion of a link (i ,k )∈E 0. We assume that the func tion f ik
.Tik (f ik ) is nonnegative, continuous, con-

vex, and nondec rea sing with respe ct to f ik , with continuous first and second der ivatives, and that Tik

becomes unbounded as the flow rea che s ca pac ity [6]. We also denote by β the probability of pac ket elimi-

nation in the networ k irrespe ctive of source and destination.

With these definitions, the cost function of an actua l link (i ,k )∈E 0 is

Dik (f ik_ __) =
∆

[f Nik +
2

(1+β)_ _____(f Hik +f Lik )]Tik (f ik ) .

Here the cost for N-pa ckets is the full dela y. For H- and L-pa ckets, the full price is paid when only one

duplicate arr ives (proba bility β), and half the price for ea ch when both duplicates arr ive (proba bility 1−β).

The cost of deliber ate elimination is calc ulated by assigning the cost function Di j
de
(f i j

de
) =
∆

f i j
de
Dj to

the fictitious links (i ,jde ) ca rrying these packe ts, whe re Dj does not depend on the flow. Similarly, for ra n-

domly eliminated flow Di j
rc
(f i j

rc
)=f i j

rc
Dj . The cost function of the re st of the fictitious links is zer o since all

the traffic they car ry is either not costly or the cost has alre ady bee n ac counted for.

Putti ng all this together, the networ k cost function, DT , is defined as

DT (f f )=
(i ,k )∈E

Σ Dik (f ik_ __).

It is rea dily ver ified that Dik (f ik_ __) is guara nteed to be conve x if and only if β=1. This is a conse -

quence of assigning a differ ent cost to ea ch kind of flow, although all flows equa lly aff ect the link delay.

We shall there fore restrict ourselve s to the case of β=1. This re striction re sults in incre asing the re lative

cost of sending duplicate s as compar ed with that of sending an unduplicated pac ket and that of delibera tely

eliminating it--eff ec ts that ca n be canc eled out by choosing higher values for Dj .
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D. Optimality Conditions

Our aim is to find nece ssary and sufficient conditions for a set of flows to minimize DT . Having con-

structed a Lagr angian base d on the constra ints on network var iables and taken der ivatives (steps similar to

those taken in [6] ), we ar e led to the following four conditions:

(2)\ \⁄ ⁄- - - - i ,j ∈V 0 i ≠j , \ \⁄ ⁄- - - - k ∈Zi Dik
N ′+MNk (j )



≥λNi (j )

=λNi (j )

f Nik (j )=0

f Nik (j )> 0

(3)\ \⁄ ⁄- - - - i ,j ∈V 0 i ≠j , \ \⁄ ⁄- - - - k ∈Hi (j ) Dik
H ′+MHk (j )



≥λHi (j )

=λHi (j )

f Hik (j )=0

f Hik (j )> 0

(4)\ \⁄ ⁄- - - - i ,j ∈V 0 i ≠j , \ \⁄ ⁄- - - - k ∈Li (j ) Dik
L ′+MLk (j )



≥λLi (j )

=λLi (j )

f Lik (j )=0

f Lik (j )> 0

(5)λNi (j )





≥λHi (j )+λLi (j )

≤λHi (j )+λLi (j )

=λHi (j )+λLi (j )

di (j )=1

0=di (j )

0< di (j )< 1

where Dik
N ′

=
∆

∂f Nik

∂Dik (f ik_ __)
_ ________, and similarly for Dik

H ′ and Dik
L ′, and the λs ar e the Lagr ange multipliers, and the M

values ar e defined by

(6)

MNk (j ) =
∆

[1−ek (j )][1−dk (j )]λNk (j )+[1−ek (j )]dk (j )[λHk (j )+λLk (j )]+ek (j )Dj

MHk (j ) =
∆

[1−ek (j )]λHk (j )+ek (j )β(j )Dj

MLk (j ) =
∆

[1−ek (j )]λLk (j )+ek (j )β(j )Dj

MN j (j ) = MH j (j ) = ML j (j ) =
∆

0 .

From the above deriva tion it is cle ar that expre ssions (2) -(5) ar e nece ssary conditions for minimizing DT

over the set of fea sible solutions. For β=1, they are also sufficient [13].

The conditions for optimality have an intuitive significance: The Lagra nge multipliers λAi (j ) ar e the

cost of sending an infinitely small incre mental flow of type A fr om node i to destination j , where A is one

of N , H , L . The value MAk (j ) is, then, the ave rage cost of sending such a flow via a neighbor k (apa rt

from the increme ntal cost of transmission to k itself, which is Dik
A ′), bea ring in mind the possibiliti es for

duplication and elimination at k . Thus, the conditions simply state that optimality requir es that the incre-

mental cost be equal for all neighbors k to which i sends flow of type A , and that i levels the degre e of

duplication so that the increme ntal cost of sending the duplicate s equa ls that of sending a single copy.
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V. THE ALGORITHM

The algorithm see ks to satisfy the optimality conditions by modifying the flows (through change s in

the varia bles φ and d ) so that the λs ar e equalize d. This is done by reduc ing those routing variable s φAik (j )

for which Dik
A ′(f ik_ __)+MAk (j ) is large, incre asing those for which it is small, and, in addition, reduc ing di (j )

if λNi (j ) is smaller than λHi (j )+λLi (j ) and incre asing it if λNi (j ) is larger . As mentioned previously, the

algorithm consists of a protocol to ca lculate the Lagra nge multipli ers and a duplication routing (DR) algo-

rithm to update the varia bles in eac h node.

A. The Prot ocol to Calculate λ

To calc ulate the λ eac h node i estimates, as a time ave rage , the Dik
N ′, Dik

L ′, Dik
H ′ for eac h outgoing link

[13]. Calculation of the quantities λHi (j ) and λLi (j ) proc eeds as in [5]: node i waits until it has re ceive d

MHk (j ) or MLk (j ) from all its neighbors k that are H- or L-dow nstream from it respe ctively, and then com-

putes λHi (j ) and λLi (j ) by the formula

(7)
λHi (j )=

k ∈H
i
(j )

Σ [Dik
H ′+MHk (j )]φHik (j ) λLi (j )=

k ∈L
i
(j )

Σ [Dik
L ′+MLk (j )]φLik (j ).

Having ca lculated λHi (j ), node i calc ulates MHi (j ) ac cording to (6) and transmits it to all nodes k ∈Li (j ).

Simi larly for MLi (j ). Note that we should not be conc erne d with routing loops beca use of the constraints

imposed by the st -numbering scheme .

The calcula tion of λNi (j ) is somewhat differ ent since the N-strea m is af fec ted by the H- and L-

streams. Typica lly, node i waits until it has computed λNi (j ), λLi (j ), and λHi (j ) from which it computes

MNi (j ) ac cording to (6), and transmits it to all its neighbors (unless di (j )=1, in which ca se MNi (j ) ca n be

calcula ted immediately). λNi (j ) is calc ulated af ter rec eiving MNk (j ) from all N-downstre am neighbors by

(8)
λNi (j )=

k ∈Z
i

Σ [Dik
N ′+MNk (j )]φNik (j ).

The protocol for the N-var iables is problema tic beca use it has dea dlocks unless the routing is loop-

free . It is known that the basic protocol dea dlocks only if there is a circ uit of nodes and a destination j

such that for ea ch subsequent pair in the circuit (i ,k ), φik (j )> 0. In our case , howeve r, this is too strict a

require ment since if one of the nodes in such a circuit duplicates all its N-pac kets (di (j )=1), routing loops

are not forme d. Freedom from loops in our ca se is secur ed by absenc e of a circ uit of nodes for which

[1−di (j )]φNik (j )> 0.

B. DR Algorithm

In order to ensure loop-fre e routing given disjoint duplicate paths, we define-- in the spirit of [5]-- for

eac h node and eac h type of flow (N , H , L ) a set of blocked neighbors (BNi (j ), BHi (j ), BLi (j ) re spectively).

For these nodes a flow may not be initiated if it was ze ro bef ore. Note that in our ca se a ze ro flow may
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result from either φ=0 or, for N-flow, if d =1.

On eac h itera tion the DR algorithm maps the curr ent duplication par ameter set d into a new set d∧,

and the routing par ameter set φ into a new set φ∧. Given our definition of the sets of neighbors and of

blocked neighbors, φ∧ can be derive d from φ in a manner similar to [5]. The duplication var iable is simi-

larly derive d as follows:

If di (j )=1 and there exists a k ∈BNi (j ) such that φ∧Nik (j )≠0, then

d∧i (j )=1

else

a. ∆λ
i
(j )=λNi (j )−λHi (j )−λLi (j );

b. ∆d
i
(j )=









0

1−di (j )

−di (j )

max{ −di (j ) , min[1−di (j ),
t̃Ni (j )

∆λ
i
(j )η

_ ______]}

t̃Ni (j )=0 and ∆λ
i
(j )=0

t̃Ni (j )=0 and ∆λ
i
(j )> 0

t̃Ni (j )=0 and ∆λ
i
(j )< 0

t̃Ni (j )≠0

c. d∧i (j )=di (j )+∆d
i
(j )

In the above η is an arbitra ry sca le par ameter that controls the amount of cor rec tion to the routing

and duplication var iables in ever y iteration.

This algorithm proves to conver ge to optimum. This conve rgenc e does not re sult directly from that

of the basic algorithm, since our case is more gener al for the following rea sons: (1) there are seve ral types

of flow; (2) the direc t origin of the H- and L- flows is the duplicated N-flow, and thus may be non-

stationary; (3) the total amount of flow in the networ k is not stationary. Howeve r, it does see m natura l for

this algorithm to be optimal given the optimality of the basic algorithm. If we consider the duplication box

and ea ch of the elimination boxes in Figure 4 as distinct nodes, we have an almost normal networ k (exc ept

that the duplication box routes eac h pac ket towar d two differ ent nodes). Although this nonstationarity ca lls

for a rigorous trea tment to prove the optimality claim [13], this nonstationarity is not cruc ial since the flow

may vary within a bounded range .

As is expe cted from [5] and shown in [13], the protocol thus defined is fr ee of deadloc ks, the result-

ing routing is loop-fr ee on eve ry itera tion, and the duplication and routing varia bles conve rge to values that

minimi ze DT .

C. DR Algorithm and Flow Control

From the above model, it is rea dily deduc ed that, at optimality, deliber ate elimination takes place

only at the source node-- if at all. We note that the cost of delibera te elimination does not depend on the

identity of the eliminating node, and re call that DT increa ses whene ver a packe t trave rses an ac tual link.
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There fore , DT is minimized only if all deliber ate eliminations are per formed at the source . This also

explains why there is no need for delibera te elimination of H- and L- packe ts, since duplicating a pac ket at

the source and then having the source delibera tely eliminate one or both duplicates is meaningless. (Note

also that delibera te elimination ca n take plac e only at nodes without N-upstre am neighbors as this proce ss

does not distinguish a node’ s own pac kets from those coming from an upstream neighbor.)

In fac t, source nodes use deliber ate elimination as a flow control mecha nism, reduc ing the input flow

in order to reduc e the load (and thus the delay) in the network. In [14] a similar appr oach was used for

developing a flow control mecha nism, which was bra ided with a routing algorithm. Ther e, discar ded input

packe ts ar e routed fictitiously towar d the destination via a fictitious link whose cost function is a penalty

function for discar ded packe ts. Howeve r, in [14] this pena lty func tion is not linear in the flow, as it is in

our ca se, but incre ases asymptotically to infinity as the amount of discar ded pac kets re ache s the total input

demand of the node. In our case , such an appr oach would not be appropr iate, since packe ts ca n be dis-

car ded at any node, and thus the pena lty ca nnot be rela ted to some value of the source node. Moreove r, it

is not obvious that the pena lty paid for any discarde d pac ket should depe nd on the total amount of discard-

eding, and it can be ar gued that in ce rtain ca ses it is more rea sonable to pay a constant pena lty for ea ch lost

packe t.
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VI. A MODEL WITH RETRANSMISSIO NS

We consider now the case in which a pac ket is transmitted re peate dly by the source until it arr ives at

the destination.

A model that best desc ribes this situation is one in which a fictitious link is added betwe en any node

i and eve ry sourc e node s . All pac kets completely eliminated at i (i.e., all costly lost pac kets) are routed

toward s via this fictitious link, as complete loss of a packe t implies its retra nsmission by the source . (As

before , fre e lost pac kets are routed towar d the destination via fictitious links.) Howe ver, a major problem

arises when this model is used for a distributed implementation, as the routing dec isions are now source -

depende nt (of complexity O (n 2)), thus requir ing a large volume of memory at eac h node and entailing a

high communication cost in the links. Another problem with this model ar ises when an algorithm of the

same cla ss as the one desc ribed in Section V is consider ed; routing loops ca nnot then be avoided.

We thus propose an alterna tive model in which we add a fictitious link betwe en any node and itself

(to avoid the inconve nience of cr eating a self- loop one ca n rega rd eac h node as composed of two internal

nodes). All costly pac kets eliminated at i are routed again toward i via this fictitious link; they then con-

tinue to their destination as normal packe ts. As befor e, fre e lost pac kets ar e sent directly to the destination

via a fictitious link. Obser ve that in this model we assume that a retr ansmitted pac ket will arr ive aga in at

the node where it was lost. The cost function of the fictitious link betwee n the eliminator node i and itself

is rela ted to the retr ansmission price from the source node to i . Obviously, this model is less ac cura te then

the one elabora ted on previously, but still reta ins the main proper ties of the re transmission scheme ; for

example, delibera te elimination is ruled out (as it is always more expe nsive to lose a packe t than to go on

transmitting it), a rea sonable fea ture whe re retr ansmissions ar e involved.

This model ca n be analyz ed in a very similar way to the one prese nted in Section III ; an algorithm

similar to the DR algorithm ca n be derive d for it, and all proper ties proved for the DR algorithm ca n be

proved to hold for this algorithm as well.
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