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ABSTRACT

Packet duplication is discussed as a means of increasing network reliability in an environment where
packet loss exists. Several methods of routing the duplicates are presented, one of which--the st-
numbering--is shown to have the combined advantage of using digoint paths and more even utilization of
network resources.

An additional mechanism, deliberate packet elimination, is introduced as a means of controlling
congestion that may result, in part, from the duplication.

A comprehensive model is defined encompassing the process of packet duplication together with
both forms of packet elimination. Within this model a cost function, based on average packet delay, is
defined. A quasi-static distributed algorithm is developed that is optimal, deadlock-free and loop-free.
Extension of the model to include packet retransmission is considered.



I.INTRODUCTION

In some computer networks or internetworks a phenomenon of packet loss takes place. This
phenomenon may be due to a node or a link becoming inoperative, in which case all packets passing
through it are lost. Another cause of packet loss may be statistical, such as shortage of resources. For
example, gateways in an internetwork may destroy packets at will [1,2,3], in which case not all packets
passing through that node are destroyed. This paper addresses the phenomenon of the second kind.

In such an environment we propose to improve the network’ sreliability by resorting to packet dupli-
cation, allowed both at the source node and at any node along the route. Of course, such duplication is not
free: each duplicate consumes resources that must be conserved. The increased load may create conges-
tion, aproblem that can be aleviated by deliberate elimination of packets.

The main questions associated with the process are thus-when and where packets should be deli-
berately eliminated; when and where they should be duplicated; and how the duplicates should be routed.

One method of routing the duplicates consists of simply sending all duplicates along the *‘best"
route. This is probably inefficient, as the circumstances that lead to packet loss are not likely to change
quickly (e.g., buffer shortage typically lasts longer than a packet’'s lifetime). A better way would be to
send the duplicates along separate routes. Since al members of a duplicate set traverse the network at
almost the same time, it is advantageous to ensure to some extent that their routes do not cross, say for a
certain number of hops. While this localizes the duplication process, the nodes are required to remember
all messages that pass through them. A preferable way is to use completely digoint routes. Here, mes-
sages have to be recorded only at the endpoints, which is done anyway for the purpose of windowing and
sequencing. We shall return to digjoint-path routing in Section I1.

In considering the question whether to duplicate a packet, we must take into account the trade-off
between the additional load caused by the duplication (which may be the cause of increased packet 10ss)
versus the chances that a nonduplicated packet may be lost. As this additional load should be accounted
for, the duplication-routing algorithm presented here should be one of a classin which each node considers
the effects of its decisions on the future performance of the entire network. Typical examples of such rout-
ing algorithms are given in the literature [4,5,6]. A similar trade-off between load and reliability exists
when deliberate elimination is considered. To quantify these trade-offs, we consider the packet cost as a
combination of the delay incurred by the copies of a packet that arrive at the destination and a penalty for
each packet lost. Two approaches are presented: in one retransmission of lost packets is not considered; in
theother it is.

Section 1l is devoted exclusively to the problem of routing through digoint paths. A general
approach for modeling the duplication-routing environment is discussed in Section Il while the exact
model and analysis are presented in Section IV. Section V presents a duplication-routing algorithm. Sec-
tion VI discusses the case in which retransmissions take place.



I[I.ROUTING THROUGH DISJOINT PATHS

To achieve the purpose in question we need an agorithm which not only ensures that the duplicates
of a given packet traverse different paths, but identifies the best paths for them (e.g., by attaching a certain
cost, not necessarily fixed, to each link). We propose three different schemes. The first permits us to
define aformal problem to which an optimal solution can be found; the solution, however, is rather compli-
cated. The second scheme is easier to implement but may result in inefficient use of network resources.
The third scheme is limited to two digoint paths but is overcomes the deficiencies of the other two
schemes.

A. Max Flow Min Cost Approach

The following is one way tpo define the problem formally. Given: (1) a directed graph G(V,E,IN)
representing a network in which V isthe set of nodes, E the set of links, and I'={y, UeE} the set of link
costs; (2) a source node s0V and a termination node t [0V whose node connectivity ism. Find a set of k
(k<m) node-digjoint paths between s and t, such that the sum of the link costs of all paths will be minimal.

A quite simple solution to this problem is based on the path augmentation algorithm (PAA) for
finding a minimum-cost maximum flow in a graph [7]. Our algorithm is composed of three parts: first,
expand the given graph G into a new graph G (since the PAA deals with link connectivity, while we are
concerned with node connectivity), then execute the PAA on G, and finally map the paths found in G into
pathsin G.

Part A--Graph expansion:
Define a new graph G (V,E,I") in the following way: with each node vV associate a new node V', thus
creating a set of nodes V'={v' vOV}." V isnow defined as
V=V[]V'.

The set of links E is constructed by connecting each node v V' to the node v OV with which it is associ-
ated, and each w1V toeach v OV' iff (w,v)O E. The cost \~/é of alink &=(w,v') equalsthat of link (w,v),
and the cost Y of all links (V' ,v) isO.

Obviously, an m node connectivity between any two nodes x andy in G impliesan m link connec-
tivity between x andy in G.

Part B--Modified Path-Augmentation Algorithm:
Assume that every link in G has unit capacity. Apply the PAA of [7] tonodesx and y in G for k itera-
tions. Let ® bethe set of paths computed by the PAA.

“Existence of a one-to-one and onto function f : V - V' such that for every vV, f (v) describes the node ' associated with' vis
implicitly assumed. This assumption holds throughout the rest of this work.



Part C--Reverse Mapping:
Define a set of paths @ between x andy in G by joining directly every v,wV that is connected through a
nodeVv' OV’ in ®.

Lemma: @ isaset of k node-digoint pathsin G between x and y with minimal cost.

Proof: It was shown [7] that at itsi -th iteration (i <m), the path-augmentation algorithm finds a set of
i link-digoint paths between s and t at minimum cost. Because ksm, ®isaset of k such paths. Suppose
now that the paths of @® are not node-disjoint. Thisimplies that there exist paths p; and p, in ® and nodes
Wq,W,,v in V such that (w4,v)Op4,(W,,v)Op,; but this implies that there exist paths f; and f§, in @, for
which: (w,v),(v,v )0p4,(W,,v),(v,V)Op,. Thus @ isnot link-digjoint, which is a contradiction. O

This algorithm has a severe disadvantage: the routing is source-dependent--i.e., routing decisions to
the same destination may vary depending on the packet source. Figure 1 demonstrates such a situation:
node x; sends two duplicates destined for node y along the paths x; -1 -y and x; -k -r -y; node X,
does the same along the paths X, -k -1 -y and X, »r - y; node k is thus seen to route packets destined
for y in two different ways. This feature makes the routing algorithm excessively complex, in terms of
both information and communications.

B. Multiple Tree Approach

To overcome the complexity of the solution presented in the previous subsection, we seek an algo-
rithm that will find a set of node-disjoint paths from which source-independent routing can be derived. A
tempting approach is to define for each destination node a set of directed spanning trees, all of which have
the destination node as their root, thereby making all paths from any node to the root along the trees node-
digoint. Routing of duplicates aong node-digoint paths in such a network is obviously source-
independent, as a node need only know along which tree (among those having the destination as their root)
each duplicate should be routed.

Figure 1: Source Dependence of Routing Using PAA



Edmonds' theorem [8] defines the conditions for the existence of such trees. It states that

If v isavertex of adigraph G (V,E) in which the link connectivity between any node w0V (W#v) and v
isnot lessthan k , then there are k link-dijoint directed spanning trees of G rooted at V.

An algorithm for finding such trees is given in [9]. Note that the theorem deals with link connec-
tivity, so we use the same expansion method as we did in the PAA. The complexity of the algorithm is
0] (kznmz) for building k treesin an n-node, m-link graph; as the algorithm is to be executed for each des-
tination, we have an overall complexity O (k®n°m? and for a typical communication network O (kn%),
which is acceptable. The amount of memory required by each node to perform the routing (per destina-
tion) is O (kn), which isalso acceptable.

The tree approach gives rise to several problems, such as building the best trees in a reasonable
number of steps. Moreover, it is deficient in its use of network resources since certain links may remain
unused for routing duplicates to certain nodes.

C. st-Numbering Approach

If we restrict ourselves a maximum of two duplicates for each packet and to bidirectional links, a
better solution to the node-digjoint-path problem can be found. This solution, based on the st-numbering
algorithm (or st algorithm), is described in [10,11]. As it is used throughout the rest of this paper, we

describe it here in more detail.”

Given two adjacent nodes s,t of a graph G (V,E) for which each vV is nonseparable from s (i.e.,
has node connectivity of at least two with respect to s), aone-to-onefunctiong: vV - {1,2,..,[V J iscalled
an st numbering if the following conditions are satisfied:

1. g(s)=1
2. gt)=tv O
3. Forevery vOV —{s,t} there are adjacent nodes u and w such that g (u)<g(v)<g(w).

The st-numbering offers an excellent solution for routing duplicates along node-disjoint paths. Sup-
pose st -numbers are given to all nodes in the network with respect to some destination node s. To handle
duplicates destined for s, one duplicate is routed through nodes with decreasing st -numbers and the other
through nodes with increasing st-numbers (using the convention that node s has a higher st-number rela-
tive to those of its neighbors that do not have any higher numbered neighbor). Such routing is clearly
digoint-path and source independent. Moreover, the possibility of some links remaining unused (asin the
tree approach) is obviated.

The st-numbering algorithm referred to above is also applicable for our more general case, in which
we demand nonseparability only with respect to s.

We now proceed to describe the exact way in which the st -numbering is used for duplicate routing in
anetwork G (V,E).

“Use of the st numbering scheme in routing is discussed in [12], in the context of routing through link-disjoint paths in trees.



We concentrate on a certain destination j 0V. Asthere may be nodesin V that are separable from j,
we identify first the subnetwork G; (V; ;) of al nodes that are nonseparable from j (including j), and the
links connecting these nodes (i.e, Ej={(v,w) Ov,w0V;,(v,.w)UE}). The st-numbering algorithm is
applied to G; (having j play therole of the s node, and any of its neighbors the role of the t node), and for
eachi[V;, i #], two nonempty sets H; (j ) and L; (j ) are defined as follows:

0 0
H( leék i K)OE; & (k)>; () .

O
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where & (I) stands for the st number given to | having j asthe s node. Thus H; (j) groups neighbors of

node i with number higher than that of i with respect to j. L;(j) similarly groups neighbors with lower
numbers.

When a packet is duplicated, each duplicate is marked H or L. Nodei (i #j) routes H duplicates
only to nodesin H; (j) and L onesonly to nodesinL; (j ).

For anode i 0V, i 11V}, we set H; (j)=L; (j )=0; such a node cannot duplicate packets destined for j .
However, packets passing through i en route for j might be duplicated later on their way; this happens if a

path fromi to j passes through node k JV; and the packet is duplicated at k. Figure 2 depicts such a situa-
tion.

Figure 2: Duplication of Packets Originated Outside V,



Finally, a word about optimization. Generally, there might exist several st numberings for a given
network, each resulting in a different network performance. In these circumstances, choosing a numbering
and simultaneously securing optimal performance is a complicated task. Our approach consistsin arbitrary
choices of a numbering and optimization of the performance with respect to it. (A heuristic approach to
selecting a"good" st numbering is presented in [13]).



1. THE APPROACH

We present a model that describes the effects both of packet elimination and packet duplication.
Within this model, we define a cost function, minimization of which reflects our intent to minimize the
average delay while simultaneously increasing the network’s reliability. In this section we present our
approach qualitatively. A quantitative insight isgiven in Section [V.

Our approach follows closely Gallager’s model and algorithm presented in [5] (to which we refer as
the "basic" algorithm) which is a distributed, quasi-static algorithm for minimum average delay routing.
Essentidly, every node maintains--for each destination--a set of routing variables, specifying the
corresponding fraction of the node’ s outflow routed towards each of the node’ s neighbors. In each iteration
of the algorithm each node adjusts its routing variables so that part of its out-flow is diverted from "expen-
sive" links (i.e., with high delay), to "cheaper”" ones. It is shown that under the prescribed conditions this
leads to minimization of the cost function.

We extend the basic model in several directions so as to include all processes (duplication, elimina
tion, and routing of originals and duplicates). An important part of the extension is mapping of these
processes into flows and link costs, which is described subsequently.

Routing

We assume that an st numbering procedure was previously applied to every node in our network
with respect to every destination, and that every node i recognizes its sets H; (j) and L; (j ) with respect to
every destination node j. Every packet carries alabel: a packet that has not been duplicated is labeled and
referred to as a normal (or N) packet, and the two duplicates generated from it are referred to as an H-
packet and an L-packet. Consequently, three types of flow are observed, one for each of the packet types
(N, H, L).

Routing is performed in away similar to that of the basic algorithm. Each node maintains three sets
of routing variables, one for each type of flow. The routing variables at node i are computed so that H-
packets destined for node j are forwarded only to neighbors belonging to H; (j ), and L-packets, similarly,
to neighbors belonging to L (j ).

Elimination

Packets may be eliminated in two kinds of circumstances: (1) randomly (or incidently), due to situa-
tions only partialy under the node’ s control, or (2) whenever the node deems it useful. We thus distinguish
between randomly eliminated packets (re-packets), and deliberately eliminated packets (de-packets).
Apart from the above distinction we are also interested in distinguishing between eliminated packets hav-
ing a duplicate which arrives at the destination and packets that do not have one. The latter are termed
costly packets because of the cost involved (we pay a penalty for them), while the former are termed free.



We thus have a total of four types of eliminated packets: randomly eliminated costly and free, and deli-
berately eliminated costly and free (respectively rc, rf, dc, and df packets).

It should be noted that deliberate elimination is in fact necessitated by the presence of random elimi-
nation in order to avoid undesired phenomena as exemplified in Figure 3. In thisfigure node s sends pack-
etstonode t vianodesi and k. Let w,,w,,w; be the costs per packet for traversing the links and w, the
penalty for eliminating a packet at node i. We assume that no deliberate elimination is allowed and that
wo>>wW,,Wa,W,. Under these circumstances, node’s k best policy would be to route packets back toward
node i in the "hope" that they will be eliminated. This is clearly an unacceptable policy; it would be
preferableto alow nodei to eliminate packets deliberately (note the routing loops formed!).

In a manner similar to that of [14] we model packet elimination by ‘‘routing” eliminated packets
toward their destinations through fictitious links added for that purpose. This enables us to consider elimi-
nation as aregular case of routing (see Section IV.A).

Duplication

To compensate for packet elimination, nodes are allowed to duplicate packets. Only a single dupli-
cation is allowed along a packet’s path. The duplication process is modeled by defining for each node i --
per destination node j --a duplication variable d; (j) which specifies the fraction of the N-packets destined
for j that is duplicated in node i. As part of the algorithm, each node will determine a proper vaue of
d, (j). Clearly, no duplication can take place at a node unless both H; (j) and L, (j ) are nonempty; the algo-
rithm will ensure that d, (j )=0 empty H; (j) or L; (j ).

Cost function

Our cost function is composed of the total average delay incurred by packets arriving at the destina-
tion and by the penalties paid for lost packets. When a single duplicate arrives at the destination, the cost is
itsdelay; when two duplicates arrive, the cost is some combination of their delays. When all duplicates are
eliminated, the cost is the penalty paid for that lost packet.

Figure 3: The Need for Deliberate Elimination



Thus, to every link, real and fictitious, a weight is attached signifying the cost of flow through it. To
calculate the cost of eliminated packets, a mapping is needed between the packet type (N,H,L) and its cost.
Eliminated N-packets are clearly al costly; eliminated H- and L-packets are harder to deal with, as deter-
mination of their cost requires knowledge of the fate of the sibling. This difficulty is overcome by defining
aquantity B(j ), related to the elimination probability of any duplicate on its way from any source to desti-
nation j. Now, each node regards a portion (3(j) of its eliminated H- and L- packets destined toward j as
costly, and the rest as free.

Algorithm

Following the basic algorithm (and aso [6]) we find necessary and sufficient conditions for a set of
routing and duplication variables to minimize the cost function. The algorithm is then derived directly
from the conditions for optimality.

The algorithm consists of a protocol to calculate the marginal costs and exchange messages among
neighbors, and a duplication routing (DR) agorithm to update the routing and duplication variables at each
node. In each iteration, and for each type of flow, the DR algorithm reduces the traffic on expensive links
and increases it on the cheap ones. Furthermore, it levels the amount of duplication and of deliberate elimi-
nation according to the marginal gain in the cost function involved in each of these processes.

Note that extensions of the basic algorithm effected with a view to increasing its speed of conver-
gence (such as that in [15]), or for other purposes (as in [16]) are applicable to our model. For the sake of
clarity, however, our presentation is confined to the basic algorithm.



IV.THE MODEL

A. General

Let our network be of fixed topology and composed of the set of nodes V, and the set of links E,,.
We assume that each link (i ,k)OE has finite capacity C;, >0 and consider full duplex links, i.e., (i ,k)OE,
implies (k,i )OE,. We denote by r; (j) the expected traffic (in bits per second) entering the network at node
i and destined for node j, and assume that thisinput traffic forms an ergodic process. The random elimina-
tion process is modeled by e (j ), the probability of a packet on its way to node j being (randomly) elim-
inated while in transit through node i .

To facilitate the analysis we construct an augmented network in which all flows (of both real and
eliminated packets) are conserved. We model packet elimination by adding fictitious links carrying the
flow of eliminated packets directly to their destinations--each type of eliminated packet through a different
fictitious link. However, although we originally defined four types of eliminated packets, only three need
be considered since (as will be shown subsequently see Section V.C) there is no need for deliberate elimi-
nation of duplicated packets (df flow is nonexistent).

To avoid having more than one link between two nodes, fictitious nodes are also added. Thus, an
eliminated packet is routed from the node in which it is eliminated through a fictitious link toward a ficti-
tious node associated with the intended destination of the packet, and then toward the destination itself.
Figure 4 shows the fictitious nodes and links associated with some node j, as well as the fictitious links
connecting some node i to them. The total sets of nodes and links in the augmented network are denoted
by V and E respectively.

Figure 4: Fictitious Nodes and Links
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To complete the description, we must specify what packets are routed along which links and what
the associated costs are.

B. Routing and Duplication

From the node' s activity standpoint, we distinguish between packets over which the node has control
(i.e., noneliminated and deliberately eliminated) and the rest (randomly eliminated). Each of these will be
treated separately. Noncontrollable packets are obviously routed directly toward the destination over the
appropriate fictitious links. Controllable packets are routed according to a routing function that diverts a
portion of the traffic to each eligible neighbor. Formally, let Z; be the set of node i s real neighbors (from
V) plusthe fictitious nodes toward which deliberately eliminated packets are routed (j4 in Figure 4); node
i routes a fraction @y (j) of the outflow of N-packets at node i and destined for node j over link (i k)
where kJZ;. The amount of deliberately eliminated packets is therefore controlled by (”\“J'de(j ). A similar

approach is adopted for H- and L-packets, except (as noted before) that these packets will not be deli-
berately eliminated and the eligible neighbors are those belonging to H; (j ) and L; (j ) respectively.

To sum up, for each node i, we have three sets of numbers { @i (j )}, {Ouik (7))}, and {@ (j)} con-
trolling the routing and the deliberate eliminations, and one set d; (j ) controlling the duplication process.

Figure 5 describes in detail the packet flow through node i . Note the definition of £y (j), £y (j ), and
tai (j) (where A isone of N, H, L) which represent the flow entering the node, the flow after random elimi-
nation, and the flow after duplication, respectively. These flows obey the following relations:

Figure 5: Packet Flow Through Node i
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Equations (1) uniquely define the flows as a function of the duplication and routing variables[5,13].

C. Cost Function

Denote by fyix.frik.fLik the flow of N-, H-, and L-packets respectively in link (i k), and use the
shorthand fﬂA:(fNik,ink,fuk). In addition we define fikA:fNik+ink+fLik- Let Ty (f;) be the delay (per
bit) function of alink (i ,K)OE,. We assume that the function f;, - T;. (f;c) iS nonnegative, continuous, con-
vex, and nondecreasing with respect to f;,, with continuous first and second derivatives, and that T;,
becomes unbounded as the flow reaches capacity [6]. We also denote by [ the probability of packet elimi-
nation in the network irrespective of source and destination.

With these definitions, the cost function of an actual link (i k)OE,is

(1+B)

> (Fri L] Ti (Fie) -

A
Di (Fir) L i+

Here the cost for N-packets is the full delay. For H- and L-packets, the full price is paid when only one
duplicate arrives (probability (3), and half the price for each when both duplicates arrive (probability 1-3).
The cost of deliberate elimination is calculated by assigning the cost function D”-d (fijd )A:fijd D; to

thefictitiouslinks (i ,jq ) carrying these packets, where D; does not depend on the flow. Similarly, for ran-
domly eliminated flow D;; (fj; )=f;; D;. The cost function of the rest of the fictitious linksis zero since all

the traffic they carry is either not costly or the cost has already been accounted for.

Putting all thistogether, the network cost function, Dy, isdefined as

Dr(f)= 3 Di(fin)-
(i K)OE
It is readily verified that Dik(hk_) is guaranteed to be convex if and only if B=1. Thisis a conse-
guence of assigning a different cost to each kind of flow, although all flows equally affect the link delay.
We shall therefore restrict ourselves to the case of f=1. This restriction results in increasing the relative
cost of sending duplicates as compared with that of sending an unduplicated packet and that of deliberately
eliminating it--effects that can be canceled out by choosing higher values for D; .
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D. Optimality Conditions

Our aimisto find necessary and sufficient conditions for a set of flowsto minimize D;. Having con-
structed a Lagrangian based on the constraints on network variables and taken derivatives (steps similar to
thosetaken in [6]), we are led to the following four conditions:

AN () faik(i)>0

Yi 1j |:|VO [ ;tj 1yk|:|zi Dit""'MNk(j ) %.EAN (J) fN'k(j ):0 (2)
i i

. . o _ g:}‘Hi(j) fLik(1)>0 o
i VoI#], YO G) DM 3 ) 44120

G=AG(J) fuk()>0

Yi 1j |:|VO [ ;tj ' ykDLi (J ) DiLk’+MLk(j ) E.EAL (J ) fL'k(j ):0 (4)
i i

Et?\m (D+AL (1) 0<di(j)<1

Ai(J) E‘Em (1)+AG () 0=di(j) (5)
Ay (1) () d()=1
o @it Y N
where D; ——————, and similarly for D;; and D, , and the As are the Lagrange multipliers, and the M
Nik
values are defined by

M (1) 21161 (T2 () )DAe ( )+{ 28 (DT (1) () +Aii () )]+ (D,
M () L1 (1 Ak )+ (1 )BG D

My () H 16 () )+ex (1)BG)D,

My (i) =My (1) =My ()20

From the above derivation it is clear that expressions (2)-(5) are necessary conditions for minimizing D+

(6)

over the set of feasible solutions. For =1, they are also sufficient [13].

The conditions for optimality have an intuitive significance: The Lagrange multipliers A, (j) are the
cost of sending an infinitely small incremental flow of type A from node i to destination j, where A isone
of N,H,L. The value My (j) is, then, the average cost of sending such a flow via a neighbor k (apart
from the incremental cost of transmission to k itself, which is Diﬁ'), bearing in mind the possibilities for
duplication and elimination at k. Thus, the conditions simply state that optimality requires that the incre-
mental cost be equal for all neighbors k to which i sends flow of type A, and that i levels the degree of
duplication so that the incremental cost of sending the duplicates equal s that of sending a single copy.
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V. THE ALGORITHM

The algorithm seeks to satisfy the optimality conditions by maodifying the flows (through changes in
the variables @ and d) so that the Asare equalized. Thisisdone by reducing those routing variables @ (j )
for which Diy (fi)+Ma(j ) is large, increasing those for which it is small, and, in addition, reducing d; (j )
if Ani(j) issmaller than A (j)+A; (j) and increasing it if Ay (j) islarger. As mentioned previously, the
algorithm consists of a protocol to calculate the Lagrange multipliers and a duplication routing (DR) algo-
rithm to update the variablesin each node.

A. TheProtocol to Calculate A

To calculatethe A each node i estimates, as atime average, the D} , Dii., Diy for each outgoing link

[13]. Calculation of the quantities Ay; (j) and Ay (j) proceeds asin [5]: node i waits until it has received

My (j) or M (j) from al its neighbors k that are H- or L-downstream from it respectively, and then com-
putesAy; (j) and Ay (j) by the formula

Mi()= 3 Dk My (Do) Au()= X D +Muc(di(i)-

KOH () KL, G3)

(7)

Having calculated Ay (j ), node i calculates M,y (j ) according to (6) and transmits it to all nodes kOL; (j ).
Similarly for M; (j). Note that we should not be concerned with routing loops because of the constraints
imposed by the st -numbering scheme.

The calculation of Ay (j) is somewhat different since the N-stream is affected by the H- and L-
streams. Typically, node i waits until it has computed Ay; (j), Ay (j), and Ay; (j) from which it computes
My (j) according to (6), and transmits it to all its neighbors (unless d; (j )=1, in which case My; (j ) can be
calculated immediately). Ay; (j) is calculated after receiving My, (j ) from al N-downstream neighbors by

A ()= 3 [Dik M ()] (0)-

koz

(8)

The protocol for the N-variables is problematic because it has deadlocks unless the routing is loop-
free. It is known that the basic protocol deadlocks only if there is a circuit of nodes and a destination j
such that for each subsequent pair in the circuit (i k), @, (j)>0. In our case, however, this is too strict a
requirement since if one of the nodes in such a circuit duplicates al its N-packets (d; (j )=1), routing loops
are not formed. Freedom from loops in our case is secured by absence of a circuit of nodes for which

[1=d: ()] @ik (1)>0.

B. DR Algorithm

In order to ensure loop-free routing given disjoint duplicate paths, we define--in the spirit of [5]--for
each node and each type of flow (N, H, L) aset of blocked neighbors (By; (j ), Bui (j ), By (j ) respectively).
For these nodes a flow may not be initiated if it was zero before. Note that in our case a zero flow may

-14-



result from either ¢=0 or, for N-flow, if d=1.

On each iteration the DR algorithm maps the current duplication parameter set d into a new set &
and the routing parameter set ¢ into a new set ¢! Given our definition of the sets of neighbors and of
blocked neighbors, @lcan be derived from @ in a manner similar to [5]. The duplication variable is simi-
larly derived asfollows:

If d; (j)=1 and there exists a k 0By (j ) such that @, (j )#0, then
dil(j)=1

else

a 8 ()= M (DA (DAL G

B, ()
Snax{~d, (1), min{1-d; (), ———1} fy ()20
0 Ni U
74 () fu (1)=0and 4, (1)<0
b. Ay(j)=E
40) 1-d () f (1)=0and 4, (j)>0
g f (1)=0and 8, (1)=0

c. dki)=d (i)+Aq4 (i)

In the above n is an arbitrary scale parameter that controls the amount of correction to the routing
and duplication variablesin every iteration.

This agorithm proves to converge to optimum. This convergence does not result directly from that
of the basic algorithm, since our case is more general for the following reasons: (1) there are several types
of flow; (2) the direct origin of the H- and L- flows is the duplicated N-flow, and thus may be non-
stationary; (3) the total amount of flow in the network is not stationary. However, it does seem natural for
this algorithm to be optimal given the optimality of the basic algorithm. If we consider the duplication box
and each of the elimination boxes in Figure 4 as distinct nodes, we have an almost normal network (except
that the duplication box routes each packet toward two different nodes). Although this nonstationarity calls
for arigorous treatment to prove the optimality claim [13], this nonstationarity is not crucial since the flow
may vary within a bounded range.

Asis expected from [5] and shown in [13], the protocol thus defined is free of deadlocks, the result-
ing routing is loop-free on every iteration, and the duplication and routing variables converge to values that
minimize Dr.

C. DR Algorithm and Flow Control

From the above model, it is readily deduced that, at optimality, deliberate elimination takes place
only at the source node--if at all. We note that the cost of deliberate elimination does not depend on the
identity of the eliminating node, and recall that D; increases whenever a packet traverses an actua link.
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Therefore, Dt is minimized only if al deliberate eliminations are performed at the source. This aso
explains why there is no need for deliberate elimination of H- and L- packets, since duplicating a packet at
the source and then having the source deliberately eliminate one or both duplicates is meaningless. (Note
also that deliberate elimination can take place only at nodes without N-upstream neighbors as this process
does not distinguish anode’ s own packets from those coming from an upstream neighbor.)

In fact, source nodes use deliberate elimination as a flow control mechanism, reducing the input flow
in order to reduce the load (and thus the delay) in the network. In [14] a similar approach was used for
developing a flow control mechanism, which was braided with a routing algorithm. There, discarded input
packets are routed fictitiously toward the destination via a fictitious link whose cost function is a penalty
function for discarded packets. However, in [14] this penalty function is not linear in the flow, asit isin
our case, but increases asymptotically to infinity as the amount of discarded packets reaches the total input
demand of the node. In our case, such an approach would not be appropriate, since packets can be dis-
carded at any node, and thus the penalty cannot be related to some value of the source node. Moreover, it
is not obvious that the penalty paid for any discarded packet should depend on the total amount of discard-
eding, and it can be argued that in certain cases it is more reasonable to pay a constant penalty for each lost
packet.
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VI.A MODEL WITH RETRANSMISSIONS

We consider now the case in which a packet is transmitted repeatedly by the source until it arrives at
the destination.

A model that best describes this situation is one in which a fictitious link is added between any node
i and every source node s. All packets completely eliminated at i (i.e., all costly lost packets) are routed
toward s via this fictitious link, as complete loss of a packet implies its retransmission by the source. (As
before, free lost packets are routed toward the destination via fictitious links.) However, a major problem
arises when this model is used for a distributed implementation, as the routing decisions are now source-
dependent (of complexity O(nz)), thus requiring a large volume of memory at each node and entailing a
high communication cost in the links. Another problem with this model arises when an algorithm of the
same class as the one described in Section V is considered; routing loops cannot then be avoided.

We thus propose an aternative model in which we add a fictitious link between any node and itself
(to avoid the inconvenience of creating a self-loop one can regard each node as composed of two internal
nodes). All costly packets eliminated at i are routed again toward i via this fictitious link; they then con-
tinue to their destination as normal packets. As before, free lost packets are sent directly to the destination
viaa fictitious link. Observe that in this model we assume that a retransmitted packet will arrive again at
the node where it was lost. The cost function of the fictitious link between the eliminator node i and itself
isrelated to the retransmission price from the source node to i . Obvioudly, this model is less accurate then
the one elaborated on previoudly, but still retains the main properties of the retransmission scheme; for
example, deliberate elimination is ruled out (as it is always more expensive to lose a packet than to go on
transmitting it), a reasonabl e feature where retransmissions are involved.

This model can be analyzed in a very similar way to the one presented in Section Ill; an algorithm
similar to the DR algorithm can be derived for it, and al properties proved for the DR agorithm can be
proved to hold for this algorithm as well.
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