
Rover: A Toolkit for Mobile Information Access

Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K. Gifford, and M. Frans Kaashoek

M.I.T. Laborato~ for Computer Science

Cambridge, MA 02139, U.S.A.

{ad-j, aldel, josh, gifford, kaashoek}@lcs .mit .edu

Abstract

The Rover toolkit combines relocatable dynamic objects and queued

remote procedure calls to provide unique services for “roving” mo-

bile applications. A relocatable dynamic object is an object with a

well-defined interface that can be dynamically loaded into a client

computer from a server computer (or vice versa) to reduce client-

server communication requirements. Queued remote procedure call

is a communication system that permits applications to continue to

make non-blocking remote procedure call requests even when a host

is disconnected, with requests and responses being exchanged upon

network reconnection. The challenges of mobile environments

include intermittent connectivity, limited bandwidth, and channel-

use optimization. Experimental results from a Rover-based mail

reader, calendar program, and two non-blocking versions of World-

Wide Web browsers show that Rover’s services are a good match

to these challenges. The Rover toolkit also offers advantages for

workstation applications by providing a uniform distributed object

architecture for code shipping, object caching, and asynchronous

object invocation.

1 Introduction

Application designers for mobile “roving” computers face a unique

set of communication and power constraints that are absent in tra-

ditional workstation settings. For example, although mobile com-

munication infrastructures are becoming more common, network

bandwidth in mobile environments will often be limited, and at

times, unavailable. In addition, mobile hosts tend to have limited,

but variable hardware resources. A mobile host maybe completely

disconnected, plugged into AC power, plugged into a wired net-

work, or docked. Docking stations can provide a wide range of

additional resources including co-processors, stable storage, and

user interface devices. As a mobile host gains access to new hard-

ware resources, client-server computation allocation trade-offs may

change. Therefore, mobile application designers have a common

need for system facilities that minimize dependence upon contin-

uous connectivity, that provide tools to optimize the utilization of

This work was supported m put by the Advanced Research Projects Agency under

contract DABT63-95-C-O05, by an NSF Natmnal Young Invesbgator Award, and by

grants from IBM and AT&T

Permission to make digitalhard copy of part or all of this work for personal
or classroom LKe is granted without fee provided that copies ere not mada

or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To capy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGOPS ’951295 cO, USA

01995 ACM 0-89791-71 5-4/95/0012...$3.50

network bandwidth, and that allow for dynamic division of work

between client and server.

The Rover toolkit provides mobile application developers with

a set of tools to isolate mobile applications from the limitations of

mobile communication systems. The Rover toolkit provides mobile

communication support based on two ideas: relocatable dynamic

objects (RDOS) and queued remote procedure call (QRPC). A re-

locatable dynamic object is an object with a well-defined interface

that can be dynamically loaded into a client computer from a server

computer (or vice versa) to reduce client-server communication

requirements. Queued remote procedure call is a communication

system that permits applications to continue to make non-blocking

remote procedure calls [6] even when a host is disconnected: re-

quests and responses are exchanged upon network reconnection.

The Rover toolkit offers applications a uniform distributed ob-

ject system based on a clientlserver architecture. Rover applications

employ a check-in, check-out model of data sharing: they import

RDOS into their address spaces, invoke methods provided by the

RDOS, and export the RDOS back to servers. An RDO might be as

simple as a calendar item with its associated operations or as com-

plex as a module that encapsulates part of an application (e.g., the

user interface of a calendar tool), More complex RDOS may create

threads of control when they are imported. The safe execution of

RDOS is ensured by executing them in a controlled environment.

Rover permits disconnected hosts to update shared objects, Ob-

ject consistency is provided by application-level locking or by using

application-specific algorithms to resolve uncoordinated updates to

a single object. In Rover, every object has a “home” server. A

mobile host imports objects into its local cache and exports updated

objects back to their home servers. Update conflicts are detected at

the server, where Rover attempts to reconcile them Because Rover

can employ type-specific concurrency control [62], we expect that

many conflicts can be resolved automatically. In addition, we ex-

pect that certain applications will be structured as a collection of

independent atomic actions [16], where the importing action sets

an appropriate application-level lock.

Our initial implementation of Rover permits applications full

access to the objects of the World-Wide Web (WWW) [4]. Objects

are named using Universal Resource Names (URNS) [52] and our

implementation is fully compatible with the HyperText Transport

Protocol (HITP) [5]. Our research prototype is modular, and favors

ease of implementation and experimentation over performance, The

Rover toolkit supports several transport protocols (e.g., H’fTP and

Simple Mail Transport Protocol (SMTP) [45]) over various commu-

nication media (e.g., Ethernet, WaveLAN, and phone lines). SMTP

allows Rover to exploit E-mail for queued communication. We

have developed three Rover-based applications: an E-mail reader,

a calendar program, and a WWW browser proxy that provides two

non-blocking versions of common WWW browsers. These appli-

cations are representative of the set that mobile users are likely to

use, In these applications, RDOS are downloaded into the client

and executed to reduce communication requirements, and server

requests are queued for asynchronous processing.

156

Experience with applications developed using Rover shows that

it is possible to build interactive applications that isolate a user

from the loss of network connectivity and from limited network

bandwidth. For example, in the case of NCSAS Mosaic WWW

browser [41], Rover delivers information immediately if it is avail-

able in the local Rover cache; in the case of a cache miss, it queues

a request and returns immediately. The user is later notified when

the information arrives. Thus, a user can “click ahead” of the

communication channel, and expect a stream of responses as they

become available. In addition, forms and other interactive com-

ponents that are typically implemented with server scripts can be

downloaded for local execution. Submitting a form is also imple-

mented asynchronously, and a user can proceed even if the mobile

host is disconnected. Form responses are delivered as they are

received.

Certain aspects of Rover are also attractive for workstation ap-

plications. For example, Rover provides distributed workstation

applications with a uniform object architecture. These applications

can use RDOS to offload servers by caching objects and download-

ing functionality from servers to clients, or vice versa. RDOS can

also be used to dynamically extend clients; for example, a WWW

browser can be dynamically extended to include a particular pay-

ment scheme. QRPCS can be used to send RPCS to remote hosts

(with SMTP as a transport protocol), which can permit servers

to batch process requests, and can shift low priority inquiries to

off hours. Responses to these RPCS are transported by SMTP to a

nearby mail host, which can stage the responses for rapid retrieval by

the client. Rover provides all these features in a well-defined object

framework, which simplifies the construction of high-performance

distributed applications.

We draw four main conclusions from our experimental data:

1. Applications written using a file system model for sharing and

storing data can be relatively easily ported to Rover’s object

model. Porting Brent Welch’s Exmh and Sanjay Ghemawat’s

Ical to Rover required simple changes to 10% and 15% of the

lines of code, respectively.

2. QRPC performance is acceptable even if every RPC is stored

in a stable log, or if SMTP is used as a transport protocol. For

lower-bandwidth networks the overhead of writing the log is

dwarfed by the underlying communication costs.

3. Caching RDOS reduces latency and bandwidth consumption.

A local invocation on an RDO is 56 times faster than sending

an RPC over a TCP/CSLIPl 4.4 [25] connection.

4, Migrating RDOS provides Rover applications with excellent

performance over moderate bandwidth links (e.g., 14.4 Kbit/s

dial-up lines) and in disconnected operation. Exrrrh, a TcUTk

based E-mail browser, running over NCD’S PC-Xware 2.0’s

Xrernote on a 14.4 Kbit/s line is 8.3 times slower than Rover

Exrnh, our port of Exmh. Using RDOS also yields significant

improvements in Graphical User Interface (GUI) responsive-

ness when using low bandwidth network links.

In the remainder of this paper we present the context of our

work (Section 2), the Rover programming model (Section 3), the

Rover architecture (Section 4), discuss the Rover implementation

and HTTP compatibility (Section 5), describe the current Rover ap-

plications (Section 6), review experimental results from the appli-

cations (Section 7), and conclude with observations on the benefits

and limitations of the Rover approach (Section 8).

2 Related Work

To our knowledge, no one has studied an architecture like Rover’s,

which provides both queued RPC and relocatable dynamic objects.

Queued RPC is unique in that it provides support for asynchronous

fetching of information, as well as for lazily queuing updates. The

use of relocatable dynamic objects for dealing with the constraints

of mobile computing—intermittent communication, varying band-

width, and resource poor clients—is also unique to the Rover archi-

tecture.

The Coda project pioneered the provision of distributed services

for mobile clients. In particular, it investigated how to make file

systems run well on mobile computers by using optimistic concur-

rency control and prefetching [30. 50]. Coda logs all updates to the

file system during disconnection and replays the log on reconnec-

tion. Coda provides automatic conflict resolution mechanisms for

directories and files, and uses Unix file naming semantics to invoke

application-specific conflict resolution programs at the file system

level [31]. A manual repair tool is provided for conflicts of either

type that cannot be resolved automatically. A newer version of

Coda also supports low bandwidth networks, as well as intermittent

communication [39],

The Ficus file system also supports disconnected operation,

but relies on version vectors to detect conflicts [48]. The Little

Work Project caches files to smooth disconnection from an AFS file

system [23]. Conflicts are detected and reported to the user. Little

Work is also able to use low bandwidth networks [22].

The Bayou project [11, 54] defines an architecture for sharing

data among mobile users. Bayou addresses the issues of tentative

data values [55] and session guarantees for weakly-consistent repli-

cated data [53]. To illustrate these concepts, the authors have built

a calendar tool and a bibliographic database. Rover borrows the

notions of tentative data, session guarantees, and the calendar tool

example from the Bayou project. Rover extends this work with

RDOS and QRPC to deal with intermittent communication, limited

bandwidth, and resource poor clients.

An alternative to the Rover object model is the Thor object

model [36]. In Thor, objects are updated within transactions that

execute entirely within a client cache. However, Thor does not

support disconnected operation: clients have to be connected to

the server before they can commit. An extension for disconnected

operation in Thor has been proposed by Gruber and others [19],

but it has not been implemented. Furthermore, it does not provide

a mechanism for non-blocking communication, and their proposed

object model does not support method execution at the servers.

The BNU project implements an RPC-driven application frame-

work on mobile computers. It allows for function shipping by

downloading Scheme functions for interpretation [61]. Application

designers for BNU noted that the workload characterizing mobile

platforms is different from workstation environments and will entail

distinct approaches to user interfaces [33]. The BNU environment

includes proxies on stationary hosts for hiding the mobility of the

system. No additional support for disconnected operation, such as

Rover’s queued RPC, is included in BNU. A follow-up project, Wit,

addresses some of these shortcomings and shares many of the goals

of Rover, but employs different solutions [60].

RDOS can be viewed as simple Agents [49] or as a light-weight

form of process migration [14,46,51, 56]. Other forms of code ship-

ping include Display Postscript [1], Safe-Tel [7], Active Pages [21],

Dynamic Documents [26], and LISP Hypermedia [38], RDOS are

probably closest to Telescript [63], Ousterhout’s Tcl agents [44],

and Java [18]. Most differences between RDOS and these other

forms of code shipping are immaterial because the particular form

157

of code shipping is orthogonal to the Rover architecture. The

key difference between Rover and other code shipping systems

is that Rover provides RDOS with a well-defined object-based ex-

ecution environment that provides a uniform naming scheme, an

application-specific replication model, and QRPC.

The InfoPad project [34] and W4 [3] focus on mobile wireless

information access. The Infopad project employs a dumb terminal,

and offloads all functionality from the client to the server. W4 em-

ploys a similar approach for accessing the Web from a small PDA.

Rover, is designed to be more flexible. Depending on the power

of the mobile host and the available bandwidth, Rover dynamically

adapts and moves functionality between the client and the server.

A number of proposals have been made for dealing with the

limited communication environments for mobile computers. Katz

surveys many of the challenges [27]. Baker describes MosquitoNet,

which shares similar goals with Rover, but has not been imple-

mented yet [2]. Oracle recently released a product for mobile

computers that provides asynchronous communication [15]; unfor-

tunately, details and performance analysis are not available.

A number of successful commercial applications have been de-

veloped for mobile hosts and limited-bandwidth channels. For

example, Qualcomm’s Eudora is a mail browser that allows effi-

cient remote access over low-bandwidth links. Lotus Notes [28]

is a groupware application that allows users to share data in a

weakly-connected environment. Notes supports conflict detection,

but reflects all conflicts to the user for resolution. The Rover toolkit

and its applications provide functionality that is similar to these pro-

prietary approaches and it does this in an application-independent

manner. Using the Rover toolkit, standard workstation applications,

such as Exmh and Ical, can be easily turned into “roving” mobile

applications.

The DeckScape WWW browser [8] is a “click-ahead” browser

that was developed simultaneously with our web browser proxy.

However, their approach was to implement a browser from scratch;

as such, their approach is not compatible with existing browsers.

Several systems use E-mail messages as a transport medium,

and obtain similar benefits as we obtain by using QRPC. The Ac-

tive Message Processing project [57] has developed various applica-

tions, including a distributed calendar, which use E-mail messages

as a transport medium, In another project, researchers at DEC

SRC used E-mail messages as the transport layer of a project that

coordinated more than a thousand independently administered and

geographically dispersed nodes to factor integers of more than 100

digits [35]. The application is a centralized client-server system

with one server at DEC SRC that automatically dispatches tasks

and collects results.

Our research borrows from early work on replication for non-

mobile distributed systems. In particular, we borrow from Lo-

cus [59] (type-specific conflict resolving) and Cedar [17] (check-in,

check-out model of data sharing).

3 Rover Programming Model

In this section, we discuss the Rover programming model, QRPC,

RDOS, user interface issues, and Rover application development.

3.1 Overview

The Rover toolkit offers applications a distributed object system

based on a client/server architecture. Clients are Rover applications

that typically run on mobile hosts, but could run on stationary

hosts as well. Servers, which may be replicated, typically run on

~
Mobile host Sewer

Figure 1: Rover offers applications a client/server distributed ob-

ject system with client caching and optimistic concurrency control.

Rover applications employ a check-in, check-out model of data

sharing by calling import, invoke, and export operations. A net-

work scheduler drains the stable QRPC log, which contains the

RPCS that must be performed at the server.

stationary hosts and hold the long term state of the system. Rover

applications employ a check-in, check-out model of data sharing:

they import objects into a local object cache, invoke methods

provided by the objects, and export the objects back to servers.

This process is reflected in Figure 1.

Rover objects are named by unique object identifiers, which are

URNS in our prototype. Servers store RDOS, which are objects

with well-defined interfaces that can be dynamically relocated from

the server to the client, or vice versa. An RDO might be as simple

as a calendar item with its associated operations or as complex

as a module that encapsulates part of an application (e.g., the user

interface of a calendar tool). These more complex RDOS may create

a thread of control when they are imported. The safe execution of

RDOS is ensured by executing them in a controlled environment.

Rover applications can choose the degree of consistency used

for replicating objects. Rover caches objects on mobile hosts in a

cache that is shared by all applications running on that host, Cached

objects are secondary copies of objects; the exporting server retains

the primary copy. When Rover invokes a method on an object, it first

checks the object cache. If the object is resident, Rover modifies the

object without contacting the server. These updates to the cached

copy are marked tentatively committed. Each update will be marked

committed when the update is performed upon the server’s copy of

the object. By using tentatively committed objects, applications

can continue computation even if the mobile host is disconnected.

Rover applications typically reflect tentatively-committed objects

to users (e.g., by displaying them in a different color) so that users

can tell that their updates have not yet been committed,

If an object is not present, Rover lazily fetches it from the server

using a QRPC. Rover stores the QRPC in a stable log at the mobile

host and returns control to the application. The application can

register a callback routine with Rover, which will be called by

Rover to notify the application that the object has arrived. If the

mobile host is connected, the Rover network scheduler drains the

log in the background and forwards queued QRPCS to the server.

The Rover network scheduler may deliver QRPCS in a different

order from their enqueued order (i. e., non-FIFO), depending upon

associated priorities and the dollar costs for communicating with

the server.

Upon arrival of a fetch request, the server fetches the requested

object and sends it back to the mobile host, If a mobile host is

disconnected between sending the request and receiving the reply,

Rover will replay the request from its stable log upon reconnection.

Upon receiving a fetch reply, Rover inserts the object returned into

the cache and deletes the QRPC from the stable log. In addition, if

158

a callback routine is registered, Rover will perform the callback to

inform the application that the object has arrived. The application

can then invoke methods on the local copy.

When an invoked method modifies a cached object, Rover lazily

updates the primary copy at the server by sending the method call in

a QRPC to the server, and returns control to the application. When

the QRPC arrives at the server, the server invokes the requested

method on the primary copy, Typically a method call first checks

whether the object has changed since it was imported by a mobile

host. Rover maintains version vectors for each object so that meth-

ods can easily detect such changes. If the object has not changed,

the method modifies the primary copy and sends a reply back to the

mobile host. Upon arrival of the reply, Rover changes the object

from tentatively committed to committed, deletes the QRPC from

the stable log, and invokes a callback (if one is registered).

If a method call at the server detects an update-update con-

flict, then the conflict is resolved in an application-specific manner.

The Rover toolkit itself does not enforce any specific concurrency

control mechanism or consistency guarantees on copies of objects.

Instead, it provides a mechanism for detecting conflicts and leaves

it up to applications to reconcile them. For example, the Rover

Exrnh E-mail browser exploits semantic knowledge about folders

and messages to determine whether a conflict violates consistency.

For example, concurrently deleting two different messages in the

same folder does not result in a conflict. If there is a conflict that

cannot be reconciled, the method returns with an error. These errors

are reflected to the user so that he or she can resolve the conflict.

The interval between the time an object is imported to an appli-

cation and the time it is exported back to the server represents the

time during which conflicting updates may occur. Applications can

eliminate this window by using application-specific locks or can

reduce this window through the use of periodic polling or server

callbacks.

The Rover shared object model is different from Coda’s shared

file model [30]. In the Rover model, consistency is provided

by application-level locking or by using application-specific al-

gorithms to resolve uncoordinated updates to a single object. In the

Coda model, concurrency is provided by open/close operations on

files, extended with file-specific conflict resolvers [32]. The disad-

vantage of using a file model is that it provides only coarse-grained

conflict resolution, since it does not allow for type-specific concur-

rency control and replication. By storing each datum in a separate

file some of the disadvantages of the Coda model can perhaps be

avoided; however, the Coda resolvers cannot distinguish between

two files of the same type. In addition, because Coda can only

use read/wrhe operations, semantic information about operations is

lost; without the semantic information, it may not be possible to

commute two writes.

Rover provides cryptographic authentication for client-server

interactions. Clients authenticate themselves and exported changes

to servers; likewise, servers authenticate themselves to clients.

3.2 Queued Remote Procedure Call

Queued remote procedure call (QRPC) is a communication system

that permits applications to continue to make RPC requests even

when a host is disconnected, with requests and responses being ex-

changed upon network reconnection. For example, when a client

imports an object from a server, Rover appends the import oper-

ation to a stable log and returns to the application. If the mobile

computer is connected, the network scheduler will send the request

to the server. When the reply arrives, Rover delivers a notification to

the application. If the mobile host is disconnected (or communica-

tion is too expensive) the RPC remains in the operation log until the

client is reconnected (or communication becomes less expensive);

at that point all enqueued QRPCS are sent. This asynchronous com-

munication model allows applications to decouple themselves from

the underlying communication infrastructure. During disconnected

operation, the network simply appears to be very slow,

Unlike simple message passing, QRPC incorporates stub gener-

ation, marshaling and unmarshaling of arguments, and at-most-once

delivery semantics. QRPC differs from traditional asynchronous

RPC in its failure semantics. A traditional RPC fails when a net-

work link is unavailable or when a host crashes. QRPCS are stored

in a stable log so that if links become unavailable or the sender

or receiver crashes, they can be replayed upon recovery. They are

deleted from the log only after a response has been received from

the server.

The Rover network scheduler is responsible for draining the

log and forwarding QRPCS to servers. It can transmit a group of

related operations together in a single message to improve trans-

mission efficiency. It supports prioritization of QRPCS, both within

an application and between applications (see Section 4.4). It ex-

ploits the stable log and the application-supplied priorities to re-

order transmission of QRPCS. Reordering is important to usability

in an environment with intermittent connectivity, as it allows the

user (through applications) to identify the operations that are most

important. For example, a user who has been disconnected for sev-

eral days may have a significant amount of work stored in the log.

By allowing transmission reordering, Rover allows users to choose

to send important information over a slow or expensive link, and

delay other sends until faster or less expensive communication is

available.

The split-phase communication model offered by QRPC pro-

vides several key benefits, including the ability to use separate

or different communication channels for the request and response

and allowing the communication channel to be closed during the

intervening period. Several existing and new wireless technolo-

gies offer asymmetric communication options, such as receive-only

pagers and PCS phones that can initiate calls, but cannot receive

them. By splitting the request and response pair, communication

can be directed over the most efficient, available channel. Closing

the channel while waiting is particularly useful when the expecta-

tion is that the waiting period will be fairly long (e.g., due to server

load or operation complexity) and that the client is charged for use

of the channel based upon connection time.

Another potential advantage of QRPC is that it can be used to

stage messages near their destination. This addresses the problem

of a disconnected client, saturated server, or failed link. It is useful

because it allows for faster data transmission once the condition

preventing data progress is removed. For example, staging data

near the next expected contact point of a mobile computer will

reduce the round-trip time penalties incurred during transmission

over a large distance.

3.3 Relocatable Dynamic Objects

Rover applications can employ RDOS in at least four ways:

1. Graphical User Interfaces (GUIS) can be downloaded and

customized for a mobile host. Using GUIS over wide-area or

low bandwidth networks can bean exercise in frustration. By

migrating a GUI to the client, input events can be processed

locally, even if the client becomes disconnected. In addition,

these interactive programs can change their appearance de-

pending upon the available display resources and available

bandwidth for fetching large images.

159

2.

3.

4

A server can send a decompression procedure along with

compressed data in order to obtain application-specific com-

pression, which can reduce network bandwidth consumption.

Applications can implement their own consistency protocols.

For example, like other calendar tools, our distributed calen-

dar application schedules a meeting by starting with a set of

choices and verifying the availability of a time slot in each

attendee’s calendar. It performs the verification by examining

each calendar for a matching free time period. After it has

found such a period, it marks the time period as tentatively

scheduled on each calendar. If, after marking all calendars,

no irreconcilable conflicts have occurred, it marks the meet-

ing as scheduled. Otherwise, it deletes the temporary time

period and repeats the scheduling attempt with an alternative

time period. Eventually, if no satisfactory time is found, the

operation aborts and returns an indication of its failure to

the client. This two-phase commit process is an example of

how the Rover architecture allows application designers to

build applications with the desired degree of consistency for

application-level operations.

Clients can export comtx.rtation to the server. Such RDOS are

particularly u;eful for \wo operations: performing filtering

actions against a dynamic data stream and performing com-

plex actions against a large amount of data. In the case of a

dynamic data stream, without an RDO executing at the server,

the application would either have to poll or rely upon server

callbacks. While this might be acceptable during connected

operation, it is not acceptable during disconnected operation

or with intermittent connectivity. Furthermore, every change

to the data would have to be returned to the client for pro-

cessing. Whh RDOS, the desired filtering or processing can

be performed at the server, with only the processed results

returned to the client. For example, a financial client making

decisions based upon a set of stock prices could construct an

RDO that would watch prices at the server and report back

only significant changes. This would significantly reduce

the amount of information transmitted from the server to the

client.

An added benefit of RDOS is that the Rover toolkit can be dy-

namically extended. Rover starts as a minimalistic “kernel” that

imports functionality on demand. This feature is particularly im-

portant for mobile hosts with limited resources.

Implementing RDOS involves three somewhat conflicting goals:

(1) safe execution, (2) portability, and (3) efficiency. These goals

can be achieved by using approaches such as code inspection [12]

and sandboxing [58], pointer-safe languages [18, 47], or code in-

terpretation with limited environments (e.g., Safe-Tel [43]). In our

initial implementation we use interpreted Tel.

3.4 User Notification

Because the mobile environment may rapidly change from moment

to moment, it is important to present the user with information

about its current state. The Rover toolkit provides applications

with information about the environment for presentation to the user.

Applications may use either polling or callback models to determine

the state of the mobile environment.

The environment consists of the state of imported RDOS and

the state of the network. The RDO life cycle consists of being

imported but not yet present, being present in the local environment,

being modified locally by method invocations, being exported to the

server, being reconciled or committed, and being evicted from the

environment. A network interface may be present or absent, and,

if present, is characterized by cost and quality of service: latency

and bandwidth. Applications can register methods to be invoked

for each change in the state of an RDO or of the network.

Applications reflect these notifications to users. For example, m

an E-mail application, messages that have been imported but have

not yet arrived locally may be “grayed” or marked “loading.” A

calendar application may mark tentatively scheduled events with a

particular color. When a network interface becomes available after

a period of disconnection, the user may be queried as to whether to

fetch E-mail. Alternatively, a user may instruct an E-mail reader to

fetch new messages at the next opportunity.

3.5 Programming with Rover

To create an application with Rover, a programmer defines objects

for the data types manipulated by the application. Methods that

update an object should include code for conflict detection and res-

olution. In addition, a programmer defines an object to encapsulate

the return value of an export operation. The return value may be

another object that may be created at runtime.

The interface between Rover and its applications contains four

primary functions: create session, import, invoke, and export.

Create session is called once to set up a connection with the local

object-cache manager and return a session identifier. It also provides

authentication information, which is used by the cache manager to

authenticate client requests that are sent to a Rover server.

To import an object, an application calls import and provides

the unique identifier for the object, the session identifier, a callback,

and arguments. In addition, the application specifies a priority that

is used by the network scheduler to reorder QRPCS. Import returns

a promise [37]. Applications can wait on this promise or continue

computation. The callback will be invoked upon arrival of the

imported object.

The current implementation also has a load operation that is

an import combined with a call to create a process. Using load,

applications can import RDOS that need a separate thread of control.

Upon their arrival, Rover creates a separate process that runs the

RDO. The application and the RDO communicate through the Rover

object cache. The reason for a separate load operation is that the

underlying operating system (Linux, a UNIX operating system)

does not support multiple threads per address space and limited

dynamic linking. In a future implementation, load will be directly

incorporated within import.

Once an object is imported, applications invoke methods on it.

These methods read and modify objects in Rover’s cache. Rover

transparently queues RPCS for each update in the log when an object

is exported.

To export local changes to an object, an application calls ex-

port, and provides the unique identifier for the object, the session

identifier, a callback, and arguments. Like import, export returns

a promise. Upon arrival of the responses to the requests, callbacks

are invoked. In addition, the promise contains a pointer to the list of

return values. The application traverses this list of response objects,

marking objects as committed, updating the display, and checking

for unresolved conflicts.

Porting an existing UNIX application (such as those described

in Section 6) requires replacing the file model with the Rover object

model and dividing the application into a client part and a server

part. As discussed in Section 6, porting applications to Rover is

relatively straightforward.

160

4 Rover Architecture

Rover’s architecture addresses six important issues: (1) allowing

useful work to be done in the presence of network disconnections

by permitting applications to be loaded into mobile hosts and by

queuing fetches and updates as appropriate; (2) providing a means

for varying an application’s workload between servers and clients,

both to address computationally under-powered clients and over-

loaded servers; (3) efficiently using available network connectivity

from both quality of service and cost standpoints; (4) taking ad-

vantage of available network infrastructure to optimize the staging

of information; (5) exposing network connectivity to applications

and permitting applications to be involved in connectivity related

decisions; (6) providing an efficient application development envi-

ronment. The Rover architecture is structured as three layers and

consists of four components: the access manager. the object cache,

the operation log, and the network scheduler (see Figure 2); we

discuss each component in turn.

4.1 Access Manager

Each client machine has a local Rover access manager. which is

responsible for handling all interactions between client applications

and servers and among client applications. The access manager ser-

vices requests for objects, mediates network access, manages the

object cache, and logs modifications to objects. Client applications

use the access manager to import objects from servers and cache

them locally. Applications invoke the methods provided by the ob-

jects and, using the access manager, make changes globally visible

by exporting the changes to the objects back to the servers.

Within the access manager, objects are imported into the ob-

ject cache, while QRPCS are exported to the operation log. The

access manager routes invocations and responses between applica-

tions, the cache, and the operation log. The log is drained by the

network scheduler, which mediates between the various communi-

cation protocols and network interfaces.

The access manager also handles connection requests from

servers. This is particularly useful when establishing a network

connection is a costly operation. For example, an E-mail service

could send a pager message to a disconnected mobile host when

incoming E-mail is received. The mobile host would then initiate

a network connection (e.g., by placing a cellular call) and retrieve

the messages. The key advantage is that the mobile host does not

have to perform an expensive polling operation to receive timely

updates.

Failure recovery is also handled by the access manager. This

task is eased somewhat by our use of both a persistent cache and

an operation log. After a failure, the access manager requeues any

incomplete QRPCS for redelivery. At-most-once delivery semantics

are provided by unique identifiers and the persistent log. One issue

that remains an open question is how to handle error responses from

resent QRPCS. Since the original application that issued the QRPC

is no longer running, there is no available delivery target. Restarting

the application does not solve the problem, as the appropriate action

may depend upon lost state. One sohrtion we are considering is

extending the persistence model to incorporate portions of client

application state. However, this solution would have a significant

impact on application performance.

4.2 Object Cache

The object cache provides stable storage for local copies of imported

objects. The object cache consists of a local private cache located

within the application’s address space and a global shared cache

located within the access manager’s address space. Client appli-

cations do not usually directly interact with the object cache, The

Rover toolkit automatically maps import and export operations

onto objects cached both within the application’s address space and

the access manager’s address space. When a client application is-

sues an import or export operation, the toolkit satisfies the request

based upon whether the object is found in a local cache and the

consistency option specified for the object.

Applications control the consistency model for the objects they

import. The object cache offers several options for maintaining the

consistency of an object relative to its primary copy. The options

are: uncacheable, immutable, verlfi-before-use, ver@-t~-service-

is-accessible, expires-ajter-date (i. e., a lease), and service-callback.

Uncacheable objects are objects that cannot be cached (e.g., the

result of an export operation). Immutable objects are those that are

guaranteed not to change. Verify options control whether Rover will

verify that the object is up-to-date relative to the service’s primary

copy before invoking a method on it. With verify-before-use Rover

always verifies the object, while with verify-if-service-is-accessible

Rover verifies only if the service is currently reachable under the

application’s requirements for communication costs. With expires-

after-date, Rover automatically removes the object from its cache

when the specified date has passed. With service-callback the Rover

server will attempt to notify the Rover client if the object changes.

Cached copies of objects are updated in one of three ways: by

importing fresh copies from the home service, by applying method

invocations provided by the home service to reflect updates by other

clients, and by applying method invocations from local applications.

Updates performed by local applications allow applications on a

single host to share data witbout requiring network communication.

The cache distinguishes between updates from the home service and

local applications, Since the home service has the primary copy of

an object, information from it represents the “permanent” state of

the object (i.e., the data is not dependent upon a pending operation).

Updates from local applications, however, are marked as tentative,

until they are propagated to and accepted by the home service.

Applications can specify whether they will accept tentative data

when importing an object.

An essential component to accomplishing useful work while

disconnected is having the necessary information locally available.

This goal is usually accomplished during periods of network con-

nectivity by filling the cache with useful information [29]. There

are two issues here: when and what to prefetch.

Applications decide which objects to prefetch. The usability

of Rover will be critically dependent upon simple user interface

metaphors for indicating collections of objects to be prefetched.

Requiring users to directly list the names of objects that they

wish to prefetch is inherently confusing and error-prone. Instead,

Rover client applications provide the access manager with priori-

tized prefetch lists based upon high-level user actions. For exam-

ple, Rover Exmh automatically generates prefetch operations for

the user’s inbox folder and recently received messages. It also

prefetches additional folders and messages based upon observed

user behavior or user selection.

The network scheduler decides when to prefetch objects based

upon network activity, available bandwidth, and transmission cost.

For example, while waiting for a server response on an idle com-

munication channel, the scheduler will send prefetch requests based

upon their priority and the channel’s communication costs. Clearly,

overly aggressive prefetching will impose an unacceptable over-

head.

For systems that provide for disconnected operation, prefetch-

ing is a requirement. During disconnected operation, Rover appli-

161

Mobile host Server
....................................

,----- -
#l

------ ------ ------
,1 ,1

:1 ------ ----- ---- ---- -----
,1 ,1 ,1

ImprtAnvoke/Export 1 Exmh I

L-- _. % --------------& -.

Application ~

\~A?&?&

Log ~ Access ~ - Cache Bmd/Ferch/Flush Access
Manager ~ -

* * -
Manager Log----- ----- ----: ----

System :
\ L

“GE .

DCE TCP :---------------+ TCP DCE

Network HTTP/SMTP~CP

Scheduler

Network

Transport ~
Scheduler

HTTP SMTP :
.

SMTP HTTP

0=

>* : .?
. :<. .

‘. ~ .,0

Remote

Proxy

.

Fi~ure2: The Rover architec~re consists ofthree layers (application, system, and transport) and four keycomponents (access manager,

ob~ectcache, operation log, and network scheduler). - -

cations will not block on an import, nevertheless, it may not be

possible forauser tocomplete adesired activity (e.g., viewing).

Wireless connectivity may provide afallback mode of operation

for any objects that were not prefetched during a previous period

of connectivity. However, there will always be instances where

connectivity is unavailable or expensive. Thus, it is critical that

prefetching during periods of connectivity is sufficiently aggres-

sive.

4.3 Operation Log

Once an object has been imported into the client application’s local

address space, method invocations without side effects are serviced

locally bythe object. Atthediscretion of theapplication, method

invocations with side effects may also be processed locally, inserting

tentative data into the object cache. Side-effecting operations also

insert a QRPC into a stable operation log located at the client.

Upon server reception, an operation is performed on the server.

Log flushing is asynchronous with application activity.

Support for intermittent network connectivity is accomplished

by allowing the log to be incrementally flushed back to the server.

Thus, as network connectivity comes and goes, the client will make

progress towards reaching a consistent state.

The price of local updates is that the client’s and server’s copies

of an object will diverge overtime. At some point, network con-

nectivity will be restored and modifications to exported objects will

have to be reconciled with any changes to the server’s copies.

In most cases, we expect that changes will have been made only

to the server’s copy or only to the client’s copy, but not to both. The

likelihood ofconflicting modificationsis strongly application-and

data-specific. Forexample, itisunlikely that auser’s private data

would remodified byanother server or client. Onthe other hand,

it is quite likely that apublic calendar of interesting talks would

remodified by others. Ourexperience with Rover applications is

that handling independent updates is arather simple task. While

conflicting updates are more difficult to handle, we believe that

our approach of allowing applications to specify conflict resolution

procedures onaper-operation basis will help in two ways. First,

it will help reduce the granularity of updates below that found in

traditional filesystem-based approaches, which will reduce the like-

lihood of a conflict and provide more information about the conflict.

Second, per-operation conflict resolution offers more flexibility in

handling a conflict.

We have already seen benefits from both effects in our use of

adistributed calendar application. Thepre-Rover version is based

upon shared calendars stored in files. Updates to the calendars

have a window of vulnerability when two or more users try to

update the same calendar. The Rover version of the calendar uses

two techniques to reduce the likelihood of a conflict it reduces

the granularity of conflict resolution to the individual appointment

andnoticelevel andithandlescertain combinationsof simultaneous

changes (e.g., oneuserchanging thetime ofameeting while another

changes the topic).

There will be cases where conflicts cannot be resolved. To

provide for such occurrences, applications can include application-

specific inforrnationin each operation that can be used by theap-

plication to provide the user with a clear indication of the cause of

a conflict resolution failure.

Another issue that Rover addresses with an appl~cation-specific

approaches the growth in size of the operation logduring discon-

nectedoperation. Theability toconvey application-level semantics

directly to servers is an important functional advantage, especially

inthepresence of intermittent connectivity. However, it may lead

to an operation log that grows in size at a rate exceeding that of a

simple write log. Toaddress this potential problem, Rover directly

involves applications in log compaction. Applications can down-

load procedures into the access manager for manipulating their log

records. For example, an application can filter out duplicate re-

quests (e.g., duplicate QRPCsto verify that anobject is up-to-date

can be reduced to a single QRPC). In addition, applications can ap-

ply their own notion of “overwriting” operations to the operations

in the log.

162

4.4 Network Scheduler I Function] Operation
1

IRover-AddWrite I Mutate an RDO

The network scheduler groups related operations together for trans-

mission. We leverage off the queuing performed by the log to gain

transmission efficiency. The result is a reduction in per-operation

transmission overhead and an increase in connection efficiency by

amortizing connection setup and teardown across multiple requests

and responses; this amortization is especially important when con-

nection setup is expensive (either in terms of added latency or dollar

cost).

The network scheduler may reorder logged requests based upon

two primary criteria: the session’s consistency requirements and

application-specified operation priorities. Using these criteria, the

scheduler provides an ordering for flushing operations from the log.

Rover applications prioritize requests by using a “quality of ser-

vice” model to specify delivery importance. This model closely

matches other familiar service models, like postal delivery. A per-

son requiring long-term postal delivery uses a 32 cent stamp. They

recognize that the mail may be delivered anytime within a day or

two or perhaps more. Imposing a two day delivery deadline in-

creases the cost to 3 dollars. Delivery overnight costs 10 dollars;

same-day delivery is 100 dollars. This same ‘<pay more for faster de-

livery” model can be applied directly to message delivery between

clients and servers. The user’s desire for delivery speed can be

directly balanced against transmission costs, especially considering

that the cost of communication is considerably higher for wide-area

wireless communication.

Quality of service is also a factor in the choice of delivery

transport. For example, the requested quality of service would

influence a choice between SMTP and TCP.

Client applications that import objects are not the only source of

network traffic. The object cache generates traffic for revalidation of

cached objects. In addition, client applications may issue prefetch

requests. Such background traffic can be used by the network

scheduler to fill gaps in primary network traffic and optimize link

utilization of connection-based networks.

The Rover network scheduler controls when and which com-

munication interfaces are opened and what should be sent over the

interface. The scheduler performs a matching function between the

quality of service desired for a request and the available network

transport options (based upon information provided by the commu-

nication layer). Likewise, objects sent to servers also include cost

information which is used to determine when to send results back

to the client. Thus, returning to the previous financial application

example, a user can specify the importance of receiving timely in-

formation, which can then be conveyed in the object sent to the

server.

We are continuing to investigate when to open a communica-

tion interface. Knowledge of the user’s willingness to pay a given

amount is not sufficient. What is needed is knowledge about ex-

pected future communication options. For example, consider a

person traveling to a remote destination via an airplane. While on

the plane, the person performs several operations, generating a log

of changes. The person assigns a moderate level of delivery fund-

ing per operation, a level that is sufficient that the aggregate sum of

funding is above the threshold for use of an expensive wireless link.

However, at the end of the flight, significantly cheaper links will be

available. Whhout such future knowledge, a naive scheduler will

yield less than optimal cost efficiency.

J

Rover_Export Export a modified RDO

Rover_Flush Flush a cached RDO

Rover.GetDV Get an RDO’S dependency

vector

Rover.GetPid Get an RDO’S process ID

Roverlmport Import an RDO

Rover_LoadApplication Import an RDO and execute

Rover-MarkPermanent Mark an or)eration Dermanent

Rover-NewSession Create a n;w sessi&r

Rover_PendingWrites Get a count of pending writes

for an RDO

RoverlromiseClaim Claim a promise

Rover.QRPC Issue a non-blocking QRPC

Roverl?PC Issue a blocking RPC

Rover-Shutdown I Shut down a cl~nt application

Rover-Ur)date I UDdate the Rover RDO

[c~che from a local RDO

Table 1: Rover library functions.

5 Rover Implementation

Since Rover is a research platform, we have chosen a layered,

modular approach to implementation, which favors flexibility over

performance. Our intention is to use the prototype as a testbed for

a wide range of ideas.

Rover is implemented on IBM ThinkPad 350C and 701 C lap-

tops running Linux 1.2.8, DECstation 5000 workstations running

Ultrix 4.3, and SPARCstation 5 and 10 workstations running SunOS

4.1.3-U 1. The Rover server can execute either as a Common Gate-

way Interface (CGI) application of NCSA’S httpci 1.4.2 server (run-

ning on Ultnx and SunOS in the non-forking, pool of servers mode),

or as a standalone TCP/IP server. Rover server code consists of ap-

proximately 1500 lines of C code.

The Rover client code relies upon CERN’S pre-release multi-

threaded version of the Web Common Library (version 3.0pre3) for

H’fTP support. The client code consists of approximately 10000

lines of new C code plus an additional 200 of modifications to the

Web Common Library.

Network connectivity is provided by 10 Mbit/s switched Ether-

net, wireless 2 Mbit/s WaveLAN, and dial-up lines. In addition to

HTTP over TCP/fP, we have implementations that uses SMTP over

TCP/lP and raw TCP/lP.

Our primary mode of operation is to use the laptops as clients of

the workstations. However, we also use the workstations as clients

of other workstations.

The Rover implementation is composed of three primary layers:

server and client applications, system support, and transport. We

discuss each layer in the following sections.

5.1 Client and Server Application Layer

The highest layer in Rover is the client and server application

layer. Rover applications consist of TcVllc scripts [43] and binary

applications. The Tcl/Tk scripts are interpreted using a TcVIl in-

terpreter environment that has some simple C extensions to support

RDOS (see Table 1) and linked with a Rover library. The library pro-

vides functions for communicating with the Rover access manager.

Using the C extensions, server applications construct TclA’k RDOS

163

in response to client requests; the RDOS are then transported by

Rover to client applications. Likewise, client applications construct

modification operations, which are kept by Rover in a per-object

data structure. When an application calls export, these modifi-

cations operations are turned into QRPCS and stored in the stable

operation log, Binary applications are directly linked with the Rover

communication functions.

We chose this implementation approach because it greatly sim-

plified development of our initial prototype. However, we recognize

that this is an interim solution. In our prototype, we are not using

a secure or safe language. Instead, limited security is provided by

executing some RDOS in a separate address space, by interpreting

RDOS written in Tel, and cryptographic authentication of all mes-

sages exchanged between the access manager and Rover servers.

5.2 System Support Layer

System support in Rover consists of a set of client-side and server-

side modules. The server modules exist mainly as library routines

invoked by incoming requests from clients,

The Rover server is a secure setuid application that authenticates

requests from client applications, mediates access to RDOS, and

provides a Tc~ execution environment for RDOS from client

applications.

We provide two implementations of Rover servers. One is com-

patible with the Common Gateway Interface (CGI) [40] of standard,

unmodified HTTP compliant servers (e.g., CERN or NCSA’S httpd

servers). The other implementation is a standalone TCP/IP server

which provides a very restricted subset of H’fTP. Both servers of-

fer identical functionality and communication interfaces to Rover

client applications.

The H’ITP server forks and executes a new image of the CGI

implementation of the Rover server. As a result, any state that

needs to be persistent across connections must be re-read for each

connection. In addition, there is a significant amount of overhead

associated with using the CGI interface (e.g., the cost for the fork

and execve required to start the application). These were the mo-

tivating reasons behind our choice to also implement the standalone

TCP/IP server.

On the client side, we use a local client-server model: each

Rover application executes in a separate address space and com-

municates via Local Remote Procedure Call (LRPC) with the local

Rover access manager. To improve efficiency, a copy of each

imported object and RDO is cached within a client application’s

address space. This copy is unavailable to other applications on

the mobile host, but, if desired by the application, will be kept

consistent with the global Rover object cache.

The access managers are multithreaded with non-preemptive

servicing of client application requests and incoming responses

from servers. In addition, they have several background house-

keeping threads that perform operations such as log flushing, cache

cleaning, and revalidating cache entries.

The client-side implementation is designed to be used in a boot-

strapping mode, where the access manager loads application scripts

and binaries from a Rover server and starts executing them.

The Rover client cache is implemented using ordinary UNIX

files: one file contains a list with the cache’s contents, and one

file is used for each cached object. The content list is stored in

memory in a hash table. When an object is entered into the cache.

it is first stored in a memory-resident table. A background process

periodically flushes new or modified entries to disk and updates the

disk copy of the content list. When the access manager receives

an import request, it queries the cache; the access manager first

searches the memory-resident table before searching the content list.

For cache maintenance purposes, the cache records several useful

attributes for each entry: when the object was originally loaded, the

cost to load the object (currently, this is the time measured from

when the request was sent to a server to when the response was

received), and the last time an application referenced the object.

The Rover client log is also implemented as an ordinary UNIX

file, Rover uses the file to save log entries, track the log entries that

have been sent to servers, and record the log entries that have been

deleted (either because a response has been received or because an

application deleted the request). When an application calls export,

a set of QRPCS is entered into the log and Rover performs both a

flush and a synchronize operation to force the new QRPCS to the

disk. Thus, the flush is on the critical path for message sending,

Our prototype implementation favors simplicity over performance:

it does not perform any compression on the log [29] and it does not

employ efficient techniques for implementing stable storage (e.g.,

Flash RAM [13] or group commit [20]).

5.3 Transport Layer

The transport layer is the lowest layer of Rover, and is itself split into

two levels. The upper portion of Rover’s transport layer converts

Rover URNS into an HITP POST message with a URL speci-

fying the server application (e.g., http://www.pdos .lcs,mit,edu/cgi-

bin/rover/e-mail) and a message body containing the RDO request

method and an authenticator. The server application verifies the au-

thentication information and, for import requests. generates a copy

of the desired RDO and returns it in the H’fTP response. For ex-

port requests, the server constructs an interpreter and interprets the

operation log provided in the data part of the request. URNs.have

the advantage that they add a layer of indirection to the resource

location problem. Thus, we can move resources based upon vary-

ing requirements (e.g., server load or availability) without exposing

such changes to end users.

The lower layer consists of a network scheduler and commu-

nication protocols. Messages can be sent over both connection-

based protocols (e.g., TCP/IP) and connectionless protocols (e.g.,

SMTP) [9, 24] and 1P or non-IP based networks. The choice is

handled by the network scheduler and is based in part upon the

requested quality of service. The implementation of the network

scheduler has several queues for different priorities and it chooses

a network interface based on availability and quality. Our current

implementation of the network scheduler does not rely upon an

economic model for making reordering decisions.

The implementation assumes that networks can reorder, drop.

or arbitrarily delay messages; this is especially important for SMTP

delivery. The transport layer uses unique identifiers and retransmis-

sion to provide at-most-once delivery semantics.

With TCP, the network interface directly communicates with

the server. For each QRPC, it opens a TCP connection, sends the

data, and then closes the connection, We chose this implementation

instead of an implementation that amortizes the cost for setting up

the connection over multiple QRPCS, since this what the HTf’P

server currently does.

With SMTP, it communicates with a local mail delivery agent,

which will forward the request on to remote proxy. The remote

proxy is implemented as a mail filter program, For ordinary Rover

requests, it opens a TCP connection to the requested server, sends

the requests, receives the response, and uses SMTP to send the re-

sponse back to the original sender where another mail filter delivers

the response.

164

We chose to use SMTP as one of the communication protocols

because it allows us to experiment easily with split-phase commu-

nication and staging data close to the destination. The use of SMTP

has its drawbacks. In particular, mail delivery can be plagued with

intermittent delivery problems, mostly relating to variable deliv-

ery Iatencies or intermediate gateways modifying message content

(e.g., truncating messages and lines, reformatting content, or mutat-

ing lines containing special sequences). This complicates the Rover

implementation as we must encode any data being sent and perform

extra checks to ensure at-most-once delivery. For these reasons,

we view SMTP as an interim solution that is most useful because

it is widely deployed. However, our architecture is structured in a

manner that will allow us to seamlessly incorporate support for any

future alternatives.

6 Rover Applications

To demonstrate our ideas and the Rover toolkit, we have im-

plemented three applications: a distributed calendar, an E-mail

browser, anda Web browser proxy. Thesuite waschosen to test

several hypotheses about curability toreasonably meet users' ex-

pectations in a mobile, partially -connected environment. These

applications represent a set of applications that mobile users are

likely to use. Because RDOs affect the structure of applications,

we felt it was important to test our ideas with complete applications

in addition to using standard quantitative techniques.

6.1 Rover Exmh

To investigate the application design space of Rover, we have de-

veloped Rover Exmh, a port of Brent Welch’s Exmh TcVIX-based

E-mail browser. Parts of the browser itself and messages are loaded

from a remote server in the form of RDOS. These RDOS cre-

ate the browser interface and load the user’s E-mail messages. In

addition, RDOS are used to implement application-specific consis-

tency and prefetching strategies. This was the first application we

implemented after implementing the core Rover client and server

functionality. It took us approximately three person-weeks to com-

plete the initial port of Exmh to Rover.

Rover Exmh is organized as follows. The core of the browser

is unchanged from Exmh and is implemented as Tcl/Tk scripts.

Exmh’s file system-based interface to the E-mail message handling

system, mh, was replaced with an object-based interface, which is

contained in RDOS retrieved from an HITP server when the user

first loads the browser. The browser imports the user’s inbox (as an

RDO) and list of recently visited folders (also as an RDO). After

the list RDO is imported, it automatically issues prefetching import

operations for each of the folders on the list. When the user selects

a message for viewing, if it is not already present, it is imported

from the server and marked as loading in the folder display. The

messages’ states are updated as the messages arrive and become

ready for viewing. The browser’s interface runs entirely on the

client, so that button clicks and typing result only in local method

invocations, and are not exported to the server until after the user is

done. This effectively demonstrates the value of RDOs for reducing

client dependence on connectivity and bandwidth.

For the Rover Exmh server, we added a thin veneer of Tcl/Tk

commands so that RDOS could invoke the appropriate E-mail mes-

sage handling commands. We also added support for detecting and

resolving conflicting modifications to a user’s folders and generat-

ing updates for informing clients of changes.

In terms of GUI issues, we modified Exmh’s display functions

to show the sizes of mail messages and to indicate (using color)

18/C4/9S 03 07Pm hCQ:f/w.p&s .lcs.81t. eW
rquested fox htq://w. ~&s.lcs.m%t. eW4, /

(Penduw’)

)M?4/9S 03 06pm http:llw.pdas.lcs .mxt .eW-atfj/imrq41e chSwar..gif
reque$ ted f r.. http: Itwvu. pdos.lc...xt .eW-wS]l

(pending)

18/C4/95 03 06PII ht@://w.p&s.lcs .m,t. e&-d, /1ti.hb1
reqws ted from http, //w, @Os.lcs. mt .mW-ad,/

bend,%’)

10/c4/9s 03 Osp. http://w. p&s I.=.mxt . ..4-+/

i~$&%9.%%,eved)

18/@4/9s 03 Ospm ht*://*.prq.lc,. mxt. ew-d&1/

;,~~;$,~not v,ewed,

]8/04/95 03 05Pm http :)Iw.nua.uuu a&/W/ SoftVareIWsaIc/KIW.WmauSam .hlml
. “—

Figure 3: The Rover Web Browser Proxy log display with a number

of QRPCS and their status. Entries can be deleted, viewed, or

reloaded,

which messages were locally cached. We used RDOS to provide

this dynamically updated functionality.

We considered alternative approaches, such as using a POP

server. However, POP only provides message delivery and tem-

porary message storage. It does not work well in an environment

where there is no shared message storage. For example, in order for

a user to access messages from both a mobile host and a fixed host,

the user must resort to temporarily storing messages in the POP

server when accessing them from the mobile host. Using Rover,

the Rover server is the repository for the user’s mail and ensures

that the user sees a consistent view from any client.

6.2 Rover Webcal

Rover Webcal is a port of Ical, a publicly available TcVI’k and

C++ based calendar and scheduling program written by Sanjay

Ghemawat. Ical provides an X interface for maintaining a calendar,

which contains a set of items. An item is either an appointment or

a notice. An appointment starts and ends at particular times of day,

while a notice does not have any starting or ending time. Notices are

useful for marking certain days as special; for example, a calendar

may contain a notice for April 15th indicating that taxes are due.

Under Ical, users sharing a calendar must share a file system.

Consistency is provided on a per file (calendar) basis. Ical peri-

odically checks the modification date of calendars so that it can

display the most recent information. Conflicts may occur when two

or more users attempt to simultaneously update the same calendar.

When a conflict occurs, the user is given the choice of overwriting

the changed calendar or flushing his or her own changes. The like-

lihood of the race condition being a problem is a function of how

often clients modify calendars and how often they check calendars

for changes. In practice, on a distributed file system, there has not

been a problem. In a disconnected environment, on the other hand,

we expected that this form of conflict would be extremely likely.

As such, we decided to move the consistency granularity to the

individual item level.

In Rover Webcal, each individual item is an RDO and is used as

the unit of consistency control. Rover Webcal uses RDOS in place

of items and calendars. Users can schedule events (e.g., modify

or create new items or calendars), which will then be marked as

tentative. Once the changes have been accepted by the server, they

will be marked as permanent,

In choosing the item as unit of consistency we address two

issues: update conflicts in the form of multiple changes to the same

165

Rover Base Rover

Program client code client code

Exmh 24000 Tcl/Tk 250 Tc~

, ,
Web Proxy none 250 Tc1/Tk

2800 C

Server

=1
5600 C++

(from client)

660 c

and Tclff’k

none

Table 2: Lines of code changed or added in porting Exmh and

Webcal to Rover and implementing the Rover Web Browser Proxy.

calendar, and propagation of changes to general interest calendar

entnes (e.g., meetings andtalks) to mobile hosts.

Update conflicts are avoided in many cases because most calen-

darchanges areto independentitems. However, wecan alsohandle

certain classes ofchanges tothesame item (e.g., one user changes

theitem’s time, while another user changes the content). In addi-

tion, we have flexibility in the choice of action to take in the event

ofanirreconcilable conflict. For example, when scheduling meet-

ings, the head of a department could mark their changes as always

overriding any other changes made by others in the department.

The second issue addressed by changing the granularity of con-

sistency control is the timely propagation of changes to affected

users. This issue isaddressed both through theuseof ser-ver call-

backs and by the need for the server to only send RDOS for changed

attributes (and not the complete item or calendar). This significantly

reduces network traffic andnetwork bandwidth requirements.

To port [cal to Rover, we split Ical into a client and server by

placing the GUI, calendar, and item handling code in the client,

along with aninterface to Rover. Recreated theserverby addinga

thin veneer of Tcl/Tk commands to Ical’s file reading, parsing, and

writing code. Wealsoadded conflict detection and resolution code

and code to generate update information for clients registered for

callbacks.

We are also exploring the use of RDOS to perform group

scheduling functions as we consider this to be an good example

ofwhere avar-iable division oflabor is useful. When a mobile host

is well connected, it could handle the scheduling function; likewise,

when it is only partially connected, the scheduling function could

be off-loaded to a server.

We do not have an accurate measurement of the time to port

Ical as the porting was done concurrently with the initial client and

server implementations.

6.3 Rover Web Browser Proxy

The Rover Web Browser Proxy [1 O] is a unique application. It

will interoperate with most of the popular Web browsers. Using it

enabled us to rapidly produce on-eof the first full-function browsers

that allows users to “click ahead” of the arrived data by requesting

multiple new documents before earlier requests have been satisfied.

The proxy intercepts all web requests and if the requested item is

not locally cached, it returns a null response to the browser and

enqueues the request in the operation log. When a connection

becomes available, the page is automatically requested. In the

meantime, the user can continue to browse already available pages

and issue additional requests for pages without waiting.

The proxy will also directly control NCSA’S Mosaic [41] and

NCC’S NetscapeNavigator [42] browsers using their remote control

interfaces. Cached Web documents are used whenever possible, to

allow for fast access in the absence of a network connection. If an

uncached file is requested and the network is unavailable, an entry

is created in a displayed list of outstanding and satisfied requests.

The list is actually created by an RDO (Figure 3 shows an example

display). The display exposes the object cache and operations log

directly to the user and allows the user limited control, For now, the

cache is mostly managed explicitly by the user (hence the “Delete”

and “Reload” buttons); this seems to be a fairly reasonable solution,

es~eciallv in the case of results from form submissions. in which

oniy the ~ser can decide for how long the requested data is useful.

One automated feature is prefetching: the delay between the user’s

request and its arrival at the remote proxy is used as an estimate of

the network latency. If the delay is above a user-specified threshold,

documents that are directly accessible from the one requested are

prefetched.

The design of the proxy is general enough that it will allows us

to experiment with using RDOS to dynamically generate web pages

(e.g., to ship Dynamic Documents [26] or fragments of databases

to mobile hosts).

Our Rover Web Browser Proxy has been used to interact with

Web resources through the SMTP-based transport layer, and has

been found to work reasonably well even on slow or very infre-

quently connected networks, as well as on non-IP networks that do

not permit HTTP connections. A certain amount of adaptation is

required on the user’s part. Since documents may arrive in an order

different from that in which they were requested, the user must

be able to discover which resources are available at a given time.

The dynamically updated display list appears to do a good job of

allowing this.

Development of the proxy also occurred during initial system

development, making it difficult to determine the amount of time

spent implementing it. However, an initial prototype was imple-

mented within a few person-weeks.

6.4 Discussion

The three applications illustrate how RDOS can be used to adapt

workstation applications to a mobile environment. The web browser

uses RDOS to create the GUI, RoverExmh uses RDOS to implement

the user interface, resolve conflicts on updates of folders at the

server, and prefetching. Rover Webcal uses RDOS to provide the

GUI, to perform conflict resolution at the server, and to propagate

changes back to user. A generalization of Rover Webcal that is

under development uses RDOS to schedule appointments at the

server. All applications use QRPCS for lazily fetching and updating

objects and RDOS.

As can been seen in Table 2, the three applications also illus-

trate that porting tile system-based workstation applications to an

object-based Rover model is relatively easy. For example, port-

ing I?xmh and Ical to Rover required simple changes to 10Ya and

1596 of the lines of code respecti~ely, Most of these changes came

from replacing the file systems call with object invocations; these

modifications in Rover Exrnh and Rover Webcal were made almost

independently of the rest of the code.

The implementation of the Rover Web Browser Proxy provided

a unique demonstration of how easily we could construct Rover

applications that easily interoperate with existing applications. The

proxy was initially developed for Mosaic; however, adding support

for Netscape was a simple operation.

166

Server:SS 5/70 TCP

Transport Latency Throughput

Client null RPC 1 MBvte
L 1

I SS5R0 I Ethernet 5 5.2”

I I Ethernet 8 5.0

TP 701C/75 WaveLAN 11 1.03

CSL IP14.4 380 0025

CSLIP2.4 2100 0:002

[Protocol I ‘IYansport I Latency I Throughput]

I Ethernet II 47 I 0.74

TCP WaveLAN 61 048

CSLIP14.4 500 0:02

s LIP2.4 0.001

Ethernet 5600 0.02

SMTP WaveLAN 5800 002

CSLIP14.4 11000 0:007

I CSLIP2.4 II 43000 I 0.001

Table 3: The Rover experimental environment. Latencies are in

milliseconds, throughput is in Mbit/s, Table 4: Time in milliseconds for a null QRPC (a 290-byte request

with a 5-byte reply). Throughput measured in Mbit/s for 16-Kbyte

QRPC requests.

7 Results

We designed a set of experiments to validate our ideas and to

measure how effectively the Rover toolkit meets our goals. In

particular, the experiments test the following hypotheses:

1.

2.

3.

QRPC performance is acceptable even if every RPC is stored

in a stable log, or if SMTP is used as the transport protocol.

Caching RDOS reduces latency and bandwidth consumption,

Mizratirw RDOS rxovides Rover amlications with excellent

pe~orma~ce over’moderate bandw~~th links (e.g., 14.4 Kbit/s

dial-up lines) and in disconnected operation.

In this section, we first provide details on our experimental

methodology and establish the baseline for QRPC performance.

Then, we test each hypothesis in turn,

7.1 Baseline Performance

Our test environment consisted of a single server and multiple

clients. The server was a SPARCstation 5 (70Mhz microSPARC-

11) workstation running SunOS 4. 1.3.U1 as the server. The Rover

server ran as a standalone TCP server. The clients were IBM

ThinkPad 701 C laptops (25/75Mhz i80486DX4) running Linux

1.2.8. All of the machines were idle during the tests. The net-

work options consisted of switched 10 Mbit/s Ethernet, 2 Mbit/s

wireless AT&T WaveLAN, and Serial Line 1P with Van Jacobson

TCP/lP header compression (CSLIP) [25] over 14.4 Kbit/s and 2.4

Kbit/s dial-up links. To minimize the effects of network traffic on

our experiments, we configured the switched Ethernet such that the

server, the ThinkPad Ethernet adapter, and the WaveLAN base sta-

tion were the only machines on the Ethernet segment and were all on

the same switch port. The standard deviations for our measurements

were within 10?ZOof the mean values.

To establish the baseline performance for QRPC, we measured

the latency and bandwidth of various representative network tech-

nologies. The results are summarized in Table 3. The table shows

the latency for null ping-pong and the throughput for sending 1

Mbyte using TCP sockets over a number of networking technolo-

gies. The throughput over CSLIP is high, because the compression

that is performed by the modem on ASCII data. The 1 Mbyte of

ASCII data is very compressible (GNU’s gzip -6 yields a 14.4:1

compression ratio); since Rover is sending Tcl scripts (ASCII),

we expect that Rover application will also observe the benefits of

compression.

Transport Latency Throughpnt

Ethernet 8 3.6

WaveLAN 13 0.92

CSLIP14.4 420 0.022
11 1

CSLIP2.4 3100 I 0.001

Table 5: Time in milliseconds to open a TCP connection, send

290 bytes, receive a 5 byte response, and close the connection.

Throughput measured in Mbit/s for 16-Kbyte requests.

7.2 The Performance of QRPC

To obtain insight into the performance of QRPC, we measured

the costs for performing various sizes of QRPC operations with

synchronous logging and compared these costs to the overhead of

corresponding TCP operations. Table 4 displays the times for per-

forming null QRPCS over various network technologies. For a null

QRPC, approximately 290 bytes are sent and 5 bytes are received.

We measured the throughput of Rover sending 16-Kbyte QRPC

requests. We have chosen these data sizes because they reflect the

sizes of small and large RDOS. The overhead of performing a QRPC

includes the time for the access manager to synchronously log the

RPC to stable storage, transmit the RPC, receive a null response

from the TCP-based Rover server, and lazily delete the RPC from

the log. For comparison, Table 5 gives the latency and throughput

for TCP using the same data sizes as in the QRPC experiments.

We make two observations about the numbers for QRPCS on

slower networks. By comparing the QRPC numbers to the TCP

numbers, we see that the overhead imposed by QRPC is not sig-

nificantly greater than the minimum overhead imposed by TCP,

both for latency and throughput. Second, the cost of synchronously

logging data is dwarfed by the underlying communications cost.

We also observe that latency and throughput on fast networks

is sub-optimal. The difference between TCP and QRPC on these

networks is due to the overhead of writing the log entry, which

takes about 37 milliseconds. (In the throughput experiments, Rover

writes the log using 16-Kbyte entries at 1.9 Mbit/s.) Most of this

overhead can be simply eliminated by employing a more sophisti-

cated implementation of the operation log: the current simplistic

approach to implementing the log accounts for almost all the addi-

tional overhead over base TCP.

The performance when using SMTP is much worse than we

initially expected. There are several reasons for the high overhead,

including: the times to encode and decode the HITP request and

response, the time spent sending and receiving the request and

response using sendmail (twice on each end), the time spent in

167

Table 6: Time for an invoke on a local RDO invocation in millisec-

onds.

the remote proxy processing the request, and the time spent in the

local mail filter processing the response. In addition, several of the

applications require process forks and must be loaded into memory.

We are investigating methods for reducing the overhead. However,

it is important to remember that Rover’s architecture moves the

QRPC off the critical path for an application.

While the extra overhead of using SMTP gateways is obvious,

there are benefits which may not be so evident. One is that SMTP

is fundamentally a queued background process; it is more appropri-

ate than the interactive HTTP protocol for fetching extremely large

documents, such as video, which require large amounts of time

regardless of the protocol. Indeed, we see from Table 4 that the

differences in throughput are not nearly as pronounced for larger

QRPCS on slower networks. Another advantage is that the 1P net-

works required for H1’TP are not always available, whereas SMTP

often reaches even the most obscure locations. Of course, for small

documents, HTTP is still highly preferable when it is available.

7.3 The Benefits of Caching RDOS

To obtain insight into the benefits (reduction in latency and

bandwidth consumption) of caching RDOS, we compare the time

for a local invocation with the time to export an RDO. First, we

measured Rover’s performance for three different kinds of local

null invocations: TcliTk, client, and LRPC. A local invocation

occurs when the target RDO is located on the mobile host, either in

the client application’s cache or in the shared cache. A null RDO

consists of 45 bytes of Tcl/Tk code and no data, while a 16KB RDO

consists of 45 bytes of code plus an additional 16 Kbytes of data.

Table 6 lists the times for performing local null invocations.

The TclTI’k measurement is the time for a null procedure call within

the Tcl/Tk interpreter. The client measurement is the time to export

an RDO from the local client application cache into the TcVI’k

interpreter and perform a null procedure call on the RDO. The

LRPC cost adds the additional step of performing a local RPC to

the access manager to retrieve the RDO before exporting it and

performing a null procedure call.

Our cost for crossing address spaces (LRPC) is approximately

an order of magnitude greater than the underlying system cost (ap-

proximately 400 microseconds for sending and receiving a 4-byte

message across a pipe). We believe that this is due to the simplistic

approach we used to implement LRPC: it dynamically allocates

buffers, copies the data several times, uses an expensive protocol

for transferring messages across a pipe, and uses a naive marshaling

scheme. All of these overheads can easily be eliminated,

We can now compare the local invocation time to the time to

export an RDO. (We measure the time for an export instead of

an import, because an export has to write the full RDO into the

log.) Exporting an RDO consists of performing an LRPC from

the application to the access manager with the updated RDO. The

access manager constructs a QRPC for the updated RDO and queues

the request with the RDO in the stable log. The network scheduler

dequeues the request and issues the update to a Rover server. The

server then constructs a small reply RDO and returns it to the mobile

[Protocol I ‘Ikansport I Latency I Throughput ~

I I Ethernet II 59 I 0.36 1

TCP T%izXN-
CSLIP14.4 555

CSLIP2.4 4100 0.001

Ethernet 5600 0.02

SMTP WaveLAN 5800 I 002
CSLIP14.4 II 11000 I 0:007

1, 1

1 CSLIP2.4 44000 \ 0.001

Table 7: Time for an export of a 57-byte RDO in milliseconds.

Throughput measured in Mbit/s for 16-Kbyte RDOS.

host. Finally, the access manager removes the QRPC from the log

and notifies the client application.

Table 7 provides the results for exporting small (47 code bytes

and 10 data bytes) and large (50 code bytes and 16K data bytes)

RDOS. Most of the overhead for exporting a remote RDO can be

attributed to the cost for performing an LRPC and a QRPC. The

remaining time is the communication transport time, the time to

create the RDO, and the time to process the request within the

access manager and the Rover server.

By comparing the time for an LRPC (7.4 milliseconds) with the

time for the export of a small remote RDO (59 milliseconds), we

conclude that LRPC is only a small fraction of the total cost of ex-

porting a remote RDO. Therefore, caching RDOS can substantially

reduce the latency of method invocations, Similarly, we conclude

that caching can substantially reduce bandwidth consumption.

More interesting is the comparison between the time for a null

RPC over TCP and the time for LRPC, since the TCP numbers

give a lower bound on how efficient QRPC could be. Using the

fastest transport protocol, a null RPC over TCP takes 8 milliseconds

(see Table 5), which is already almost one millisecond slower than

our inefficient implementation of LRPC. We therefore conclude

that caching is worthwhile even when using the fastest transport

protocols. With the slower networks, the gains from using caching

become much larger for a 14.4 dial-up line an LRPC is 56 times

faster (7.4 versus 420 milliseconds).

All measurements were done using the standalone Rover server.

Using the CGI-based Rover server with EthernetfTCP adds approx-

imately 110 milliseconds to the cost of exporting a small RDO.

About half of the cost is from internal HTTP server processing,

while the other half is the cost to fork and execute the Rover server,

Although the price for backwards compatibility with H’lTP servers

is considerably high, it allows Rover to leverage off the extensive

available WWW infrastructure.

7.4 The Benefits of Migrating RDOS

To understand the performance benefits of dynamically migrat-

ing RDOS in an environment with moderate bandwidth links and dis-

connected operation, we performed two system-level experiments.

In the first experiment. we measured the time to perform a simple

task using Exmh and Rover Exmh: starting the application and read-

ing all of the messages in a user’s inbox (eight messages, ranging in

size from 0.79 Kbytes to 32.7 Kbytes, totaling 65.4 Kbytes). For the

second experiment, we measured the time to perform a simple task

using Ical and Rover Webcal: starting the application and viewing

the appointments for a week’s activities (the user’s base calendar

included 16 other calendars, ranging in size from 16 bytes to 20

Kbytes, totaling 79.5 Kbytes).

168

I Environment II Transuort I Time

RoverlA~~ cached
,

I CSLIP2.4 7:56

Rover/Full cache I CSLIP14.4 I 1:06,
Rover/Full cache I CSLIP2.4 1:37

Rover/Full cache none 1:02

Table 8: Time to start Exmh and Rover Exmh, and read all messages

in user’s inbox. Times are minutes :seconds.

RoverlA~p cached CSLIP2.4 10:16

Rover/Full cache CSLIP14.4 0:33

Rover/Full cache CSLIP2.4 1:11

Rover/Full cache none 0:29

Table 9: Time to start lcal and Rover Webcal, and check a week’s

appointments and reminders. Times are minutes: seconds.

The results for the system-level experiments are summarized in

Tables 8 and 9 respectively. As a baseline, we used the unmodified

version of each application running on the server and using X over

Ethernet to provide the user interface to the mobile host. For

limited bandwidth connectivity, we used NCD’S PC-Xware 2.0’s

Xremote running under Microsoft Windows 3.1. We also tested

each unmodified application using NFS to access the server. In this

test we ran the application locally on the mobile host, which used

NFS to obtain and cache data (mail folder and calendar files).

For the Rover tests, we used Rover versions of each application

running locally on the mobile host. We tested the performance when

the application binary and supporting RDOS were locally cached.

Thus, for Rover ILxmh, we measured the time to retrieve the RDOS

representing the inbox folder and the messages contained within it,

while for Rover Webcal, we measured the time to retrieve the RDOS

representing the user’s calendar and the calendar items contained

within it. The “full cache” numbers measure the time when, in

addition to caching the application, all the RDOS encapsulating

the data were locally cached. However, the network was used to

validate that the RDOS, including the application code, were up-

to-date. Finally, the fully disconnected case measured performance

when all information was locally cached and validation requests

were enqueued and logged to stable storage for later delivery.

We first compare the Rover applications in disconnected mode

with the unmodified version of the application running on the server

and using X over Ethernet to provide the user interface to the mobile

host. When considering this comparison, it is important to recall

the relative performance differences between the server (SPARC-

station 5) and the mobile host (ThinkPad 701 C), and that Rover

logs validation requests, We see that the Rover applications perfor-

mance is competitive with the unmodified applications (1 :02 versus

0:55 for Exmh and 0:15 versus 0:29 for Rover WebcaO. From this

experiment we conclude that Rover delivers excellent performance

in disconnected operation.

If we compare the unmodified applications running over Xre-

mote with the Rover applications over a 14.4 dial-up line, we see

that the Rover applications perform substantially better than the

unmodified applications over Xremote (1:06 versus 9:08 for Exmh

and 0:33 versus 3:20 for Rover Webcal). Even if the Rover cache is

cold, the Rover applications still perform substantially better (1:34

for Exmh and 1:09 for Rover Webcaf). What the numbers do not

show is the extreme sluggishness of the user interface when using

Xremote. Scrolling and refreshing operations are extremely slow.

Clicking and selecting operations are very difficult to perform be-

cause of the lag between mouse clicks and display updates. Because

of this, we could not run Xremote effectively over a 2.4 dial-up line,

while the Rover applications ran fine over 2.4. From this experi-

ment we conclude that dynamically migrating RDOS (in this case

the GUI) delivers substantial performance benefits.

If we compare Xl 1R6 (NFS) with Rover, we obtain a rough idea

of how systems with caching but without migrating RDOS might

perform. We see that the Rover applications run substantially faster

than the unmodified applications on lower bandwidth links. Whh

a 14.4 dialup-line the unmodified Exmh runs in 2:36, while Rover

Exmh runs in 1:06. Similarly, unmodified Ical runs in 1:02, while

Rover Webcalruns in 0:33. Again, most of the performance benefits

are coming from Rover’s capability to dynamically migrate the GUI

using an RDO.

8 Conclusions

We have found that the integration of relocatable dynamic objects

and queued remote procedure calls in the Rover toolkit provides

a powerful basis for building mobile applications. We have been

pleased by how easy it has been to adapt applications to use these

Rover facilities to create applications that are far less dependent on

high-performance communication connectivity. For example, one

might conjecture that it would be difficult to build a mobile version

of Mosaic that provides a useful service in the absence of network

connectivity. In practice, we have found that the combination of the

Rover cache, relocatable dynamic objects for interactive support,

and queued remote procedure calls results in a surprisingly useful

system.

The largest, most important, drawback of the Rover approach

is that application designers must think carefully about how appli-

cation functions should be divided between a client and a server.

For example, to permit a disconnected client to interact with server

facilities, the application architect must create appropriate relo-

catable dynamic objects and make sure they are loaded into the

client’s cache. If a disconnected client is permitted to make updates

to server-based objects, application-specific consistency constraints

must be implemented. Queued remote procedure calls may require

user interface adaptations that correspond to the idea of delayed

responses to requests. However, we have found that certain ap-

plications, including Mosaic and Netscape, can use queued remote

procedure calls with the creative re-engineering of existing proto-

cols.

It is possible that relocatable dynamic objects and queued re-

mote procedure calls will find application in workstation environ-

ments as well as mobile environments. For example, relocatable

dynamic objects can be used to off-load scripting tasks from Web

servers, and queued remote procedure calls permit the background

delivery of large objects, such as video segments.

Mobile computing has the potential to make a dramatic impact

on people’s lives, and we are encouraged by the wide range of

applications that are possible in the absence of continuous, high-

bandwidth connectivity. The next steps in our research program

169

will be to further understand how to accommodate an increasing

range of mobile applications that reflect the full capability of the

mobile environment to the end user.

Acknowledgments

We thank the anonymous reviewers (including the Stanford students

from Mary Baker’s distributed systems course), Mitchell Charity,

Greg Ganger, Wilson Hsieh, Kirk Johnson, Chanathip Namprem-

pre, Peter Szilagyi, Bienvenido V61ez, Carl Waldspurger, Deborah

Wallach, and Ron Weiss for their careful readings of earlier ver-

sions of this paper and insightful discussions. We would also like

to thank Michael Shurpik and Sanjay Ghemawat for helping with

the development of Rover and Webcal.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Adobe Systems. Programming the Display PostScript System

with X. Addison-Wesley Ptrb. Co., Reading, MA, 1993.

M.G. Baker. Changing communication environments in

MosquitoNet. In Workshop on Mobile Computing Systems

and Applications, pages 64-68, Santa Cruz, CA, 1994.

J. Bartlett. W4-the Wireless World-Wide Web. In Workshop

on Mobcle Computing Systems and Applications, pages 176–

178, Santa Cruz, CA, 1994.

T. Bemers-Lee, R. Caillau, A. Luotonen, H. Frystyk, and

A. Secret. The world-wide web. Communications of the

ACM, 37(8):76-82, August 1994.

T. Bemers-Lee, R. T. Fielding, and H. Frystyk. HyperText

Transfer Protocol – HITP/I.O. IETF HTTP Working Group

Draft 02, Best Current Practice, August 1995.

A.D. Birrell and B.J. Nelson. Implementing remote procedure

calls. ACM Trans. Comp. Syst., 2(1):39–59, Feb. 1984.

N. S. Borenstein. EMail with a mind of its own: The Safe-Tel

language for enabled mail. In IFIP Transactions C, pages

389-415, Barcelona, Spain, June 1994.

M. H. Brown and R. A. Schillner. DeckScape: An experimen-

tal web browser. Technical Report 135a, Digital Equipment

Corporation Systems Research Center, March 1995.

D. H. Crocker. Standard for the format of ARPA internet text

messages. RFC 822, Aug 1982.

A. F. deLespinasse. Rover mosaic: E-mail communication for

a full-function web browser. Master’s thesis, Massachusetts

Institute of Technology, June 1995.

A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,

and Et. Welch. The Bayou architccturc: Support for data shar-

ing among mobile users. In Workshop on Mobile Computing

Systems and Applications, pages 2-7, Santa Cruz, CA, 1994.

P. Deutsch and C.A. Grant. A flexible measurement tool for

software systems. Information Processing 71, 1971.

F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A.

Tauber. Storage alternatives for mobile computers, In First

Symposium on Operating Systems Design and Implementa-

tion, pages 25–37, Monterey, CA, November 1994,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

F. Douglis and J. Ousterhout. Process migration in the Sprite

operating system. In Proc. of the 7th International Conference

on Distributed Computing Systems, pages 18–25, Berlin, West

Germany, September 1987. IEEE.

A. Downing, D. Daniels, G. Hallmark, K. Jacobs, and S. Jain.

Oracle 7, symmetric replication: Asynchronous distributed

technology, September 1993.

D. K. Gifford and J. E. Donahue. Coordinating independent

atomic actions. In Spring Compcon ’85, pages 92–92, San

Francisco, CA, February 1985.

D. K. Gifford, R. M. Needham, and M. D. Schroeder. The

Cedar file system. CACM, 3 1(3):288-298, March 1988.

J. Gosling and H. McGilton, The Java language environ-

ment: A white paper, 1995. http://java.sun .com/whitePaper/-

javawhitepaper-l .html.

R. Gruber, M. F. Kaashoek, B. Liskov, and L. Shira. Discon-

nected operation in the Thor object-oriented database system,

In Proceeding of the Workshop on Mobile Computing Systems

and Applications, pages 5 1–56, Santa Cruz, CA, 1994.

R. Hagmann. Reimplementing the Cedar file system using

logging and group commit. In Proc of the Eleventh Symposium

on Operating Systems Principles (SOSP), December 1987.

H. Houh, C. Lindblad, and D. Wetherall. Active pages. In

Proc. First International World-Wide Web Conference, pages

265–270, Geneva, May 1994.

L. Huston and P. Honeyman. Partially connected operation. In

Proceedings of the Second USENIXSymposium on Mobile and

Location-Independent Computing, pages 91-97, Ann Arbor,

MI, April 1995.

L. B. Huston and P. Honeyman. Disconnected operation for

AFS. In Proc. USENIX Symposium on Mobile & Location-

Independent Computing, pages 1–10, Cambridge, MA, Au-

gust 1993.

Information Sciences Institute. Transmission Control Proto-

col: DARPA Internet Program Protocol Specijcation. Intemet

RFC 793, September 1981.

V. Jacobson. Compressing TCP/IP Headers for Low-Speed

Serial Links. Intemet RFC 1144, February 1990.

F, Kaashoek, T. Pinckney, and J. Tauber. Dynamic documents:

Mobile wireless access to the WWW. In Workshop on Mobile

Computing Systems and Applications, pages 179–1 84, Santa

Cruz, CA, 1994.

R. H. Katz. Adaptation and mobility in wireless information

systems, IEEE Personal Communications, 1:6–17, 1994.

L. Kawell Jr., S. Beckhardt, T. Halvorsen. R. Ozzie, and

I. Greif. Replicated document management in a group com-

munication system. Presented at the Second Conference

on Computer-Supported Cooperative Work, Portland, OR,

September 1988.

J. J. Kistler. Disconnected Operation in a Distributed File

System. PhD thesis, School of Computer Science, Carnegie

Mellon University, May 1993.

J. J. Kistler and M. Satyanarayanan. Disconnected operation

in the Coda file system. ACM Transactions on Computer

Systems, 10:3–25, 1992.

170

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[481

P. Kumar. Mitigating the Effects of Optimistic Replication in

a Distributed File System. PhD thesis, School of Computer

Science, Carnegie Mellon University, December 1994.

P. Kumar and M. Satyanarayanan. Supporting application-

specific resolution in an optimistically replicated file system.

In Proc. of the Fourth Workshop on Workstation Operating

Systems (lVWOS-IV), pages 66-70, Napa, CA, 1993.

J. Landay. User interface issues in mobile computing. In Proc.

of the Fourth Workshop on Workstation Operating Systems

(lVWOS-IV), pages 40-47. IEEE, October 1993.

M.T. Le, F. Burghardt, S. Seshan, and J. Rabaey. InfoNet: the

networking infrastructure of InfoPad. In Compcon ’95, pages

163–168, 1995.

A. K. Lenstra and M. S. Manasse. Factoring by electronic

mail. In Advances in Cryptology — Eurocrypt ’89, pages

355-371, Berlin, 1989. Springer-Verlag.

B. Liskov, M. Day, and L. Shrira. Distributed object manage-

ment in Thor. In M. Tamer Ozsu, Umesh Dayal, and Patrick

Valduriez, editors, Distributed Object Management. Morgan

Kaufmann, 1993,

B. Liskov and L. Shrira. Promises: Linguistic support for

efficient asynchronous procedure calls. In Proc. SIGPL4N

88 Con$ on Progz Lang. Design and [mpl., pages 260-267,

Atlanta, GA, June 1988.

J.C. Mallery. A Common LISP hypermedia server. In Proc.

First International World- Wide Web Conference, pages 239-

247, Geneva, May 1994.

L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Ex-

ploiting weak connectivity for mobile file access. In Proc. of

the Fl~teenth ACM Symposium on Operating Systems Princi-

ples (SOSP), Copper Mountain Resort, CO, 1995.

National Center for Supercomputing Applications. Com-

mon Gateway Interface. University of Illinois in Urbana-

Champaign, 1995.

National Center for Supercomputing Applications. Mosaic.

University of Illinois in Urbana-Champaign, 1995.

Netscape Communications Corporation. Netscape Navigator.

Mountain View, CA, 1995.

J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,

Reading, MA, 1994.

J.K. Ousterhout. The TclfTk project at Sun Labs, 1995. http://-

www. sunlabs.cornhesearchltcl.

J. B. Postel. Simple Mail Transfer Protocol. Intemet RFC

821, August 1982.

M. L. Powell and B. P. Miller. Process migration in DE-

MOSIMP. In Proc. of the Ninth Symposium on Operating

System Principles (SOSP), pages 110-119, October 1983.

J. Rees and W. Clinger. The revised3 report on the algorithmic

language Scheme. AI Memo 848a, Massachusetts Institute

of Technology Artificial Intelligence Laboratory, Cambridge,

Massachusetts, September 1986.

P. Reiher. J. Heidemrmn, D. Ratner, G. Skinner, and G. J,

Popek. Resolving file conflicts in the Ficus file system. In

USENIXSummer 1994 Technical Conference, pages 183–195,

Boston, MA, 1994.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

D. Riecken, editor. Intelligent Agents. Communications of the

ACM, 37(7), July 1994.

M. Satyanarayanan, J. J. Kistler, L. B. M., M. R. Ebling,

P, Kumar, and Q. Lu. Experience with disconnected opera-

tion in a mobile environment. In Proc. USENIX Symposium

on Mobile& Location-Independent Computing, pages 11-28,

Cambridge, MA, August 1993.

J. M. Smith. A survey of process migration mechanisms.

Operating Systems Review, 22(3):28-40, July 1988.

K. Sollins and L. Masinter. Functional Requirements for Uni-

form Resource Names. Internet RFC1737, December 1994.

D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.

Theimer, and B. B. Welch, Session guarantees for weakly

consistent replicated data. In Proc. of the 1994 Symposium on

Parallel and Distributed Information Systems, pages 140-149,

September 1994.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.

Spreitzer, and C. H. Hauser. Managing update conflicts in a

weakly connected replicated storage system. In Proc. of the

Ftfieenth ACM Symposium on Operating Systems Principles

(SOSP), Copper Mountain Resort, CO, 1995.

M. Theimer, A. Demers, K. Petersen, M. Spreitzer, D. Terry,

and B. Welch. Dealing with tentative data values in discon-

nected work groups. In Proc. of the Workshop on Mobile

Computing Systems and Applications, pages 192-195, Santa

Cruz, CA, 1994.

M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote

execution facilities for the V-System. In Proc. of the Tenth

Symposium on Operating System Principles (SOSP), pages

2–12, Orcas Island, WA, December 1985.

J. Vittal. Active message processing: Messages as messen-

gers. In Proc. of IFIP TC-6 International Symposium on

Computer Message Systems, pages 175-195, Ottawa, Canada,

April 1981.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-

cient software-based fault isolation. In Proc. of the Fourteenth

Symposium on Operating Systems Principles (SOSP), pages

203-216, Asheville, NC, 1993.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The

LOCUS distributed operating system. In Proc. of the Ninth

ACM Symposium on Operating Systems Principles (SOSP),

pages 49-70, Bretton Woods, NH, 1983.

T. Watson. Application design for wireless computing. In

Workshop on Mobile Computing Systems and Applications,

pages 91-94, Santa Cruz, CA, 1994.

T. Watson and B. Bershad. Local area mobile computing on

stock hardware and mostly stock software. In Proc. USENIX

Symposium on Mobile & Lmcation-Independent Computing,

pages 109–1 16, Cambridge, MA, August 1993.

W. Weihl and B. Liskov. Implementation of Resilient, Atomic

Data ~pes. ACM Trans. Prog. Lang. Syst., 7(2):244-269,

April 1985.

J, E, White. Telescnpt technology: The foundation for the
electronic marketplace, 1994.

171

