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Abstract

Row-column designs involve two crossed blocking factors. We propose three combinatorial criteria and a
criterion based on D-efficiency to identify optimal row-column arrangements of fractional factorial two-
level designs. We search for such arrangements in complete catalogs of 16-run and 24-run orthogonal
arrays of strength 2 with two-level treatment factors and two multi-level blocking factors. One of the
combinatorial criteria is a good surrogate for the efficiency-based criterion. For searching similar cata-
logs of strength-3 orthogonal arrays, we adapt the criteria and conduct a complete search for optimal
row-column arrangements in catalogs with 64 and 72 runs.

KEY WORDS: Aliasing; Confounding; Confounding Frequency Vector; Crossed Blocking Factors; Gen-
eralized Word-Length Pattern; Orthogonal Array.

Table 1: Names of the 12 treatment factors studied in the car tire experiment.

Factor Name
X1 rubber compound
X2 number of ribs
X3 shoulder block position
X4 center line cut depth
X5 center line cut width
X6 shoulder cut width
X7 center line cut angle
X8 shoulder cut angle
X9 center line cut through
X10 shoulder cut through
X11 center line additional sipe
X12 shoulder additional sipe
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1 Introduction

In this paper, we study orthogonal blocking arrangements for the experimental tests described by regular and
nonregular orthogonal two-level treatment designs when there are two crossed blocking factors. Bailey (2008)
refers to these kinds of arrangements as row-column designs, because the arrangements can be represented
in a table in which the levels of the first blocking factor correspond to the table’s rows and the levels of the
second blocking factor correspond to the table’s columns. A cell in the table’s ith row and jth column then
corresponds to one or more runs conducted at the ith level of the first blocking factor and the jth level of
the second blocking factor. We call the blocking arrangements we study here orthogonal because the main
effects of the blocking factors and the treatment factors are all orthogonal. By an n-factor regular two-level
treatment design, we mean a 2n−p fractional factorial design constructed using p interactions as generators
(Box et al., 2005). By an n-factor nonregular two-level treatment design, we mean any n-factor two-level
design that cannot be constructed using this method. Any treatment design whose number of runs is not a
power of two is inevitably nonregular. When its number of runs is a power of two, a treatment design can
be regular or nonregular.

The experiment that motivated our work was a car tire experiment involving the 12 two-level treatment
factors shown in Table 1. The total number of experimental runs was 24. The experiment was conducted on
four consecutive days. Every day, six runs were performed by three different drivers. The same set of three
drivers was used each day. Since, usually, there is day-to-day and driver-to-driver variability, two blocking
factors are involved in the experiment. The first, day, has four levels, while the second, driver, has three
levels. Consequently, the required design is a row-column design involving four rows and three columns.

The design we recommend for the car tire experiment is shown in Table 2. One attractive feature of
the design is that the main effects of the two blocking factors and the 12 treatment factors are orthogonal.
Another attractive feature is that the average D-efficiency over the 2145 models with the main effects of all
the treatment factors and a set of two two-factor interactions is 0.895, after correcting for the two blocking
factors. The design therefore allows the detection of a few active two-factor interactions.

We obtained the row-column arrangement in Table 2 by searching through a catalog of orthogonal designs
with 24 runs, one four-level factor, one three-level factor and 12 two-level factors. In doing so, we assumed
that the two blocking factors do not interact, the effects of the four-level blocking factor and the three-
level blocking factor enter the model in an additive fashion, and that estimating the block effects requires
(4− 1) + (3− 1) = 5 degrees of freedom. This is in line with the traditional statistical analysis of data from
experiments with two crossed blocking factors (see, for example, Bailey, 2008). Given that a row-column
arrangement involving four rows and three columns defines 12 groups of treatments, an alternative approach
would be to seek an arrangement of all 24 treatments in 12 blocks of two treatments. One weakness of this
alternative approach is that it does not assign the treatments to the rows and the columns of the design.
Of course, this assignment could be done at random, but, generally, such a random assignment will not be
optimal. Another weakness of the alternative approach is that it may be infeasible to find an orthogonal
blocking arrangement. This is because it is generally harder to create an orthogonal blocking arrangement
involving many small blocks than to create orthogonal blocking arrangements involving a few larger blocks.
Therefore, if there are r rows and c columns in an experiment with N runs, it may be possible to create
orthogonal arrangements in r rows of N/r runs and c columns of N/c runs even in situations where it is
infeasible to find an orthogonal blocking arrangement involving rc blocks of N/(rc) runs.

The purpose of our paper is to propose general criteria for selecting arrangements in rows and columns for
regular and nonregular two-level designs, and to demonstrate the usefulness of these criteria by identifying
optimal arrangements in r rows and c columns of N -run designs that appear in existing complete catalogs
of r × c× 2n orthogonal designs. We distinguish between strength-2 designs and strength-3 designs. These
types of designs require a separate treatment, because they differ in the aliasing between main effects and
two-factor interactions. In two-level designs of strength 2, all main effects are orthogonal to each other,
but they are not orthogonal to the two-factor interactions. In two-level designs of strength 3, the main
effects are orthogonal to each other and to the two-factor interactions, but the two-factor interactions are
not orthogonal to each other. In r × c × 2n orthogonal designs of strength 2, the two-factor interactions of
the two-level factors are generally also confounded with the main effects of the r-level row factor and the
c-level column factor. In catalogs of strength-3 arrays, this is no longer the case.

Two of the criteria we propose minimize the aliasing among the treatment factors’ effects and the con-
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Table 2: Recommended treatment design for the 12-factor car tire experiment. Factor names are given in
Table 1. The 24 treatments are orthogonally blocked with respect to days as well as to drivers.

Day Driver X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 3 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1
1 3 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
2 1 −1 −1 1 −1 1 1 −1 1 1 −1 −1 1
2 1 1 1 −1 1 −1 −1 1 −1 −1 1 1 −1
2 2 −1 −1 1 1 −1 1 1 −1 1 −1 1 −1
2 2 1 1 −1 −1 1 −1 −1 1 −1 1 −1 1
2 3 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1
2 3 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1
3 1 −1 −1 1 1 1 −1 1 1 −1 1 −1 −1
3 1 1 1 −1 −1 −1 1 −1 −1 1 −1 1 1
3 2 −1 1 −1 −1 1 1 1 −1 1 1 −1 −1
3 2 1 −1 1 1 −1 −1 −1 1 −1 −1 1 1
3 3 −1 1 1 1 −1 −1 −1 −1 1 1 −1 1
3 3 1 −1 −1 −1 1 1 1 1 −1 −1 1 −1
4 1 −1 1 1 −1 −1 1 −1 1 −1 1 1 −1
4 1 1 −1 −1 1 1 −1 1 −1 1 −1 −1 1
4 2 −1 1 1 −1 1 −1 1 −1 −1 −1 1 1
4 2 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1
4 3 −1 1 −1 1 −1 1 1 1 −1 −1 −1 1
4 3 1 −1 1 −1 1 −1 −1 −1 1 1 1 −1
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founding of the treatment factors’ interactions with the two blocking factors. Cheng et al. (2002) showed
that, for completely randomized designs (i.e., designs without any blocking factor), these kinds of criteria
are computationally cheap surrogates for the average D-efficiency over all possible models including all main
effects and a limited number of two-factor interactions. This computational advantage is important when
exploring large catalogs of designs. In this paper, we demonstrate that the two criteria we propose are also
good surrogates for the average D-efficiency over all possible models with limited numbers of two-factor in-
teractions, in the presence of two blocking factors. We also propose a third criterion for selecting row-column
arrangements. That criterion differs from the other two because it maximizes the confounding between the
two-factor interactions and the two blocking factors. This is a useful strategy for experimenters who start the
identification of active factors by fitting a main-effects model in the treatment factors and the two blocking
factors.

The rest of this paper is structured as follows. In Section 2, we review the existing optimality criteria for
two-level strength-2 designs in the absence of any blocking factor and in the presence of a single blocking
factor. Next, in Section 3, we adapt these optimality criteria to deal with two crossed blocking factors so
as to find optimal row-column arrangements of strength-2 designs. In Section 4, we explore catalogs of
strength-2 orthogonal designs with 16 and 24 runs in order to illustrate our approach. In Section 5, we
simplify the criteria for strength-2 designs to identify optimal row-column arrangements in catalogs of 64-
and 72-run strength-3 designs. We return to the car tire example in Section 6 and end the paper with a
discussion of the strengths and weaknesses of our approach, along with possible extensions.

2 Optimality of strength-2 designs in the absence and in the pres-
ence of a single blocking factor

2.1 Criteria for two-level treatment designs

Criteria for evaluating N -run orthogonal two-level treatment designs in the absence of blocking are based on
so-called J-characteristics. The most important J-characteristics are based on sets of three or four factors.
The J-characteristic corresponding to a three-factor set is called a J3-characteristic and equals the absolute
value of the sum of the N element-wise products of the three factors’ levels in the N experimental runs.
The J-characteristic of a set of four factors is called a J4-characteristic and equals the absolute value of
the sum of the N element-wise products of the four factors’ levels in the N runs of the experiment. The
importance of the J3-characteristics lies in the fact that they measure the extent to which the main effects
are aliased with the two-factor interactions. The importance of the J4-characteristics lies in the fact that
they measure the extent to which the two-factor interactions are aliased with other two-factor interactions.
Ideally, the J3- and J4-characteristics are all zero, in which case there is no aliasing among the main effects
and two-factor interaction effects. Whenever J3- and J4-characteristics equal N , the number of runs, this
indicates complete aliasing. Clearly, this is undesirable.

Deng and Tang (2002) showed that the only possible absolute values for the J-characteristics in N -run
strength-2 two-level orthogonal designs equal (N − 8j), where j is a non-negative integer of at most N/8.
So, the only possible values for the J3- and J4-characteristics for strength-2 16-run designs are 16, 8 and 0,
while those for strength-2 24-run designs are 24, 16, 8 and 0.

The F3 and F4 vectors, which are called confounding frequency vectors, list the frequencies of the J3-
and J4-characteristics, starting with the frequencies for the largest possible J3- and J4-characteristics, and
ending with the frequencies for the smallest possible J3- and J4-characteristics. Generally, the frequencies
for the J3- and J4-characteristic value of zero are dropped from the F3 and F4 vectors.

As computationally attractive alternatives to the F3 and F4 vectors, Tang and Deng (1999) proposed
generalized word counts of length 3 and length 4, respectively. To calculate the generalized length-3 word
count, all J3-characteristics are first converted into absolute correlations between a main-effect contrast
vector and a two-factor interaction contrast vector by dividing them by N . Next, the generalized length-
3 word count, denoted by At

3 (where the superscript t refers to the word ‘treatment’), is the sum of the
squares of all resulting correlations. The generalized word count of length 4, denoted by At

4, is defined in a
similar fashion. Whenever all J3- and J4-characteristics are zero, At

3 and At
4 are also zero. Therefore, good

treatment designs minimize the At
3 and At

4 values. The minimization of the At
3 value is prioritized, to ensure
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that the main effects are aliased with the two-factor interaction effects to the smallest possible extent.

2.2 Criteria for blocking arrangements involving a single blocking factor

While criteria for treatment designs only quantify the aliasing of the treatment factors’ main effects with
their two-factor interactions and the aliasing among pairs of two-factor interactions, criteria for blocking
arrangements also have to take into account the confounding between the two-factor interactions and the
blocking factor. Note that, since we only consider designs for which the treatment factors’ main effects are
orthogonal to the blocking factor, there is no confounding between the treatment factors’ main effects and
the blocks.

The confounding of two-factor interactions with a single blocking factor can be expressed using a scalar,
which we refer to as Ab

3. To determine the Ab
3 value for a given blocking arrangement, we first define a

set of orthogonal contrast vectors for the blocking factor. Next, we calculate the correlations between these
contrast vectors, on the one hand, and the two-factor interaction contrast vectors, on the other hand. The
Ab

3 value is the sum of all squared correlations obtained this way. Xu and Wu (2001) show that the Ab
3 value

does not depend on the particular set of orthogonal contrast vectors employed. Minimizing the Ab
3 value

leads to a blocking arrangement that minimizes the overall confounding of two-factor interactions with the
blocking factor.

To select a design for a blocked experiment, both the treatment design and its arrangement in blocks
have to possess desirable properties. More specifically, the At

3 and At
4 values (for the treatment design) as

well as the Ab
3 value (for the blocking arrangement) should be small. In general, these three objectives are

conflicting. There is, however, a general agreement that minimizing the At
3 value is more important than

minimizing the At
4 and Ab

3 values, and should be prioritized. It is unclear, though, whether minimizing the
At

4 value should be prioritized over minimizing the Ab
3 value, or vice versa.

For this reason, when discussing the regular blocking of regular two-level designs, Cheng and Wu (2002)
propose two criteria to rank blocked regular two-level designs. In simplified form, the first criterion, called
the W1 criterion, sequentially minimizes the At

3, At
4 and Ab

3 values. So, the W1 criterion prioritizes the
minimization of the At

4 value over the Ab
3 value. The second criterion they propose, called the W2 criterion,

sequentially minimizes the At
3, Ab

3 and At
4 values. So, the W2 criterion prioritizes the minimization of the

Ab
3 value over the At

4 value. Assuming random block effects, the differences between the blocks provide
information on the variance of the block effects as well as on two-factor interactions confounded with the
blocks. If only a few degrees of freedom are available, both kinds of effects cannot be separated well.
Therefore, it is important to ensure that interactions are confounded with the blocks as little as possible.
For this reason, Schoen et al. (2018), who study blocking arrangements of 24- and 28-run two-level designs,
argue that the W1 criterion is not suitable when the number of blocks is small. For this reason, we extend
the W2 criterion to scenarios with two crossed blocking factors in this paper, rather than the W1 criterion.

Cheng et al. (2004) address the blocking of orthogonal two-level designs, including nonregular designs.
These authors use two versions of both the W1 criterion and the W2 criterion. One version is based on the
At

3 and At
4 values, just like the original criteria of Cheng and Wu (2002). The other version uses the F3 and

F4 vectors instead of the At
3 and At

4 values.
Schoen et al. (2013) address the blocking of general orthogonal designs (i.e., two-level, multi-level and

mixed-level designs). In addition to using the W1 and W2 criteria of Cheng and Wu (2002), they introduce
the W−

1 and W−
2 criteria. The difference between the W−

1 and W−
2 criteria and the W1 and W2 criteria

is that the former two criteria maximize the Ab
3 value, while the latter two criteria minimize this value.

The benefit of maximizing the Ab
3 value is that it leads to smaller root mean squared errors for models

containing only the main effects of the treatment factors and the blocking factor. This implies that the
power of significance tests for detecting active main effects is larger. Recently, Schoen et al. (2018) argue
that the W−

2 criterion ought to be preferred over the W−
1 criterion if a main-effects model will be fitted first.

We therefore focus on an extension of the W−
2 criterion to scenarios with two crossed blocking factors in this

paper, rather than on an extension of the W−
1 criterion.

In addition to the W−
1 and W−

2 criteria, Schoen et al. (2013) also introduce the W3 criterion. For two-
level designs, this criterion can be considered as a simplified version of the WG

2 criterion of Cheng et al.
(2004), in which the F3 vector replaces the At

3 value and a confounding frequency vector for the two-factor
interactions and the blocks, called the FA21 vector, replaces the Ab

3 value.
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All blocking criteria discussed so far favor strength-3 designs over strength-2 designs, because At
3 = 0 for

strength-3 designs. For experiments with 24 runs, strength-3 designs exist with up to 12 factors. However,
there exist strength-2 designs with up to 12 factors which outperform the strength-3 designs in terms of
the number of estimable two-factor interactions. Because the number of estimable two-factor interactions
is generally considered a useful criterion, Schoen et al. (2018) modified the original W2 criterion so that it
prioritizes the maximization of the rank R of the model matrix including an intercept, main effect contrast
vectors and two-factor interaction contrast vectors. In other words, they modified the criterion so that it
prioritizes the maximization of the number of estimable two-factor interactions, given that the intercept and
the main effects (of the treatment factors and the blocking factor) need to be estimated.

3 Criteria for blocking arrangements involving two crossed block-
ing factors

In this section, we introduce our new criteria to select row-column arrangements of two-level designs for
scenarios involving two crossed blocking factors. We illustrate the different criteria for a scenario with two
four-level blocking factors, five treatment factors and 16 runs.

3.1 Literature review

For scenarios involving two crossed blocking factors, Cheng and Mukerjee (2003) provide a methodology
to construct sn−k regular fractional factorial designs and arrange them in sr rows and sc columns. This
methodology has two major limitations. First, the number of runs and the numbers of rows and columns
must be powers of s, where s has to be a prime number. Second, because Cheng and Mukerjee (2003) use
regular designs, the resulting row-column designs may involve complete aliasing and complete confounding
of two-factor interactions (when s = 2) or two-factor interaction components (when s > 2).

Based on a weighted mean efficiency factor criterion, Gilmour and Trinca (2003) proposed an algorithm
for creating factorial row-column designs for quantitative factors and a response surface model. Their con-
struction involves an interchange algorithm. Goos and Donev (2006a,b, 2007) used point-exchange algorithms
to construct D-optimal row-column designs. However, both the approach of Gilmour and Trinca (2003) and
that of Goos and Donev (2006a,b, 2007) require the number of experimental runs to be large enough to
estimate the model involving all main effects and all two-factor interaction effects. In this paper, we focus on
screening experiments which, generally, do not allow all two-factor interaction effects to be estimated at the
same time. For this reason, for most scenarios studied in this paper, the approaches of Gilmour and Trinca
(2003) and Goos and Donev (2006a,b, 2007) are not applicable. The criteria we present are intended to
select row-column arrangements that provide as much information about the interaction effects as possible,
and they are especially useful when a full interaction model is not estimable and the experimenter has no
prior information concerning the importance of individual interaction effects.

3.2 Building blocks of the new criteria

We build on the existing criteria for scenarios with just one blocking factor to define four criteria to select row-
column arrangements of orthogonal two-level treatment designs. Three of the four criteria are adaptations
of the W2, W−

2 and W3 criteria discussed in Section 2.2 for experiments with a single blocking factor. We
call these criteria combinatorial criteria. Our fourth criterion, the ICq criterion, explicitly deals with the
estimation efficiency of models with a limited number of interaction effects. We start by presenting our three
combinatorial criteria, and then discuss the ICq criterion. Throughout, we assume that treatment factor
interaction effects of orders larger than two are negligible.

The combinatorial criteria all address the confounding of two-factor interactions with a particular blocking
factor. The confounding can be expressed using scalars, which we refer to as Ar

3 for confounding with the
row factor and Ac

3 for confounding with the column factor, or using a confounding frequency vector called
the FArc22

3 vector. The scalars Ar
3 and Ac

3 are calculated in the same way as the Ab
3 value for arrangements

involving a single blocking factor; see Section 2.2. Minimizing the Ar
3 and Ac

3 values leads to a blocking
arrangement that minimizes the overall confounding of the two-factor interactions with the two blocking
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factors. The FArc22
3 vector, which we define in detail in Section 3.5, provides a more detailed picture of

the confounding of two-factor interactions with the blocking factors. It is akin to the F3 and F4 vectors
discussed above, and generalizes the FA21 vector utilized by Schoen et al. (2013).

Our combinatorial criteria to deal with two blocking factors are called W2, W−
2 and W3 criteria, because

they generalize similar criteria for the case of a single blocking factor (see Section 2.2). They all involve a
vector the elements of which have to be minimized from left to right. The minimization vectors for the three
criteria in the presence of two blocking factors are shown in Table 3. The minimization vectors include

• the rank R of the model matrix for a model including the intercept, the treatment factors’ main effect
contrast vectors and their two-factor interaction contrast vectors;

• the At
3 value summarizing the aliasing between the main effects and the two-factor interactions in the

treatment design;

• the At
4 value summarizing the aliasing among the two-factor interactions in the treatment design;

• the Ar
3 value measuring the confounding between, on the one hand, the two-factor interactions of the

treatment factors and, on the other hand, the first blocking factor, corresponding to the rows of the
row-column arrangement;

• the Ac
3 value measuring the confounding between, on the one hand, the two-factor interactions of the

treatment factors, and, on the other hand, the second blocking factor, corresponding to the columns
of the row-column arrangement;

• the confounding frequency vectors F3, F4 and FArc22
3 , which provide more details concerning the

various kinds of aliasing and confounding measured by the At
3, At

4, Ar
3 and Ac

3 values.

We always minimize the leftmost entry of any minimization vector first. Next, we minimize the second entry
of the vector, while ensuring that the leftmost entry retains its minimum value. We continue this sequential
minimization until we have minimized the rightmost entry of the minimization vector. We call a design
that sequentially minimizes a minimization vector W2, W−

2 or W3 optimal, depending on which vector was
utilized.

Table 3: Minimization vectors for the W2, W−
2 and W3 optimal row-column arrangements of strength-2

designs.
Criterion Minimization vector
W2 −R At

3 F3 Ar
3 + Ac

3 At
4 F4

W−
2 At

3 F3 −Ar
3 −Ac

3 At
4 F4

W3 F3 FArc22
3

3.3 W2 criterion

The first entry of the minimization vector for the W2 criterion is minus the rank R of the model matrix
including the intercept, the main effect contrast vectors and the two-factor interaction contrast vectors for
the two-level treatment design. As we are interested in designs with high ranks, we seek to maximize the
rank or, equivalently, to minimize minus the rank. Among all treatment designs which maximize the rank
R, the W2 criterion first seeks to minimize the At

3 value. This ensures that the global aliasing between the
main effects of the treatment factors and the two-factor interactions is as small as possible. The next entry
we minimize is the F3 vector. In doing so, we try to avoid that certain main effects are severely aliased with
certain two-factor interactions. In other words, for a given global amount of aliasing, we prefer having many
effects that are aliased to a small extent over a few effects that are severely, possibly completely, aliased. For
similar reasons, the F4 vector enters the W2 criterion’s minimization vector immediately after the At

4 value.
A key feature of the W2 criterion is that it prioritizes the minimization of the confounding between

the blocking factors and the treatment factors’ interactions, before addressing the aliasing among the two-
factor interactions in the treatment design. This can be seen from the fact that the sum Ar

3 + Ac
3, which
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measures the global confounding between the interactions and both blocking factors, precedes the At
4 value

in the minimization vector. That approach is especially useful when the numbers of rows and columns in
the desired row-column arrangement are small. In that case, it is not feasible to separate the available
inter-block information on the variance of the block effects from that on the treatment factors’ interactions.
Therefore, it is better to make sure that the inter-block information on the treatment factors’ interactions
is minimized, by minimizing the confounding of these interactions with the blocks.

3.4 W−
2 criterion

The main goal of the W−
2 criterion is to maximize the confounding between the two-factor interaction effects

and the block effects, while still minimizing the aliasing of the main effects and the two-factor interactions
of the treatment factors. The confounding is maximal if all two-factor interaction effects are completely
confounded, in which case Ar

3 + Ac
3 = 0.5n(n − 1). Since maximizing the sum Ar

3 + Ac
3 is the same as

minimizing −Ar
3 −Ac

3, we use the entry −Ar
3 −Ac

3 in the W−
2 criterion’s minimization vector in Table 3.

The W−
2 criterion is useful when a model including the main effects of all the treatment factors and

the blocking factors is used to detect active treatment factors. Any active two-factor interaction effect then
potentially causes an inflation of the mean squared error, and, as a result, an increase in the estimated
standard errors of the main effects and a smaller power for the significance tests of these effects. One
approach to limit this inflation of the mean squared error is to ensure that as many two-factor interaction
effects as possible are confounded with the blocks. This is exactly what the W−

2 criterion seeks to achieve.
All other things being equal, W−

2 optimal row-column arrangements will therefore result in a larger power
for detecting factors with large main effects.

Note that, because the W−
2 criterion concentrates on the detection of active main effects, the rank of the

interaction model matrix is not relevant for this criterion.

3.5 W3 criterion

The W3 criterion first sequentially minimizes the entries of the F3 vector, which quantifies the aliasing
between the main effects and the two-factor interactions of the treatment factors, starting with the most
severe kind of aliasing and ending with the least severe kind. Due to the absence of the At

3 value as well as
the rank R from its minimization vector, the W3 criterion prioritizes the minimization of the most severe
aliasing between main effects and two-factor interactions over the total amount of aliasing. Therefore, we
expect different designs to be optimal in terms of the W3 criterion than in terms of the previous two criteria.

Among all designs that sequentially minimize the entries of the F3 vector, the W3 criterion seeks those that
minimize the confounding of the two-factor interactions with the two blocking factors. The minimization
of the most severe confounding with the two blocking factors is prioritized over the minimization of less
severe confounding. To achieve this, for each two-factor interaction, we first determine the sum of the
squared correlations of its contrast vector and each of the contrast vectors for the rows. The frequencies
of the possible values of these sums of squared correlations form the FAr22

3 vector. The FAc22
3 vector

is a similar vector with the column factor’s contrast vectors replacing those of the row factor. Next, we
combine the FAr22

3 and FAc22
3 vectors into a single vector, FArc22

3 , so that this vector’s entries quantify
all the confounding of the two-factor interactions of the treatment factors with the two blocking factors.
The leftmost entries of the FArc22

3 vector correspond to the largest sums of squared correlations and thus
to the most severe kinds of confounding with the blocking factors. For notational convenience, we omit the
frequencies of the zero sums, which correspond to two-factor interactions that are orthogonal to the rows or
columns, from the FArc22

3 vector.

3.6 ICq criterion

As mentioned above, our fourth criterion for selecting blocking arrangements explicitly deals with the es-
timation efficiency of models with a limited number of interaction effects. More specifically, our fourth
criterion is the average D-efficiency over all models containing all main effects and q two-factor interactions,
after correcting for the intercept and the effects of the two blocking factors. In other words, our fourth
criterion is an average Ds-efficiency (Atkinson et al., 2007) for a specific subset of parameters in a model
with an intercept, all main effects, all block effects and q treatment factor interactions. The specific subset
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of parameters includes the n main effects and q two-factor interactions of the treatment factors. For a given
model with q interactions, the Ds-efficiency is calculated as

Ds = |UT (IN −CCT )U|1/p/N,

where U is an N × p matrix containing all main-effect contrast vectors and q specific two-factor interaction
contrast vectors, C is an N×b matrix consisting of a column of ones and the normalized orthogonal contrast
vectors for the two blocking factors with r and c levels, p = n + q, b = 1 + (r − 1) + (c − 1) = r + c − 1,
and IN is the N ×N identity matrix. Our fourth criterion is known as the ICq criterion in the literature,
where IC stands for information capacity. It was proposed initially by Sun (1993), and used later by Li and
Nachtsheim (2000) in the context of completely randomized designs (i.e., in scenarios without any need for
blocking). Cheng et al. (2002) point out that there is a negative relation between the ICq value and the At

3

and At
4 values. In other words, they point out that designs with a large ICq value tend to have small At

3

and At
4 values, and vice versa. A drawback of the ICq criterion is that it is computer-intensive, especially

for designs with many factors and large values of q. In the strength-2 examples in this paper, we use q = 1
for 16-run row-column designs and q = 2 for 24-run row-column designs. In doing so, we favor designs that
allow a precise estimation of a limited number of interaction effects.

One of the goals of this paper is to compare our results for the combinatorial criteria with those for
the computationally intensive ICq criterion. The combinatorial criteria have the advantage that they are
computationally less demanding than the ICq criterion, but they are not directly linked to any statistical
property such as estimation efficiency.

3.7 Tied designs

On many occasions, we identified more than one design that is optimal with respect to a given combinatorial
criterion. On those occasions, we used the ICq criterion as a tie breaker. For the W2 and W3 criteria, we
report the optimal design with the best (largest) value for the ICq criterion. For the W−

2 criterion, we report
the optimal design with the worst (smallest) value for the ICq criterion. We do so because a small value for
the ICq criterion indicates that the corresponding blocking arrangement does not involve much information
on the two-factor interactions within the blocks and that the interactions are confounded with the blocks to
a considerable extent. Consequently, the inflation of the mean squared error when estimating a main-effects
model should be limited when that blocking arrangement is used. Hence, small values for the ICq criterion
are consistent with the rationale for using the W−

2 criterion.

3.8 Illustration

Table 4 presents four different row-column arrangements of five-factor 16-run designs for a scenario with
two four-level blocking factors. The performance of the four row-column arrangements in terms of the three
combinatorial criteria and in terms of the IC1 criterion is shown in Table 5. The row-column arrangements
labeled D1 and D2 involve the same treatment design, namely a regular half fraction of the 25 full factorial
design. The design has a resolution of V, meaning that the intercept, all five main effects and all ten
two-factor interactions are orthogonal to each other. Therefore, the rank R equals 16 for that design.

The treatment combinations in row-column arrangement D3 involve a duplicated regular half fraction of
the 24 full factorial design for the first four factors. The first half fraction is run at one level of the fifth
factor, while the second half fraction is run at the other level of the fifth factor. The resulting treatment
design is regular, but it is not the regular fractional factorial design that is considered to be the best. For
row-column arrangement D3, the rank R is only 13.

Finally, row-column arrangement D4 involves a nonregular treatment design. For three out of the ten
sets of three factors, the main effect contrast vector for one factor has an absolute correlation of 0.5 with
the contrast vector of the interaction between the other two factors. Hence, the treatment design involves
partially aliased effects. It has a rank R of 16.

Since the R values for the row-column arrangements D1, D2 and D4 are all 16 and thus larger than that
for arrangement D3, arrangement D3 is inferior to the others in terms of the W2 criterion. Because, unlike D1

and D2, row-column arrangement D4 has a non-zero At
3 value, it is not optimal in terms of the W2 criterion.

Row-column arrangements D1 and D2 do not only have the same value for R and for At
3, but they also have
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Table 4: Four 16-run designs with five two-level factors arranged in four rows and four columns.
Row Column D1 D2 D3 D4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1
0 2 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1
0 3 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0
1 2 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0
1 3 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1
2 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0
2 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0
2 2 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1
2 3 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1
3 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
3 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1
3 2 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0
3 3 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0

the same Ar
3, Ac

3 and At
4 values, and the same confounding frequency vectors F3 and F4. Therefore, in terms

of the combinatorial properties appearing in the minimization vector of the W2 criterion, the row-column
arrangements D1 and D2 are alike. However, they do differ in terms of their IC1 value. Arrangement D1

has an IC1 value of 0.56, whereas arrangement D2 has an IC1 value of 0.40 only.
In terms of the W−

2 criterion, row-column arrangement D4 is outperformed by the other three because of
its non-zero At

3 value. Arrangement D3 is outperformed by arrangements D1 and D2 because of its non-zero
At

4 value. Finally, when using the W−
2 criterion, we prefer arrangement D2 over D1 because it has the

worst IC1 value of the two. We therefore expect row-column arrangement D2 to cause a smaller inflation
of the mean squared error when estimating a main-effects model. Row-column arrangement D2 is a regular
two-level row-column designs reported by Cheng and Mukerjee (2003).

Because the F3 vector of arrangement D4 is nonzero, that arrangement is less attractive than the others in
terms of the W3 criterion. The other three row-column arrangements all have a zero F3 vector, but they differ
in the confounding of the two-factor interactions with the blocking factors. When using arrangement D1,
for example, four two-factor interactions are completely confounded with the blocking factors. When using
arrangement D2, six two-factor interactions are completely confounded with the blocking factors. Finally,
when using arrangement D3, only two two-factor interactions are completely confounded with the blocking
factors. This can be seen from the first entries of the FArc22

3 vectors for D1, D2 and D3, which equal 4, 6 and
2, respectively, and which correspond to perfect correlations between two-factor interactions and contrast
vectors of the blocking factors. In other words, these entries indicate how many two-factor interactions are
completely confounded with the blocking factors. Because, among the designs with a zero F3 vector, it has
the fewest completely confounded two-factor interactions, row-column arrangement D3 is the best in terms
of the W3 criterion.

Finally, row-column arrangement D4 is the best in terms of our fourth criterion, because it has the
largest IC1 value. The difference in IC1 value with arrangement D3 is, however, small. The resolution-V
treatment design is the best treatment design when there are no blocking factors. However, the IC1 values
that can be reached using that design when there are two blocking factors are smaller than the value for the
IC1 optimal row-column arrangement because of the substantial confounding of the two-factor interactions
with the blocks in the event the resolution-V treatment design is used. This is witnessed by row-column
arrangements D1 and D2, each of which are optimal arrangements of the resolution-V treatment design and
produce small IC1 values.
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Table 5: Performance of the row-column arrangements in Table 4 in terms of the optimality criteria defined
in Table 3 and in terms of the IC1 value. The entries of the F3 and F4 vectors are the frequencies of J3- and
J4-characteristics of 16 and 8. The entries of the FArc22

3 vector are the frequencies with which interactions
are completely confounded and semi-confounded with the blocking factors.

W2 criterion: −R At
3 F3 Ar

3 + Ac
3 At

4 F4 IC1

D1 −16 0 (0,0) 6 0 (0,0) 0.56
D2 −16 0 (0,0) 6 0 (0,0) 0.40
D3 −13 0 (0,0) 6 1 (1,0) 0.71
D4 −16 0.75 (0,3) 5 0 (0,0) 0.73

W−
2 criterion: At

3 F3 −Ar
3 −Ac

3 At
4 F4 IC1

D1 0 (0,0) −6 0 (0,0) 0.56
D2 0 (0,0) −6 0 (0,0) 0.40
D3 0 (0,0) −6 1 (1,0) 0.71
D4 0.75 (0,3) −5 0 (0,0) 0.73

W3 criterion: F3 FArc22
3 IC1

D1 (0,0) (4,4) 0.56
D2 (0,0) (6,0) 0.40
D3 (0,0) (2,8) 0.71
D4 (0,3) (1,8) 0.73

4 Optimal row-column arrangements of strength-2 designs

Our approach to find optimal row-column arrangements of two-level designs of strength 2 starts from the
set of all non-isomorphic orthogonal arrays (OAs) of the type OA(N ; r × c× 2n; 2), where N is the number
of experimental runs, n is the number of two-level treatment factors, and r and c represent the numbers of
levels of the first and second blocking factor, respectively. The last ‘2’ in the notation OA(N ; r × c× 2n; 2)
indicates the minimum strength of the arrays contained within the set.

Any orthogonal array of the type OA(N ; r× c× 2n; 2) defines an acceptable row-column arrangement, in
the sense that the treatment factors’ main effects are orthogonal to the two blocking factors. The remaining
challenge is to find the best possible row-column arrangement of an n-factor two-level treatment design of the
type OA(N ; 2n; 2) within the complete OA(N ; r× c×2n; 2) catalog of acceptable row-column arrangements.
Throughout the paper, we assume that r ≥ c, without loss of generality.

In this section, we use the W2, W−
2 , W3 and ICq criteria to evaluate complete catalogs of non-isomorphic

orthogonal arrays of the types OA(16; 4× 4× 2n; 2), OA(24; 4× 3× 2n; 2) and OA(24; 6× 4× 2n; 2) (Schoen
et al., 2010) to find optimal row-column arrangements of 16- and 24-run two-level designs with n factors.
The numbers of non-isomorphic arrays in the catalogs are shown in Table 6. In order to find the optimal
row-column arrangements, we had to explore all these non-isomorphic orthogonal arrays and evaluate them
in terms of the W2, W−

2 , W3 and ICq criteria, which was a major computational effort.
Supplementary materials to this paper, available at http://www.asq.org/pub/jqt/, include all optimal

row-column arrangements of strength-2 treatment designs as well as tables with their characterization in
terms of the F3, F4, FAr22

3 and FAc22
3 vectors, the ICq value and the rank R. In this section, we discuss

our main findings.

4.1 Designs with 16 runs

Figure 1 shows the main results for the optimal row-column arrangements of 16-run two-level designs for
scenarios with four rows and four columns. The circles in the figure indicate designs that are optimal in
terms of the combinatorial W2, W−

2 or W3 criteria, while the black dots represent the arrangements that are
optimal in terms of the IC1 value. Finally, the crosses correspond to the benchmark designs of Cheng and
Mukerjee (2003).

The left panel of Figure 1 shows the total amount of confounding of the two-factor interactions with
the rows and the columns, as measured by the sum Ar

3 + Ac
3. Obviously, this total amount of confounding

increases with the number of factors. Optimal designs for a given number of factors do not vary much in
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Table 6: Numbers of non-isomorphic orthogonal arrays of the types OA(16; 4× 4× 2n), OA(24; 4× 3× 2n)
and OA(24; 6× 4× 2n).

n OA(16; 4× 4× 2n) OA(24; 4× 3× 2n) OA(24; 6× 4× 2n)
1 2 5 3
2 7 131 38
3 17 6,412 400
4 27 226,330 2,060
5 30 2,360,583 3,911
6 25 6,467,858 2,200
7 14 5,404,183 1,357
8 6 2,341,404 689
9 3 963,413 283
10 350,559 64
11 94,228 14
12 16,238
13 1,282
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Figure 1: Ar
3 + Ac

3 and IC1 values of the optimal arrangements of 16-run two-level designs in four rows
and four columns. Circles represent W2, W−

2 and W3 optimal row-column arrangements, while black dots
represent arrangements that are optimal in terms of the IC1 value and crosses correspond to the benchmark
designs of Cheng and Mukerjee (2003).
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terms of their Ar
3 + Ac

3 value. The designs with the largest Ar
3 + Ac

3 values in the left panel of the figure are
W−

2 optimal. The four row-column designs identified by Cheng and Mukerjee (2003) exhibit the same total
amount of confounding as certain designs that are optimal in terms of at least one combinatorial criterion.
More specifically, the five- and six-factor row-column designs of Cheng and Mukerjee (2003) match one of our
five- and six-factor optimal designs. However, the seven- and eight-factor row-column designs of Cheng and
Mukerjee (2003) are different from the optimal designs we found. For instance, their IC1 values are smaller
than those of our optimal designs. This can be seen in the right panel of Figure 1, which shows that all the
optimal designs we obtained outperform the seven- and eight-factor benchmark designs in terms of the IC1

value. Of all the W2, W−
2 and W3 optimal five- and six-factor designs we identified, those corresponding to

the benchmark designs are the poorest in terms of the IC1 value.
An interesting feature of Figure 1’s right panel is the fact that, for five of the seven numbers of factors

shown on the horizontal axis, the row-column arrangement that is optimal in terms of the IC1 value is also
optimal in terms of at least one of the combinatorial criteria. In particular, the W3 optimal arrangements for
six and seven factors, the W2 and W3 optimal arrangement for three factors and all combinatorially optimal
arrangements for eight and nine factors are IC1 optimal. For these numbers of factors, the black dots appear
in the center of the highest circle (for more details, see the supplementary tables). For four and five factors,
the designs that are optimal in terms of the IC1 value are different from the designs that perform best in
terms of the combinatorial criteria. For these numbers of factors, the black dots lie higher than the circles
in the right panel.

For five factors, the performance of the four optimal designs is discussed in detail in Section 3.8 and
summarized in Table 5. The difference in IC1 value between the row-column arrangement that is optimal in
terms of the IC1 value and the arrangement that is optimal in terms of the W3 criterion, which corresponds
to the highest circle, is about 0.02. The row-column arrangement corresponding to the optimal IC1 value
exhibits less confounding with the blocking factors than any of the designs that are optimal in terms of a
combinatorial criterion. This can be seen in the left panel of Figure 1, where, for five factors, the black
dot appears below the circle. For four factors, the largest IC1 value we encountered is 0.82. Of the W2,
W−

2 and W3 optimal row-column arrangements involving four treatment factors, it is again the W3 optimal
arrangement which has the largest IC1 value. Its IC1 value equals 0.75, which is substantially lower than
the optimal IC1 value. In summary, except for the case of four factors, 16-run designs that are optimal in
terms of the W3 criterion also performs well in terms of the IC1 value.

One row-column arrangement of a three-factor two-level treatment design has an IC1 value of 0.89. So, it
allows models with one interaction effect to be estimated efficiently. However, it turns out that it also permits
the model including all three two-factor interactions to be estimated quite efficiently. As a matter of fact, the
D-efficiency of the row-column arrangement for that model is 0.79. In other words, IC3 = 0.79 for that row-
column arrangement. Therefore, this row-column arrangement is suitable for identifying active interaction
effects, on top of active main effects. The W−

2 optimal row-column arrangement for three treatment factors
does not allow any two-factor interaction to be estimated. Therefore, its IC1 value is zero. The Ar

3 + Ac
3

value for that row-column arrangement is maximal and equal to 3, the number of two-factor interactions.
The largest IC1 values for row-column arrangements involving 4, 5 and 6 treatments factors are 0.82,

0.73 and 0.72, respectively. So, these design options allow models with one interaction to be estimated with
a reasonable efficiency. Now, to discriminate between two models with a single interaction, we have to be
able to estimate models including two interactions efficiently. The average D-efficiencies for models with two
interactions turn out to be 0.63, 0.49 and 0.47 for the IC1 optimal row-column arrangements with 4, 5 and
6 factors, respectively. As these efficiencies are rather low, model discrimination using these row-column
arrangements might be hard. Therefore, the 16-run row-column arrangements for 4–6 factors should only
be used for experiments where there is a strong prior belief that at most one interaction will be active.

All row-column arrangements with 7–9 factors have IC1 values of at most 0.5. Therefore, we only
recommend these arrangements for experiments in which no active two-factor interactions are expected. If
at least one active interaction is anticipated and 7–9 factors need to be studied, we recommend using one of
the 24-run row-column arrangements discussed in the next section.

Finally, for eight factors, there are two IC1 optimal row-column arrangements. One of them is W2 and
W−

2 optimal, and one of them is W3 optimal. Both have the same F3 vector. The former arrangement has
a better F4 vector, while the latter arrangement has a better FArc22

3 vector.
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Figure 2: Ar
3+Ac

3 and IC2 values of the optimal arrangements of 24-run two-level designs in six rows and four
columns. Circles represent W2, W−

2 and W3 optimal row-column arrangements, while black dots represent
arrangements that are optimal in terms of the IC2 value.

4.2 Designs with 24 runs

Row-column arrangements for 24-run designs can accommodate up to 11 treatment factors in six rows
and four columns or up to 13 treatment factors in four rows and three columns. Orthogonal row-column
arrangements involving 24 runs, eight rows and three columns do not exist, because there are no orthogonal
arrays involving 24 runs, one eight-level factor, one three-level factor and one or more two-level factors (i.e.,
there are no orthogonal arrays of the type OA(24; 8 × 3 × 2n)). Likewise, arrangements of 20-run two-
level designs in five rows and four columns do not exist because there are no orthogonal arrays of the type
OA(20; 5×4×2n). If a two-level 24-run row-column design with eight rows and three columns or a two-level
20-run row-column design with five rows and four columns is desired, then, inevitably, the main effects of the
treatment factors will be partially confounded with the row factor and with the column factor, respectively,
and the design will not be orthogonally blocked. These kinds of row-column design are outside the scope of
this paper. The optimal design construction algorithms in statistical software allow the construction of such
designs, without there being a guarantee that they are truly optimal.

Since the 24-run row-column arrangements allow larger numbers of interactions to be estimated than
their 16-run counterparts, we use IC2 values here, rather than IC1 values, to identify arrangements that are
optimal in terms of our fourth criterion.

4.2.1 Six rows and four columns

Figure 2 shows the main properties of the optimal 24-run row-column arrangements we identified for one
blocking factor with six levels and another blocking factor with four levels, i.e., arrangements involving six
rows and four columns. Again, the circles in the figure represent row-column designs that are optimal in
terms of at least one of the combinatorial criteria (W2,W

−
2 or W3), while the black dots represent the designs

that optimize the IC2 value.
The left panel of Figure 2 shows the total amount of confounding between the two-factor interactions,

on the one hand, and the blocking factors, on the other hand, as measured by the sum Ar
3 + Ac

3. For most
numbers of factors, there is a substantial difference in Ar

3+Ac
3 value between the designs we identified as being
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Figure 3: Ar
3 + Ac

3 and IC2 values of the optimal arrangements of 24-run two-level designs in four rows
and three columns. Circles represent W2 , W−

2 and W3 optimal row-column arrangements, while black dots
represent arrangements that are optimal in terms of the IC2 value.

optimal. In each case, the design exhibiting the largest amount of confounding is optimal in terms of the W−
2

criterion. This makes sense, since that criterion maximizes the confounding of the two-factor interactions
with the blocking factors, after minimizing the At

3 value and sequentially minimizing the F3 vector. The
consequence is that W−

2 optimal arrangements have the smallest IC2 values of the cases considered here.
For the 5-factor case, we identified four different optimal arrangements. The IC2 values for the W2, W−

2 ,
W3 and IC2 optimal arrangements, shown in the right panel of Figure 2, are 0.840, 0.638, 0.835 and 0.850,
respectively. For numbers of factors other than 5, the W3 and IC2 optimal row-column arrangements are
identical. The W2 optimal arrangements differ from the IC2 optimal ones for the cases with 5–10 factors.
For 5 factors, both the W2 optimal arrangement and the IC2 optimal arrangement have the same rank
R for the interaction model matrix. In this particular case, the IC2 optimal arrangement has a slightly
worse F3 vector for the treatment design, but that design permits a smaller amount of confounding of the
interactions with the blocks. For 6–10 factors, the W2 optimal arrangements have a larger rank R for the
interaction model matrix. Clearly, this does not guarantee a more efficient estimation of models with just a
few interactions.

We conclude that, for the scenario involving six rows and four columns, the W3 criterion leads to the
selection of row-column arrangements that perform well in terms of the IC2 criterion. In contrast, the W2

criterion, whose minimization vector prefers designs with a large rank for the interaction model matrix, does
not tend to select the best row-column arrangement in terms of the IC2 value.

4.2.2 Four rows and three columns

Figure 3 shows the main properties of the optimal row-column arrangements for 24-run treatment designs
when there are four rows and three columns. The properties for the arrangements with four rows and three
columns are similar to those of the arrangements involving six rows and four columns. Again, for almost
all numbers of factors, the W−

2 optimal arrangements exhibit considerably more confounding between the
two-factor interactions and the blocking factors than the arrangements that are optimal in terms of the
other criteria. For the cases involving three and four factors, the IC2 values are zero and the Ar

3 +Ac
3 values

are maximal for the W−
2 optimal row-column arrangements, indicating that these row-column arrangements
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do not allow any model with two two-factor interactions to be estimated. The W−
2 optimal arrangements

generally have the smallest values for the IC2 criterion. For the 10-factor case, however, the smallest IC2

value corresponds to the W2 optimal design. This is mainly due to the difference in treatment design. As a
matter of fact, the IC2 value for the treatment design used for the W2 optimal arrangement is 1.8% smaller
than that for the treatment design used for the W−

2 optimal arrangement.
For 3, 4, 6, 7, 8, 9 and 12 factors, using the W3 criterion leads to a row-column arrangement that is also

optimal in terms of the IC2 criterion. For the 13-factor case, considering only the designs that optimize the
combinatorial criteria would lead to a loss of 0.044 in IC2 value. For 5, 10 and 11 factors, however, the
optimal IC2 value exceeds those of the best combinatorial row-column arrangement by 0.01 or less. So, we
observe once more that W3 optimal designs generally perform well in terms of the IC2 criterion.

5 Optimal row-column arrangements based on catalogs of strength-
3 designs

5.1 Criteria and approach

When using two-level orthogonal arrays of strength 3, the main effects are orthogonal to each other, and
they are also orthogonal to the two-factor interaction contrast vectors. As a result, At

3 = 0 and the F3 vector
is a zero vector for all strength-3 designs. For this reason, the At

3 value and the F3 vector, which are major
components of the combinatorial criteria proposed for the strength-2 cases, are no longer useful to classify
strength-3 designs. The components that remain useful for strength-3 designs are the rank R, the Ar

3 + Ac
3

value, the At
4 value, the F4 vector, and the FArc22

3 vector.
The results of Deng and Tang (1999) imply that the only possible absolute values for the J4-characteristics

in N -run strength-3 two-level orthogonal designs equal (N − 16j), where j is a non-negative integer of at
most N/16. So, the only possible values for the J4-characteristics for strength-3 64-run designs are 64, 48,
32, 16 and 0, while those for strength-3 72-run designs are 72, 56, 40, 24 and 8.

As for the strength-2 two-level designs, our desire was to evaluate complete catalogs of suitable orthogonal
arrays to identify row-column arrangements that are optimal in terms of our four criteria. By suitable
orthogonal arrays, we mean strength-2 orthogonal arrays including a two-level treatment design of strength
3. However, complete catalogs of such suitable orthogonal arrays of the type OA(N ; r × c × 2n; 2) are
currently unavailable. This is primarily due to the fact that the number of non-isomorphic orthogonal arrays
of strength 2 with more than 32 runs is too large to construct complete catalogs. For this reason, we restrict
our attention to strength-3 two-level treatment designs that are embedded in a strength-3 orthogonal array
of the type OA(N ; r × c × 2n; 3). Due to this restriction, the Ar

3 + Ac
3 value is zero for all row-column

arrangements we consider here, and the FArc22
3 vector is a zero vector. As a result, the only remaining

relevant components of our combinatorial criteria are the rank R, the At
4 value and the F4 vector. Rather

than seeking row-column arrangements that optimize the (simplified) W2, W−
2 and W3 criteria, we identify

Pareto optimal row-column arrangements based on the rank R, the At
4 value and the F4 vector. A row-

column arrangement is called Pareto optimal (or admissible; see Sun et al., 1997) with respect to a set of
optimality criteria (such as the rank R, the At

4 value and the F4 vector) if there exists no other row-column
arrangement that scores strictly better on at least one criterion and at least as well on all other criteria. We
identify Pareto optimal row-column arrangements for two scenarios. The first one involves 64 runs, four rows
and four columns. The second scenario involves 72 runs, three rows and three columns. We also identify
row-column arrangements that maximize the IC5 value in addition to the Pareto optimal designs based on
the rank R, the At

4 value and the F4 vector.
When performing experiments with 64 or 72 runs, we can, of course, estimate many interactions. There-

fore, we should be interested in ICq values, where q is substantially larger than 1 or 2. However, evaluating
large catalogs of orthogonal arrays in terms of the ICq value is computationally very cumbersome when q
is large. As a compromise, for each row-column arrangement under consideration, we calculated the IC5

value based on 10,000 models including all main effects and five randomly selected two-factor interactions,
or based on all models including all main effects and five two-factor interactions whenever there are fewer
than 10,000 such models.

We start our search from the complete catalogs of strength-3 orthogonal arrays of the types OA(64; 4×
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Table 7: Numbers of non-isomorphic orthogonal arrays of the types OA(64; 4 × 4 × 2n; 3) and OA(72; 3 ×
3× 2n; 3).

n OA(64; 4× 4× 2n; 3) OA(72; 3× 3× 2n)
2 12 9
3 267 465
4 13,903 380,253
5 104,949 32,565,625
6 175,297 10,620,268
7 151,708 953,145
8 138,825 653,569
9 83,409 207,970
10 35,807 22,833
11 10,030 69
12 2,159 27

Table 8: Properties of the optimal arrangements of 64-run two-level designs in four rows and four columns
based on orthogonal arrays of the type OA(64; 4×4×2n; 3). The entries of the F4 vector are the frequencies
of J4-characteristics of 64, 32 and 16. All designs except for design 12.2 (which maximizes the IC5 value)
are Pareto optimal when considering the At

4 value, the F4 vector and the rank R of the interaction model
matrix.

ID At
4 F4 R D IC5

6.1 0 0 0 0 22 1 1
7.1 0 0 0 0 29 1 1
8.1 0 0 0 0 37 1 1
9.1 1 0 4 0 46 0.91172 0.99618
9.2 1.5 0 2 16 46 0.86400 0.99437
10.1 2 0 8 0 50 0 0.99509
11.1 14 8 12 48 38 0 0.84702
11.2 14 10 4 48 41 0 0.80533
11.3 14 14 0 0 46 0 0.75520
11.4 15 10 0 80 41 0 0.80405
12.1 23 15 0 128 42 0 0.79566
12.2 23 15 32 0 38 0 0.81047

4 × 2n; 3) and OA(72; 3 × 3 × 2n; 3). Table 7 shows the numbers of non-isomorphic designs we considered
for identifying Pareto optimal row-column arrangements and for identifying arrangements that maximize
the IC5 value. Since some of the 64-run treatment designs with up to nine factors and some of the 72-run
treatment designs with up to eight factors allow the estimation of a model including all main effects and
all two-factor interactions, we also identify designs that maximize the D-efficiency for that full interaction
model. Supplementary materials to this paper, available at http://www.asq.org/pub/jqt/, include all
optimal row-column arrangements of strength-3 treatment designs that we identified.

5.2 Designs with 64 runs

Table 8 shows the properties of the optimal row-column arrangements for 6–12 treatment factors involving
64 runs, four rows and four columns. The first column shows the IDs of the designs. The remaining columns
contain the At

4 value, the F4 vector, the rank R, the D-efficiency of the full interaction model and the IC5

value. All row-column arrangements listed in the table for 6–11 treatment factors are Pareto optimal when
considering the At

4 value, the F4 vector and the rank R of the interaction model matrix. They include the
arrangements with the overall best D-efficiencies for the full interaction model and with the best IC5 values.
For 12 factors, design 12.1 is the only Pareto optimal design. Design 12.2 is included in Table 8 because it
is the row-column arrangement with the largest IC5 value for 12 factors.
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Table 9: Properties of the optimal arrangements in three rows and three columns of 72-run two-level designs
based on orthogonal arrays of the type OA(72; 3×3×2n; 3). The entries of the F4 vector are the frequencies
of J4-characteristics of 24 and 8. All designs are Pareto optimal when considering the At

4 value, the F4

vector, the rank R of the interaction model matrix, the D-efficiency for the full interaction model and the
IC5 criterion.

ID At
4 F4 R D IC5

6.1 0.19 0 15 22 0.97330 0.99518
7.1 0.43 0 35 29 0.95034 0.99475
8.1 0.86 0 70 37 0.91226 0.99460
9.1 4.62 31 95 41 0 0.98304

10.1 7.93 54 156 42 0 0.98269
11.1 12.96 90 240 43 0 0.98231
12.1 19.44 135 360 44 0 0.98266

For six, seven and eight factors, there is only one Pareto optimal design. In each of these cases, the
treatment part of the design happens to be a strength-4 design, since At

4 = 0 and the F4 vector is a
zero vector. Therefore, for 6–8 factors, the row-column design we identified allows us to estimate the full
interaction model with maximum D-efficiency. When fewer than six factors are required, we recommend
dropping factors from the Pareto optimal 6-factor design 6.1. The resulting design will also be Pareto
optimal, because the main effects and two-factor interactions of the treatment design are all orthogonal to
each other. Therefore, for any row-column arrangement obtained by dropping some of the factors, the rank
of the model matrix will be maximal, the At

4 value will be zero, the F4 vector will be a zero vector, and the
D-efficiency as well as the IC5 value will be 1.

For nine two-level factors, Table 8 shows two Pareto optimal designs. Design 9.2 is Pareto optimal
because it has a slightly better F4 vector than design 9.1. We prefer design 9.1 over design 9.2, however,
because its D-efficiency for the full interaction model is about 5% higher.

For ten factors, there is again a single Pareto optimal row-column arrangement. That design does not
allow the full interaction model to be estimated: the rank of the model matrix for the model including the
intercept, all main effects and all two-factor interactions is 50 rather than the 56 which is required for the
estimability of the full model. Consequently, the D-efficiency for the full interaction model is zero. On the
positive side, the large IC5 value suggests that it should be possible to estimate more than five interactions
efficiently at the same time.

For 11 two-level treatment factors, the table shows four designs. The first three of these minimize the At
4

value. Design 11.1 has the best F4 vector, and design 11.3 has the largest rank R. Designs 11.2 and 11.4 are
compromise designs in terms of the F4 vector and the rank criterion. We recommend design 11.1 because it
has the largest IC5 value, along with the best F4 vector.

The case with 12 two-level treatment factors is the only one where the set of Pareto optimal row-column
arrangements, constructed by considering the At

4 value, the F4 vector and the rank R, did not contain the
best row-column arrangement in terms of the IC5 value. The arrangement with the largest IC5 value is
labed design 12.2 in Table 8. The difference in IC5 value between the Pareto optimal design 12.1 and design
12.2 is, however, as small as 0.01481.

5.3 Designs with 72 runs

Table 9 shows the properties of the 72-run row-column arrangements with three rows, three columns and
6–12 factors that are Pareto optimal when considering the At

4 value, the F4 vector and the rank R of the
interaction model matrix. The structure of the table is similar to that of Table 8. Remarkably, there is just
a single Pareto optimal design for each number of treatment factors. In addition, the designs are optimal in
terms of the IC5 value and, when the number of factors is smaller than 9, in terms of the D-efficiency for the
full interaction model. For this reason, the designs involving 6–12 treatment factors are also Pareto optimal
when we include the D-efficiency and the IC5 value in the list of criteria to establish Pareto optimality.

The 72-run Pareto optimal row-column arrangements with 6, 7 and 8 treatment factors do allow the full
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Table 10: Properties of the two optimal arrangements of 24-run two-level designs in four rows and three
columns. The elements of the FAr22

3 vector correspond to Ar
3 values of 1, 5/9, 1/3 and 1/9. The elements

of the FAc22
3 vector correspond to Ac

3 values of 2/3, 1/2 and 1/6. The elements of the F4 vector correspond
to J4-characteristics of 24, 16 and 8 (and correspond to correlations of 1, 2/3 and 1/3).

ID FAr22
3 FAc22

3 F4 IC2

12.1 0 18 12 36 0 12 36 0 0 495 0.89522
12.2 3 0 36 27 3 6 42 0 0 495 0.82201

interaction model to be estimated, since the rank R is maximal for these numbers of factors. The D-efficiency
for the full interaction model is larger than 0.91, but not equal to 1. The D-efficiency for the full interaction
model is zero for nine factors or more, indicating that, for these numbers of factors, that model is no longer
estimable when using a design from the catalog of strength-3 arrays of the type OA(72; 3 × 3 × 2n; 3). For
nine or more factors, it is nevertheless possible to estimate many interactions efficiently, as witnessed by the
large IC5 values.

6 Car tire experiment revisited

In the introduction, we discussed an experiment concerning the wear of car tires which motivated us to
conduct the research described in this article. The experiment involved the 12 two-level treatment factors
in Table 1 and the total number of experimental runs was 24. The experiment was conducted on four
consecutive days. Every day, six runs were performed by three different drivers. The same set of three
drivers was used each day. Clearly, two blocking factors are involved in the experiment. The first, day, has
four levels, while the second, driver, has three levels. Consequently, the required design is a row-column
design involving four rows and three columns.

The design actually used by the experimenters was a replicated 12-run Plackett-Burman design for
11 factors. The 12th factor was set at one level for the first replicate and at the other level for the second
replicate. As the experimenters were unaware of the possibility to create an orthogonal blocking arrangement
for a 24-run design, they randomly assigned the 24 runs to the twelve combinations of day and driver. The
result is that, in their design, the main effects of the 12 factors were not orthogonal to the blocks. Due to the
fact that the 12-run Plackett-Burman design was replicated rather than folded over, the main effects of the
11 treatment factors accommodated by that design were partially aliased with the two-factor interactions.
That is not the case for the main effect of the 12th treatment factor.

Table 6 shows that there are 16,238 different orthogonal blocking arrangements with four rows (corre-
sponding to the four levels of the first blocking factor, day), three columns (corresponding to the three levels
of the second blocking factor, driver) and 12 two-level treatment factors involving 24 runs. When optimizing
our three combinatorial criteria and the IC2 criterion for this type of row-column arrangement, we identified
two different optimal row-column arrangements. Their properties are quantified in Table 10 and visualized
in Figure 3. The first arrangement, labeled 12.1, is W2 and W3 optimal, and has the largest IC2 value.
The second one, labeled 12.2, is W−

2 optimal. For both row-column arrangements, the F3 vector is zero,
indicating that the main effects of the 12 treatment factors are orthogonal to the two-factor interactions
and that the design for the 12 treatment factors has strength 3. Each J4-characteristic equals 8 for both
designs, which means that the contrast vectors for every pair of two-factor interactions exhibit a correlation
of 8/24 = 1/3. The treatment design in both optimal row-column arrangements turns out to be a folded-over
(rather than a replicated) 12-run Plackett-Burman design for the first 11 factors. The 12th factor is set at
one level for the runs of the original Plackett-Burman design, and at the other level for the negative of that
design. The only difference between the row-column arrangements 12.1 and 12.2 is in the assignment of the
24 treatment combinations to the rows and columns, causing the FAr22

3 and FAc22
3 vectors and the IC2

values to differ.
As pointed out above, the treatment design actually used for the experiment involved two replicates of

a 12-run Plackett-Burman design for 11 factors. This implies that, for these 11 factors, none of the models
with all 11 main effects plus any additional interaction is estimable. So, if these factors are considered,
ICk = 0 for k > 0. Treatment factor 12 defines the two replicates of the Plackett-Burman design. This
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implies that the main effect of that factor and all interactions between that factor and the initial 11 factors
are orthogonal to each other. Therefore, in the absence of blocking,

(
11
2

)
= 55 models involving all main

effects and two two-factor interactions are estimable with a D-efficiency of 1. Since there are 66 two-factor
interactions for the total of 12 factors, the IC2 value of the 12-factor treatment design in the absence of
blocking is 55/

(
66
2

)
= 0.02564. Even though this value is too optimistic because it ignores blocking, it is

already much poorer than the IC2 values of the two row-column arrangements in Table 10. To correct the
IC2 value of 0.02564 for rows and columns, we need to find a row-column arrangement of the treatment
design actually used. As it turns out that no orthogonal row-column arrangement exists for that design, we
resorted to optimal design software to obtain a D-optimal row-column arrangement. The IC2 value of this
row-column arrangement is merely 0.02021.

Since the researchers who performed the car tire experiment were interested in quantifying interactions,
row-column arrangement 12.1 is the most attractive one. This is because it has the largest IC2 value, and
the most attractive FAr22

3 and FAc22
3 vectors. The row-column arrangement 12.1, which we would have

recommended for the car tire experiment, is shown in Table 2 in the introduction to this paper. The original
treatment design can not be recommended, except when the main interest of the researchers would be in the
interaction effects of the 12th factor.

Figure 4 shows a color map of all the correlations between the contrast vectors for the rows, the columns,
the main effects of the 12 treatment factors and the second-order interactions of the treatment factors. The
white in the parts of the color map corresponding to the main effects shows three things. First, it shows that
the main effects are orthogonal to the rows and to the columns. Second, the main effects are orthogonal to
each other. These two things are due to the fact that the entire row-column arrangement forms an orthogonal
array with a four-level factor for the rows, a three-level factor for the columns and 12 two-level factors for
the treatments. Third, the main effects are orthogonal to the two-factor interactions. This is due to the
fact that the treatment design (i.e., the design for the 12 two-level factors) is a strength-3 orthogonal array
(and so, is a resolution-IV design). The white cells in the bottom right part of the color map show that the
contrast vector of any interaction of a factor i is orthogonal to the contrast vector of any other interaction
of that factor i. The gray cells in the bottom right part of the color map show that the contrast vectors for
any other pair of distinct interactions involving four different factors have correlations of ±1/3. This is in
line with the fact that the only nonzero entry of the F4 vector corresponds to J4-characteristics of 8. Finally,
the different shades of gray in the top right and bottom left parts of the color map show that the two-factor
interaction contrast vectors are not orthogonal to the rows and the columns. This is in line with the nonzero
entries for the various Ar

3 and Ac
3 values in the FAr22

3 and FAc22
3 vectors, which quantify the confounding

between the rows and the columns, on the one hand, and the two-factor interactions, on the other hand.

7 Discussion

In this paper, we proposed general criteria for selecting row-column arrangements of regular and nonregular
two-level orthogonal treatment designs, to cope with experimental scenarios that involve two crossed blocking
factors. We demonstrated the usefulness of the criteria by identifying attractive row-column arrangements
from complete catalogs of non-isomorphic orthogonal arrays with n two-level columns for the treatment
factors, an r-level column for the first blocking factor and a c-level column for the second blocking factor.
In our search, we distinguished between strength-2 and strength-3 treatment designs, because they differ
substantially in the aliasing between the main effects and the two-factor interactions.

Our three combinatorial criteria are based on vectors describing the combinatorial properties of the
row-column arrangements, along with the rank of the model matrix corresponding to the full interaction
model. We compared the row-column arrangements that are optimal in terms of the combinatorial criteria
with those obtained by maximizing the computationally intensive ICq criterion. We did not find major
differences between the row-column arrangements that optimize the combinatorial W2 and W3 criteria and
those that optimize the ICq criterion. This suggests that the computationally cheap W2 and W3 criteria are
good surrogates for the computationally expensive ICq criterion.

While the W2 and W3 criteria are good surrogates for the ICq criterion, we did identify the row-column
arrangements with the best ICq values for the 16-run and 24-run cases we studied. If the desire is to detect
two-factor interactions on top of the main effects, we recommend the designs that have the best ICq values.
If the emphasis is on detecting significant factors by just fitting a main-effects model, we recommend the W−

2
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Figure 4: Color map showing the correlations between the contrast vectors for the two blocking factors (the
rows and the columns), the main effects of the 12 treatment factors and the second-order interactions of the
treatment factors for the row-column arrangement in Table 2 for the car tire experiment.

21



optimal row-column arrangements, as the mean squared error of a main-effects model based on these designs
is less likely to be inflated by active two-factor interactions than that obtained from alternative row-column
arrangements.

The approach we take in this paper requires the availability of complete catalogs of orthogonal arrays.
Inspecting the website of Eendebak (2016) suggests that the row-column arrangements we studied here are
the most practically relevant ones that can be obtained from the currently available catalogs. However,
row-column arrangements of two-level strength-3 treatment designs need not be embedded in a strength-3
design to obtain a sensible row-column design. Our search of the complete series of 24-run orthogonal arrays
revealed several two-level strength-3 designs embedded in a strength-2 design with an r-level and a c-level
factor for the two crossed blocking factors. For example, the recommended row-column arrangement for
the car tire experiment in Table 2 involves a strength-3 two-level treatment design, but the entire design,
including the treatment factors and the two blocking factors, has a strength of 2 only. Unfortunately, from 32
runs onward, which is the next run size for which two-level strength-3 designs exist, no complete catalogs of
suitable strength-2 orthogonal arrays, involving a strength-3 treatment design, are available. To handle this
problem when there is a single blocking factor, Sartono et al. (2015) and Vo-Thanh et al. (2018) developed a
mixed integer linear programming approach that results in orthogonal blocking arrangements that minimize
the confounding between the second-order interaction effects of the treatment factors and the blocking factor.
It would be useful to extend this approach to find optimal row-column arrangements for strength-3 two-level
treatment designs. A similar approach could be used to arrange any given strength-2 design in rows and
columns.

One may wonder whether nonorthogonal blocking of a given orthogonal array would result in better
ICq values. To investigate nonorthogonal blocking in cases with a single blocking factor, Sartono et al.
(2015) compared their orthogonal blocking approach based on integer linear programming with an approach
using an algorithm for D-optimal blocking. For models with four interaction contrasts, 82% of the orthogonal
arrays had a better average efficiency when arranged in blocks using the integer linear programming approach
than when using the optimal blocking algorithm. The average difference in D-efficiency was 1.8%. This is
caused by the fact that the D-optimal blocking approach used by Sartono et al. (2015) does not penalize
the confounding of two-factor interactions with blocks. We would expect this difference in D-efficiency to
be larger when there are two blocking factors instead of a single one. On the other hand, optimal design
algorithms do not suffer from the restrictions in run size required for orthogonal blocking. For example, it
is perfectly feasible to create a 20-run two-level row-column design involving four rows of five runs and five
columns of four runs.

Finally, an interesting alternative to both the present approach and the mixed integer linear programming
approach would be to develop a procedure that optimizes the ICq value directly. Designing for average D-
efficiency has long been computationally challenging, but recent work by Smucker and Drew (2015) provides
a computationally efficient method to construct such designs. Adapting that work to deal with experimental
designs involving one or more blocking factors would be an interesting area for future research.

Supplementary materials

Supplementary electronic files, available at http://www.asq.org/pub/jqt/, include

Tables.pdf: tables showing the F3, F4 and FA3 vectors along with the ranks of the interaction model
matrices and IC1 or IC2 values for the optimal row-column arrangements involving 16 and 24 runs.

Designs.zip: all optimal row-column designs.
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