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Abstract A method of construction of row–column designs for estimation of main effects and two factor interaction

effects in 2n factorial microarray experiments based on orthogonal parameterization has been developed in minimum

number of replications. A catalogue of designs for 2 B n B 9 has been prepared. The catalogue also gives the main effects

and two-factor interactions confounded in different replications and the factorial effects that are not confounded in a

replication. The efficiency factor of estimable main effects and two-factor interactions has been given. For each 2n

factorial, two designs have been given, one in which main effects are estimated with more efficiency and another in which

two-factor interactions are estimated with more efficiency. A procedure of construction of row–column designs for

estimation of all factorial effects with odd number of factors has been given. Row–column designs with unequal replication

of different treatment combinations have also been obtained for estimation of all main effects and two-factor interactions.

Keywords Confounded row–column design � 2-Colour microarray experiments � Factorial experiments �
Orthogonal parameterization � Confounding

Introduction

2-Colour cDNA microarray experiments are used to study

the expression levels of thousands of genes simultaneously.

In these experiments, there are four basic experimental

factor viz., array (A), dye (D), variety (V) {variety may be

a treatment or crop variety} and gene (G). These four

factors give rise to 15 effects that include 4 main effects, 6

two-factor interactions, 4 three-factor interactions and one

four factor interaction. But all the four main effects and

selected two-factor interactions viz., array–gene interaction

(AG), dye–gene interaction (DG), variety–gene interaction

(VG) are the seven effects of primary interest to the

experimenter. In most 2-colour microarray experiments,

same set of genes is spotted on each array and as a con-

sequence genes/gene specific effects (G, AG, DG, VG) are

orthogonal to main effects of the other three factors (A, D,

V). Therefore, a design obtained for above three factors

and efficient for these main effects, is also efficient for

gene specific effects when gene is also considered as one of

the factors. In a 2-colour microarray experiment, only two

varieties can be accommodated on a single array as these

are labelled with two dyes, red and green. Efficient row–

column designs for 2-colour microarray experiments have

been obtained by taking arrays as columns, dyes as rows

(two only) and varieties as treatments. A lot of literature is

available on efficient designs for single factor microarray

experiments. For details on these a reference may be made

to [8], [10], [11] and references cited therein.

In 2-colour microarray experiments, there also arise

many experimental situations wherein it is desired to study

the effect of more than one factor (different types of tis-

sues, drug treatments or time points of a biological process)

simultaneously. Consider an example given by Glonek and
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Solomon [5] wherein it is desired to study and compare the

two mutants at times zero hour and 24 hours. The interest

is in measuring the changes over time. Therefore, there are

two factors viz., varieties (two mutants) and times of

exposure. The varieties could be diverse genotypes of crops

and times of exposure could be two crop growth stages.

Another example was reported by Churchill [3] in which

the experimenter is interested to compare gene expression

in liver tissues of mice from a gallstone-susceptible strain

(pera) and two gallstone-resistant strains (DBA and I) on

low-fat and high-fat diets. In this experiment, there are two

factors viz., live tissues (three levels) and diets (two lev-

els). Jin et al. [7] studied expression pattern in two strains

of Drosophila, using both sexes and two ages. Several

hundred flies representing each of eight (2 9 2 9 2)

combinations of these factors were used to create pooled

RNA samples. Twenty-four microarrays were used to

compare 48 independent labelling reactions, six per pool,

obtained from these RNA samples.

For obtaining efficient designs for multi-factor 2-colour

microarray experiments, it is required to obtain confounded

row–column designs in two rows as only two treatment

combinations can be arranged in one array i.e. column. If

interest is in the estimation of all factorial effects, then

balanced factorial designs may be useful. Gupta [6] gave

balanced factorial experiments for 22, 23 and 3 9 2 fac-

torial microarray experiments.

In factorial experiments, generally, the lower order

effects are of more interest than the higher order interac-

tions. Therefore, we assume that interest is in orthogonal

estimation of main effects or orthogonal estimation of main

effects and two-factor interactions. In the literature,

approaches to obtain efficient block designs for 2n factorial

experiments in blocks of size 2 have been given and

reviewed in the sequel.

Yang and Draper [13] gave an approach to obtain block

designs for 2n (n B 5) factorial experiments with blocks of

size 2, which provide orthogonal estimates of main effects

and two-factor interactions by searching from all con-

founding patterns, which is a tedious process. It becomes

difficult to find all confounding patterns as the number of

factors increases.

Wang [12] studied designing 2n-p fractional factorial

plans in blocks of size two and suggested that the number

of runs to estimate all the available effects, as is possible in

experiments without blocking, is (n - p)2n-p for 2n-p

fractional factorial plans.

Kerr [9] obtained block designs for 2n factorial experi-

ments in blocks of size 2 for estimation of all main effects

and two-factor interactions. The upper bound on minimum

number of replications required for orthogonal estimation

of all main effects and two-factor interactions is

½log2 n� þ 1, here [.] denotes greatest integer function. The

upper bound on minimum replications for orthogonal

estimation of all main effects and two-factor interactions

for 2n factorial experiments with n = 2, 3, 4, 5, 6, 7, 8 are,

respectively, 2, 2, 3, 3, 3, 3, 4. Kerr [9] has also given the

procedure of obtaining block designs for 2, 3, 4 and 8

factors. For obtaining a design for 5, 6 or 7 factors, it has

been suggested that by making a computer-aided search of

all possible blocked factorials in 3 replications, solution

can be attained that may provide orthogonal estimation of

all main effects and two-factor interactions.

The computer-aided search is quite time consuming.

Therefore, the question is * can we obtain designs that

provide orthogonal estimation of all main effects and two-

factor interactions as a ready reckoner solution to the users?

Further, it is required to develop a procedure of getting

row–column designs in two rows from these block designs

with block size two and provide a ready reckoner of row–

column designs. Kerr [9] suggested finding out a factorial

effect that is not confounded with blocks (represented as

columns in a row–column set up) and then confound it with

rows. Kerr, however, did not provide any list of factorial

effects that are not confounded with column effects.

Therefore, in ‘‘Method of Construction of Confounded

Row–Column Designs’’ section we propose a method of

construction of row–column designs with two rows for

orthogonal estimation of main effects and two factor

interaction effects in 2n (2 B n B 9) factorial microarray

experiments in minimum number of replications. Let the

n factors be denoted as 1, 2, 3, …, n and the levels by 0, 1. A

catalogue of designs for 2 B n B 9 has been prepared along

with main effects and two-factor interactions confounded in

different replications and some of the factorial effects that

are not confounded in a replication and given in Table 3.

For each 2n factorial, two designs have been given one in

which main effects are estimated with more efficiency and

another in which two-factor interactions are estimated with

more efficiency. The efficiency factor of estimable main

effects and two-factor interactions has also been given in

Table 4. The procedure of obtaining a block design in

blocks of size 2 for 2n factorial experiments has been given

by Box et al. [1] that provides orthogonal estimation of all

main effects. In the present investigation, we extend this to

obtain row–column designs in two rows that provide

orthogonal estimation of all main effects and present in

‘‘Method of Construction of Confounded Row–Column

Designs’’ section. In fact, we shall show that the design

obtained through proposed approach provides orthogonal

estimation of all odd order factorial effects.

In some experimental situations, due to cost or time

considerations, it may not be possible to run a design even

in the minimum number of replications required for esti-

mation of all main effects and all two-factor interactions.

Therefore, it is desired to develop a procedure of obtaining
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row–column designs for estimation of all main effects and

two-factor interactions for the situations having unequal

replication of different treatment combinations in smaller

number of columns than the number of columns required for

minimum number of replications for orthogonal estimation

of all main effects and two-factor interactions. An approach

to obtain designs for such situations is given in ‘‘Row–

Column Designs with Unequal Replications’’ section.

Method of Construction of Confounded Row–Column

Designs

In this section, we propose a method of construction of row–

column designs with two rows for orthogonal estimation of

main effects and two factor interaction effects in 2n

(2 B n B 9) factorial microarray experiments in minimum

number of replications. An approach to obtain row–column

designs in two rows that provide orthogonal estimation of

all odd order factorial effects is also given in this section.

Method 1

We shall describe a procedure of obtaining confounded

row–column designs in two rows for estimation of all main

effects and two-factor interactions.

Step 1: First we obtain a block design with block size 2. A

block design of block size 2 for a 2n factorial experiment is

represented as (2n, 2). For obtaining this design, 2n treatment

combinations are arranged in blocks of size 2. Here, total

number of treatment combinations = 2n, number of blocks

of size two per replication = 2n-1, total number of factorial

effects confounded = 2n-1 - 1, number of independent

factorial effects confounded = n - 1, number of general-

ized factorial effects confounded = (2n-1 - 1) - (n - 1).

Write all possible 2n-1 different combinations of n - 1

independent factorial effects to be confounded in a given

replication, as described in the sequel.

These 2n-1 different combinations of n - 1 independent

factorial effects may have all main effects, all two-factor

interactions or some main effects and some two-factor

interactions confounded. Depending upon the number of

main effects and two-factor interactions in n - 1 inde-

pendent factorial effects to be confounded gives rise to

n different blocking types. Different blocking types are

given in Table 1. In this table S represents the main effect

and D represents two-factor interaction.

Step 2: For obtaining a design in r replications, select r

blocking types in
2n � 1

r

� �
different ways. Out of these

2n � 1

r

� �
different blocking types, select those combi-

nations that estimate the desired factorial effects (all main

effects and two-factor interactions) in maximum number of

the r replications. Let s be the number of blocking

arrangements or replications in which a given factorial

effect is not confounded. Then the efficiency factor of a

factorial effect is s/r.

Following the result of [9], the minimum number of

replications (r) required for estimation of all main effects

and two factor interaction in two-level factorials with

n = 2, 3, 4, 5, 6, 7, 8, 9 are, respectively, 2, 2, 3, 3, 3, 3, 4,

4. One can search all possible
2n � 1

r

� �
combinations of

Table 1 Blocking types for obtaining block design of block size 2 for a 2n factorial experiment

Blocking type Independent factorial effects to be confounded Number of arrangements Remarks

1 S SSS… S {(n - 1) times}
n

n� 1

� �
¼ n

All possible cases of n - 1 main effects to be

confounded out of n main effects in a single

replication.

2 S SSS… S {(n - 2) times} D
n

n� 2

� �
¼ n n�1ð Þ

2

All possible cases of selecting n - 2 main effects

out of all n main effects in a single replication and

combining them with a two factor interaction

involving remaining 2 factors

: : : :

n-1 S D DD … D ((n - 2) times)
n
1

� �
¼ n

All possible cases of selecting one main effect out of

all n main effects in a single replication and

combining them with n - 2 two-factor

interactions of remaining n - 1 main effects

obtained in such a way the factor numbered at last

among the factors not appearing the main effect S

is a part of all two-factor interactions with n - 2

other factors

n D DD D…D ((n - 1) times)
n� 1

n� 1

� �
¼ 1

All two-factor interactions having fixed factor with

each of n - 1 other factors

The total number of blocking arrangements is 2n - 1
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blocking arrangements and select the combination which

gives the design for orthogonal estimation of all main

effects and two-factor interactions. When the number of

combinations becomes large, then it becomes tedious,

computer intensive and time prohibitive to search a design.

Therefore, we have attempted to reduce the search for

estimation of all main effects and two-factor interactions

for two-level factorials with n = 2, 3, 4 and 5. For n = 2,

3, 4, one can obtain a design by taking any 2 combinations

of blocking arrangements of the type SD, SDD and SDDD,

respectively, and for n = 5, by taking any 3 combinations

of blocking arrangements of the type SDDDD. This yields

n
2

� �
{for n = 2, 3, 4} and

n
3

� �
{for n = 5} block design

in blocks of size 2 which are all isomorphic solutions and

one can be obtained from another by just renumbering of

factors.

For n C 6, it is not possible to obtain a block design

with block size 2 for orthogonal estimation of all main

effects and two-factor interactions in minimum number of

replications by only taking r combinations of the blocking

arrangement of the type SDDDD…D {(n - 2) times}.

Therefore, to obtain block design in minimum number of

replications one has to search from
2n � 1

r

� �

combinations.

We have made a search of these combinations and iden-

tified the combination of block arrangements for 2 B n B 9

factors that would yield block design in minimum number of

replications. These block arrangements are given in Table 3

as design D1. All the designs given as D1 provide orthogonal

estimation of all main effects and two-factor interactions. In

all these designs main effects are estimated with more pre-

cision in comparison to two-factor interactions.

If one is interested in more precision for two-factor

interactions in comparison to main effects, then some other

combination of blocking arrangements out of
2n � 1

r

� �

combinations need to be selected. We also identified the

combination of block arrangements for 2 B n B 9 factors

that would yield block design in minimum number of

replications with two-factor interactions being estimated

with more precision than the main effects. These are pre-

sented as design D2 in Table 3. Therefore, one can choose

design D1 or design D2 depending upon the requirement of

experimental situation.

Step 3: Once a block design in block size 2 is obtained,

the next step is to convert it into a row–column design in

such a way that the treatment combinations become most

balanced with respect to rows. For achieving this, we make

use of Lemma 2.1 of [2]. Consider a symmetrical factorial

experiment conducted using a row–column design with

row and column sizes less than the number of treatment

combinations. Let DR[DC], respectively, denote the block

designs obtained ignoring column [row] classification and

the confounding done in such a way that the factorial effect

which is confounded in DR is unconfounded in DC and vice

versa. Then, the factorial effects which are unconfounded

in both DR and DC remain unconfounded in row–column

design as well. Further, the factorial effects which are

confounded separately for DR and DC, are also confounded

in row–column design.

In view of the above description, we suggest identifying

factorial effects (possibly higher order interactions) which

are unconfounded in all the replications of block design

obtained in Step 1 and 2. Now confound this factorial effect,

say a g-factor interaction, with row-component design

(1 B g B n). To achieve this, let the design obtained in

Steps 1 and 2 be DCU, the column component design before

rearranging into row–column set up. Now arrange the

treatment combinations in columns of DCU in each repli-

cation in such a way that the treatment combinations in two

rows represent the two blocks in which the identified g-

factor interaction is confounded. Now rearrange the rows in

replication number s[t] of DCU, in such a way that in row 1,

the sum of the levels of the factors involved in g-factor

interaction is 0 (1) and in row 2 this sum is 1 (0) respec-

tively, where s = 1, 3, …, r (if r is odd) and s = 1, 3, …,

r - 1 (if r is even) and t = 2, 4, … r - 1 (if r is odd) and

t = 2, 4, … r (if r is even). Now juxtaposing the columns of

replications of DCU obtained after the above rearrangement,

we get a row–column design D (v, b, k), where v = 2n,

b (number of columns) = r2n-1 and k (number of

rows) = 2. In the row-column design so obtained, the

factorial effect confounded with rows of each replication of

DCU also becomes unconfounded. If r is even, the factorial

effect confounded with rows in each replication of DCU can

be estimated free from row-effects in D and if r is odd, the

factorial effect confounded with rows in each replication of

DCU can be estimated after adjustment of row-effects in

D. The factorial effects that can be confounded with rows

are given in column 6 in Table 3. Using Step 3, it is

important to note that the factorial effects confounded with

the rows in different replications are estimable in the whole

row–column design.

Example A row–column design in two rows for a 24

factorial experiment for a two-colour microarray experi-

ments is obtained as given in the sequel. All possible 15

blocking arrangements for obtaining a block design for 24

factorial experiments in blocks of size 2 are given in

Table 2.

Following step 2, we obtain a block design in block size

2 using any three combinations of the blocking
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arrangement numbers A11, A12, A13 and A14. One can

obtain four block designs in 3 replications each by con-

founding the factorial effects as per blocking arrangement

numbers (A11, A12, A13), (A11, A12, A14), (A11, A13,

A14) and (A12, A13, A14), respectively. All these designs

would be isomorphic and one can be obtained from another

by renumbering the factors. Therefore, without loss of

generality, we present the design obtainable from blocking

arrangement numbers (A11, A12, A13). The block design

is given as

Table 2 All 15 possible blocking arrangements for 24 factorial experiment

Blocking type Arrangement number Independent factorial effects to be confounded Generalized factorial effects confounded

1 A1 1 2 3 12 13 23 123

A2 1 2 4 12 14 24 124

A3 1 3 4 13 14 34 134

A4 2 3 4 23 24 34 234

2 A5 1 2 34 12 134 234 1234

A6 1 3 24 13 124 234 1234

A7 1 4 23 14 123 234 1234

A8 2 3 14 23 124 134 1234

A9 2 4 13 24 123 134 1234

A10 3 4 12 34 123 124 1234

3 A11 1 24 34 124 134 23 123

A12 2 14 34 124 234 13 123

A13 3 14 24 134 234 12 123

A14 4 13 23 134 234 12 124

4 A15 14 24 34 12 13 23 1234

Here 1, 2, 3, 4 represent the factor number

Replication 1 Replication 2

Blocks? Blocks?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0000 0010 0011 0001 1000 1010 1011 1001 0000 0100 0101 0001 0010 0110 0111 0011

0111 0101 0100 0110 1111 1101 1100 1110 1101 1001 1000 1100 1111 1011 1010 1110

Replication 3

Blocks?

17 18 19 20 21 22 23 24

0000 0010 0011 0001 0100 0110 0111 0101

1011 1001 1000 1010 1111 1101 1100 1110
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In this design the factorial effect 1234 (4 factor inter-

action is unconfounded with block effects). Therefore,

using step 3, confound 4 factor interaction with rows for

obtaining a row–column design. The row–column design

obtained after confounding 1234 in each replication of

block design and rearranging the column contents in two

rows of each replication of the block design is

In the above design, main effects 1, 2, 3, 4 and two-factor

interactions 12, 13, 14, 23, 24, 34 are uncofounded in 2, 2, 2,

3, 2, 2, 1, 2, 1, 1 replications. The above is design D1 in

Table 3. The design D2 in Table 3 can also be obtained

similarly. In design D2, main effects 1, 2, 3, 4 and two-factor

interactions 12, 13, 14, 23, 24, 34 are unconfounded in 1, 1, 1,

3, 2, 2, 2, 2, 2, 2 replications. It is clear that in design D1, the

main effects are estimated with more precision than two-

factor interactions, and, in design D2, two-factor interactions

are estimated with more precision than main effects. The

efficiency factors are given in Table 4.

In many experimental situations, due to scarcity of

experimental resources, it is required that the experiment

be conducted in a single replication and the experimenter is

interested in orthogonal estimation of all main effects. A

procedure of generating a block design in block size 2 for

2-level factorials for orthogonal estimation of main effects

was given by [1], [4], [9]. We propose a simplification and

extension of their method to obtain row–column designs in

two rows for orthogonal estimation of all main effects in

Method 2.

Method 2

Following the procedure given in Step 1 and Step 2 of

Method 1, generate a block design in block size 2 in a

single replication using the blocking arrangement

DDDDD…{(n - 1) times}, i.e. by confounding two-factor

interactions 1n, 2n, 3n, … (n - 1)n. One can easily see that

interaction involving all the n factors is unconfounded with

block effects if n is odd and n - 1 factor interaction

involving first (n - 1) factors if n is even. Now confound

the highest order interaction (when n is odd) and n - 1

factor interaction when n is even. Now using the rear-

rangement in step 3 of Method 1, one can get a row–

column design in two rows for orthogonal estimation of all

main effects.

It can easily be seen that all odd order factorial effects

are orthogonally estimable in this design. For estimation of

all odd order interactions, the design would be a saturated

design. Therefore, experimental error can be estimated by

assuming the higher order odd order interactions as

negligible.

Remark 1

A design for estimation of all main effects and two-factor

interactions in n - 1 replications can always be obtained

by taking combination of any n - 1 blocking arrangements

of the type SDDD…D{(n - 2) times}.

Row–Column Designs with Unequal Replications

In ‘‘Method of Construction of Confounded Row–Column

Designs’’ section, we have given a method of construction

of row–column designs in 2-rows for orthogonal estimation

of all main effects and two-factor interactions in minimum

number of replications as given by [9]. In some experi-

mental situations, due to cost or time considerations, it may

not be possible to run the design even in the minimum

number of replications required for estimation of all main

effects and all two-factor interactions. Therefore, we have

Replication 1 Replication 2

Columns? Column?

Rows 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0000 0101 0011 0110 1111 1010 1100 1001 1101 0100 1000 0001 0010 1011 0111 1110

2 0111 0010 0100 0001 1000 1101 1011 1110‘ 0000 1001 0101 1100 1111 0110 1010 0011

Replication 3

Columns?

Rows 17 18 19 20 21 22 23 24

1 0000 1001 0011 1010 1111 0110 1100 0101

2 1011 0010 1000 0001 0100 1101 0111 1110
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Table 3 Factorial Effects to be confounded in different replications to get a partial confounded row–column design for 2n factorial (2 B n B 9)

for orthogonal estimation of main effects and two-factor interactions

Number

of

factors

Design Replication

number

Independent factorial effects

confounded with columns (as

blocks)

Generalized factorial effects (only main

effects and two factor interaction)

cofounded

Factorial Effects confounded with

rows for obtaining row–column

design

(1) (2) (3) (4) (5) (6)

2 D1 R1 1 2

R2 12 2

D2 R1 1 12

R2 2 12

3 D1 R1 1, 23 123 12

R2 2, 13 123 12

D2 R1 1, 23 123 13

R2 3, 12 123 13

4 D1 R1 1, 24, 34 23 1234

R2 2, 14, 34 13 1234

R3 3, 14, 24 12 1234

D2 R1 1, 2, 34 12 123

R2 1, 3, 24 13 123

R3 2, 3, 14 23 123

5 D1 R1 1, 5, 24, 34 15, 23 12345

R2 1, 3, 25, 45 13, 24 12345

R3 2, 5, 14, 34 25, 13 12345

D2 R1 1, 2, 35, 45 12, 34 12345

R2 1, 3, 25, 45 13, 24 12345

R3 2, 4, 15, 35 24, 13 12345

6 D1 R1 1, 4, 26, 36, 56 14, 23, 25, 35 12456

R2 3, 4, 5, 16, 26 34, 35, 12 12456

R3 5, 6, 14, 24, 34 56, 12, 13, 23 12456

D2 R1 4, 5, 6, 13, 23 45, 46, 56, 12 123456

R2 2, 3, 6, 15, 45 23, 26, 36, 14 123456

R3 1, 3, 4, 26, 56 13, 14, 34, 25 123456

7 D1 R1 5, 6, 7, 14, 24, 34 12, 17, 27, 34, 35, 45 123467

R2 1, 3, 5, 27, 47, 67 35, 57, 37, 12, 14, 24 123467

R3 2, 3, 7, 16, 46, 56 23, 27, 37, 14, 15, 45 123467

D2 R1 1, 2, 7, 36, 46, 56 12, 17, 27, 34, 35, 45 123567

R2 3, 5, 7, 16, 26, 46 35, 37, 57, 12, 14, 24 123567

R3 2, 4, 5, 17, 37, 67 24, 25, 45, 13, 16, 36 123567

8 D1 R1 18, 28, 38, 48, 58, 68, 78 12, 13, 14, 15, 16, 17, 23, 24, 25, 26, 27,

34, 35, 36, 37, 45, 46, 47, 56, 57, 67

15678

R2 5, 6, 7, 8, 14, 24, 34 56, 57, 58, 67, 68, 78, 12, 13, 23 15678

R3 3, 4, 7, 8, 16, 26, 56 34, 37, 38, 47, 48, 78, 12, 15, 25 15678

R4 2, 4, 6, 8, 17, 37, 57 24, 26, 28, 46, 48, 68, 13, 15, 35 15678

D2 R1 5, 6, 7, 8, 14, 24, 34 56, 57, 58, 67, 68, 78, 12, 13, 23 123678

R2 3, 4, 7, 8, 16, 26, 56 34, 37, 38, 47, 48, 78, 12, 15, 25 123678

R3 2, 4, 6, 8, 17, 37, 57 24, 26, 28, 46, 48, 68, 13, 15, 35 123678

R4 1, 28, 38, 48, 58, 68, 78 23, 24, 25, 26, 27, 34, 35, 36, 37, 45, 46,

47, 56, 57, 67

123678
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Table 3 continued

Number

of

factors

Design Replication

number

Independent factorial effects

confounded with columns (as

blocks)

Generalized factorial effects (only main

effects and two factor interaction)

cofounded

Factorial Effects confounded with

rows for obtaining row–column

design

(1) (2) (3) (4) (5) (6)

9 D1 R1 1, 2, 3, 9, 48, 58, 68, 78 12, 13, 19, 23, 29, 39, 45, 46, 47, 56, 57,

67

236789

R2 2, 4, 6, 8, 19, 39, 59, 79 24, 26, 28, 46, 48, 68, 13, 15, 17, 35, 37,

57

236789

R3 3, 5, 6, 7, 19, 29, 49, 89 35, 36, 37, 56, 57, 67, 12, 14, 18, 24, 28,

48

236789

R4 1, 5, 6, 8, 9, 27, 37, 47, 15, 16, 18, 19, 56, 58, 59, 68, 69, 89, 23,

24, 34

236789

D2 R1 5, 6, 7, 8, 9, 14, 24, 34 56, 57, 58, 59, 67, 68, 69, 78, 79, 89, 12,

13, 23

13479

R2 1, 2, 5, 6, 9, 38, 48, 78 12, 15, 16, 19, 25, 26, 29, 56, 59, 69, 34,

37, 47

13479

R3 2, 4, 6, 8, 19,39, 59, 79 24, 26, 28, 46, 48, 68, 13, 15, 17, 35, 37,

57

13479

R4 3, 4, 5, 8, 19, 29, 69, 79 34, 35, 38, 45, 48, 58, 12, 16, 17, 26, 27,

67

13479

Table 4 Efficiency factor of estimable main effects and 2-factor interactions in partial confounded row–column design for 2n factorial

(2 B n B 9)

Factor r 1 2 3 4 5 12 13 23 14 24 34 15 25 35 45

22 2 0.50 1.00 0.50

2 0.50 0.50 1.00

23 2 0.50 0.50 1.00 1.00 0.50 0.50

2 0.50 1.00 0.50 0.50 1.00 0.50

24 3 0.67 0.67 0.67 1.00 0.67 0.67 0.67 0.33 0.33 0.33

3 0.33 0.33 0.33 1.00 0.67 0.67 0.67 0.67 0.67 0.67

25 3 0.33 0.67 0.67 1.00 0.33 0.67 0.33 0.33 0.33 0.33 0.33 0.67 0.67 0.33 0.33

3 0.33 0.33 0.67 0.67 1.00 0.67 0.33 1.00 1.00 0.67 0.67 0.33 0.67 0.33 0.33

26 3 1 2 3 4 5 6 12 13 23 14 24 34

0.67 1.00 0.67 0.33 0.67 0.33 0.33 0.67 0.33 0.33 0.67 0.33

0.67 0.67 0.33 0.33 0.67 0.33 0.67 0.67 0.33 0.33 1.00 0.67

15 25 35 45 16 26 36 46 56

1.00 0.67 0.33 0.67 0.67 0.33 0.67 1.00 0.33

0.67 0.67 1.00 0.33 1.00 0.33 0.67 0.67 0.33

27 3 1 2 3 4 5 6 7 12 13 23 14 24 34

0.67 0.67 0.33 1.00 0.33 0.67 0.33 0.67 0.33 0.33 0.33 0.33 0.67

0.67 0.33 0.67 0.67 0.33 1.00 0.33 0.33 0.67 1.00 0.67 0.33 0.67

15 25 35 45 16 26 36 46 56 17 27 37 47 57 67

0.33 1.00 0.67 0.67 0.67 0.67 1.00 0.33 0.33 1.00 0.33 0.67 0.67 0.67 0.33

1.00 0.67 0.33 0.33 0.33 0.67 0.33 0.33 0.67 0.33 0.67 0.33 1.00 0.67 0.67
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proposed a procedure of obtaining row–column designs for

estimation of all main effects and two-factor interactions

for the situations having unequal replication of different

treatment combinations in smaller number of columns or

arrays than the number of columns or arrays required for

minimum number of replications for orthogonal estimation

of all main effects and two-factor interactions in the sequel.

Consider an experimental situation in which 4 factors

each at two levels are to be studied in a 2-colour micro-

array experiment. The experimenter is interested in

studying all main effects and two-factor interactions. For

orthogonal estimation of all main effects and two-factor

interactions in blocks of size 2 or a row–column design in

two rows, the minimum number of replications required is

three and number of arrays (columns) required is 24. As per

availability of resources, at most 20 arrays (columns) can

be used for the experiment. For this experimental situation,

a row–column design in two rows can be obtained as given

in the sequel.

Step 1 Find out a combination of 2 blocking arrange-

ments for a 24 factorial experiment for generating a block

design with block size 2 in two replications such that 3

main effects and all 6 two-factor interactions are estimable.

One such arrangement is

Blocking arrangement 1: 1, 2, 34

Blocking arrangement 2: 1, 3, 24

Using this blocking arrangement, the block design in

two replications is

Step 2 Identify the factorial effect that is unconfounded

in both the replications. In this example 123 is the factorial

effect which is unconfounded in both the replications.

Confound this factorial effect and obtain rows in each of

the two replications above as per procedure given in

‘‘Method of Construction of Confounded Row–Column

Designs’’ section, Method 1. The row–column design in

two rows obtained is

Table 4 continued

Factor r 1 2 3 4 5 12 13 23 14 24 34 15 25 35 45

28 4 1 2 3 4 5 6 7 8 12 13 23 14 24 34

1.00 0.75 0.75 0.50 0.75 0.50 0.50 0.25 0.25 0.25 0.50 0.50 0.25 0.75

0.75 0.75 0.75 0.50 0.75 0.50 0.50 0.25 0.50 0.50 0.50 0.75 0.25 0.25

15 25 35 45 16 26 36 46 56 17 27 37 47 57 67

0.25 0.50 0.50 0.75 0.50 0.25 0.75 0.50 0.25 0.50 0.75 0.75 0.50 0.25 0.50

0.50 0.50 0.50 0.75 0.75 0.50 0.75 0.50 0.25 0.75 0.75 0.25 0.75 0.25 0.50

18 28 38 48 58 68 78 19 29 39 49 59 69 79 89

0.75 0.50 0.50 0.25 0.50 0.25 0.25

1.00 0.50 0.50 0.25 0.50 0.50 0.25

29 4 1 2 3 4 5 6 7 8 9 12 13 23 14 24 34

0.75 0.50 0.50 0.75 0.50 0.25 0.50 0.50 0.75 0.25 0.25 0.50 0.50 0.25 0.25

0.75 0.50 0.50 0.50 0.50 0.25 0.75 0.25 0.50 0.50 0.50 0.75 0.75 0.50 0.25

15 25 35 45 16 26 36 46 56 17 27 37 47 57 67

0.75 1.00 0.50 0.25 1.00 0.75 0.75 0.50 0.25 0.75 1.00 0.50 0.75 0.25 0.25

0.50 0.75 0.50 0.75 0.50 0.25 1.00 0.75 0.50 0.50 0.75 0.50 0.75 0.50 0.50

18 28 38 48 58 68 78 19 29 39 49 59 69 79 89

0.75 0.50 1.00 0.25 0.50 0.25 0.50 0.25 0.50 0.50 0.75 0.50 0.75 0.50 0.50

1.00 0.75 0.50 0.25 0.50 0.50 0.50 0.25 0.50 0.75 1.00 0.25 0.25 0.25 0.75

Replication 1 Replication 2

Blocks? Blocks?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0000 0001 0100 0101 1000 1001 1100 1101 0000 0001 0010 0011 1000 1001 1010 1011

0011 0010 0111 0110 1011 1010 1111 1110 0101 0100 0111 0110 1101 1100 1111 1110
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In the above design, main effect of factor 1 is confounded

in column effects, so it is not estimable. We can go up to 20

arrays, and therefore, we have the possibility of adding four

arrays. The arrays/columns added should be distinct from the

above 16 columns. To have the balance with respect to rows,

we have to swap the pairs of treatment combination in a

column. Therefore, we can add two new arrays/columns.

Now the question is which two new columns/arrays to be

added? Generate a block design in block size 2, using

blocking arrangement of the type DDD. Select two blocks of

this design which contain the treatment combinations where

keeping the level of factor 1 constant, there is a change in

levels of maximum number of factors.

We may select any of the two blocks from the following

4 set of blocks.

Set 1 : 0000; 1111f g; 0111; 1000f g;
Set 2 : 0001; 1110f g; 0110; 1001f g;
Set 3 : 0010; 1101f g; 0101; 1010f g;
Set 4 : 0011; 1100f g; 0100; 1011f g;

Now using Set 1, and swapping the pairs of treatment

combinations, in blocks, we get four new columns as

Renumber 16 treatment combinations written in lexi-

cographic order 0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,16, respec-

tively. Using the coefficient matrix of reduced normal

equations of the above row–column design under a fixed

effects model, say C, it can easily be seen that all main

effects and two-factor interactions are orthogonally esti-

mable with variances of estimated main effects (1, 2, 3, 4)

and estimated two-factor interactions 12, 13, 14, 23, 24, 34

as 4.5, 1, 1, 0.5, 1, 1, 0.5, 0.5, 1, 1 assuming error variance

as one.

Remark 2

The designs obtained in Step 1 have a limitation that the

main effect of one factor is non-estimable. However, it is

always possible to select such a factor as the factor of least

interest. It may be noted that the new columns added would

contain those treatment combinations for which keeping

the level of factor, main effect of which is not estimable in

the original design, as constant there is a change in levels

of maximum number of factors. If n is even and change is

only with respect to levels of odd number of factors

(involving any of less than n - 1 factors), the main effect

can be estimated but is non-orthogonal with respect to

some of other main effects. If n is even and the change is

only with respect to levels of even number of factors,

estimation of desired main effects is not possible.

Discussion

In the present investigation, the designs obtained and cat-

alogued are for 2-colour microarray experiments. This,

however, is an application of row–column designs in two

rows for 2n factorial microarray experiments. The designs

obtained and catalogued have a wider scope of applications

in all those experimental situations in which a confounded

row–column design in two rows is required. Further, it

would be of importance to develop a software module for

generation of row–column designs in two rows. The whole

discussion revolves around two-level factorial experiments.

The methods of construction/computer algorithms for

generation of confounded row–column designs in two rows

for asymmetrical factorial experiments for estimation of all

main effects and two factor interaction also needs attention.
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