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Row-switched states in two-dimensional underdamped Josephson-junction arrays
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When magnetic flux moves across layered or granular superconductor structures, the passage of vortices can
take place along channels which develop finite voltage, while the rest of the material remains in the zero-
voltage state. We study analytically an example of such mixed dynamics: the row-swiitRBedtates in
underdamped two-dimensional Josephson arrays, driven by a uniform dc current under external magnetic field
but neglecting self-fields. The governing equations are cast into a compact differential-algebraic system which
describes the dynamics of an assembly of Josephson oscillators coupled through the mesh current. We carry
out a formal perturbation expansion, and obtain the dc and ac spatial distributions of the junction phases and
induced circulating currents. We also estimate the interval of the driving current in which a given RS state is
stable. All these analytical predictions compare well with our humerics. We then combine these results to
deduce the parameter regi@in the damping coefficient vs magnetic-field plaménere RS states cannot exist.
[S0163-182698)11517-3

[. INTRODUCTION confirmed by measuring voltages across individual réfg,
and by direct imaging of the arr&.

Two-dimensional (2D) arrays of Josephson junctions The row-'switchi'ng phenomenqn is robust to.the change of
serve as “controlled laboratories” to investigate fundamen-the underlying lattice structure—in arrays of triangular cells
tal questions such as phase transitibwertex propagation it has been observed both experimentdilyand in
and interactior?,® phase and frequency locking of coupled Simulations®? Thus, row switching could also be relevant to
oscillators>™® and spatiotemporal pattern formation and other systems. For instance, similar channeling of magnetic
chaosi®!! among otherd? A standard circuit geometry is a flux has been seen in continuous superconduéfoksore-
rectangular array driven by a dc current uniformly injected®Ver, the hundreds of resistive steps which appear in-e
from the bottom and extracted from the top in the presenc&haracteristics of higfi. superconductofS have been taken
of an applied field(Fig. 1). Their technological promise as as an indication of the layered weak-link structure in those
high-frequency oscillatot$™*° depends critically on achiev- ma_f_erz]rtlaales).( eriments on 2D arravs of sauare cells have re-
ing tunable, highly nonlinear, coherent oscillations of the P Y q
collection of junctions. However, such coherent oscillations

are not easy to obtaftt>!®as the arrays frequently break up Tae
into incoherent substructures, and deliver output voltages X
with small ac amplitudes. OX(ij+1)
A striking example of such dynamical states with spatial N
structure is provided by thmw—switche(i(]RS) states found (? :(/’H%f ~
in underdamped 2D arrays of square cellas the bias cur- . . R
rent | 4. is ramped up, the dc current-voltage characteristic v oYX @ X oG+
(I1-V) of the array displays a succession of jumps between X
Ohmic branches of increasing resistance until, eventually,] %,

the normal resistive branch is reached. The observation tha
the branches are equally spaced in voltage suggested a rov i
SWIt.Chmg scgnarlo, in which each Jump corresponds to all FIG. 1. 2D Josephson-junction array consisting\df=7 rows
the junctions in a row suddenly switching from the supercon-

ducti h | h . . h | and NY=7 columns of square cells. The cell atj() is shown
ucting to the normal state, thus Increasing the vo tag%nlarged. Each junction is described by a gauge-invariant phase

across the_ array by a fixed amqunt. In the RS states, the arr@iference:¢* for the junctions on the horizontal edges, aptifor

then consists of superconducting and normal rows, coexistne vertical junctions. A uniform dc bias curreit, is injected into

ing to form striped patterns as in the four examples shown ivery node on the bottom edge and extracted from the top. The left
Fig. 2. In other words, the magnetic flux moves across thend right sides arepenboundaries. The mesh curreptdenotes
array along certain rowschannel where a finite voltage the deviation of the current distribution from a uniform current flow
develops, while the rest of the system remains in the zeroin the vertical direction. A uniform magnetic field in units of the
voltage state. This row-switching picture was later explicitly flux quantum®,, is applied normally to the plane of the array.
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#1 lations show that the junctions” in the vertical branches of

the S rows are in the normal resistive stdtapidly rotating

whereas those in th@ rows are nearly superconductitgfa-

tionary). Nevertheless, as we show, the junctions in @e

#2 rows are still oscillating, which causes finite ac voltage drops

and associated losses. This is why we hesitate to caljthe

rows “superconducting.”
Moreover, the numerical investigatitrt® of the row-

#3 switching sequence shows that, even in the absence of tem-
perature and disorder, the observed patterns and the order of
their appearance depend on several factors: the initial condi-

Iy tion, how the current is varied, the magnetic fighmbth ex-

¢ ternally applied and self-inducgcetc. This is a clear indica-
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#4 - - - tion that multiple attractors coexist for identical parameter

. 7.]:[:“::] ! H ; meEn values(as patterns 1, 2, and 4 in Fig. 2 showhen inho-
JI ‘:‘ H =5 mogeneity in the junctions is included, it becomes even
1D Ll L harder to predict which row will switch next, except to con-

1 i 31 jecture that it will occur at the “weakest part” of the arr&y.

Phillips et al*? have studied the RS patterns in detail when
inductances are included. When self-fields are small,She
rows appear to be globally phase locked even if they are far
apart, separated b9 rows in between. This means that to-
pological vortices in thé& rows appear to propagate together,
just as seen in pattern 2 in Fig. 2. However, for generic
asymmetric patterns, such as pattern 4, vortices do not move
Otogether. Stronger self-fields are also fothtb break this

FIG. 2. Four snapshots of RS states in arrays’sf 31 columns
by NY=7 rows. Two types of rows are observed: quiesced} (
rows (in white) across which there are zero dc voltage drops, an
switched §) rows (shaded areasacross which there are finite dc phase coherence. . .
voltage drops. Black dots denote topological vortices, defined in COmpared to the numerous experimental and numerical
Sec. Il. They areroughly) equally spaced in th& rows of the Studies, analytical results are much scarcer for 2D arrays. As
symmetric patterns 1-3, but the spacing can change from row i as we are aware, previous authors have focused on the
row in asymmetric patterns such as pattern 4. CorrespondinghSimplest solution, namely, when the whole array is on the
their propagation spee@iepresented by the length of the arrgws Nnormal branch of thé-V curve(pattern 1 in Fig. 2 This can
may change from a row to another within a pattern. In patterns be interpreted as the special RS state when all the rows have
1 and 2, the vortices move in phase, even whenShews are  become normal; that is, the “completely row-switched” so-
separated by rows. These patterns are numerically generated ustution. These studies have concentrated on explaining the
ing I'=0.2, f=0.1 andl 4 =0.6 for patterns 1, 2, and 4, arg; global phase-locking mechanism needed for oscillator appli-
=0.5in the case of pattern 3. Thus, patterns 1, 2, and 4 corresporghtions. The complete RS state is found to be only neutrally
to coexistingdynamical attractors of the system. stable under zero magnetic fiéftf (which implies that rows

are decoupled whereas a nonzero field induces interrow
vealed other properties of RS states. First, they only appedocking. These inter- and intrarow coupling mechanisms
when the junctions are sufficiently underdampét$?®®  have been studied by several methods: isolating two cells in
Otherwise, thé-V characteristics present an extended regiorthe array**’ perturbation methodS, and harmonic
of flux-flow leading to the Ohmic branch of the entire array. balance'®® However, those results are not directly applicable
Second, RS states are only observed for sufficiently smalio generic RS states, which exist only in a certain parameter
applied magnetic fields. If the field is too large, there are naegime, since the completely RS state extends to any large
individual RS steps; rather, one giant step emérgéin the  bias current for any damping.
I-V. The origin of this giant step has been attributed to the In this paper, we study analytically the generic RS states
interaction of self-fields with a coherent array oscillation inand test our predictions against numerical integrations of the
the form of a dynamical checkerboard pattéffrT.herefore, it system. First, we cast the governing equations and the
is important to establish the parameter regime for the appeaboundary conditions into a mesh formalism to ease the ana-
ance of RS states and to determine their current and phadgical procedurgSec. I). In this notation, the system can be
distributions in order to understand such transitions betweewiewed as an array of coupled oscillators in which the junc-
coherent and localized states. tion phasesp (the pendulumlike oscillatoysare coupled via

Much of the previous theoretical work on 2D arrays hasthe mesh currentg (the current distribution in the array
consisted of numerical simulatictis®%#+22231.32182hich  The coupling arises from the flux quantization condition. We
reproduce the measurements reasonably well. RS states haveglect self-field effects in the equations, thus reducing the
been discussed brieffy;? or more in deptf#328in order to  parameters of the system to three: the bias currgntthe
characterize the dynamics of the two types of rows foundunction damping coefficient, and the magnetic field. In
experimentally(1) switchedrows (* S” rows), across which this way, many properties of the RS states can be explained
there is a finite dc voltage, an@) quiescentrows (* Q" without undue complications. We also discuss the notion of
rows), across which there is no dc voltage drop. The simu~orticity in these discrete arrays.
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We use primarily four example&lepicted in Fig. 2in  patterns whose large€) region is a single row, such as
order to illustrate and test our results. It is convenient to labepattern 2.
each RS pattern by trget Sof its switched rows. Therefore, However, this argument does not explain the simple ob-
patterns 1 to 4 are labeled 8s-{1,2,3,4,5,6,F, S={2,4,6}, servation: the RS states are found only in underdamped ar-
S={4}, andS={2,3,4,%, respectively. We also define & rays, because the depinning currents iacependenbf the
regionto be a set otontiguous Sows. For example, pattern junction damping. This indicates that the lower current limit
4 in Fig. 2 has twd regions, one with three rows 2—4 and @lso plays an important role. A crude approximation for this
another with a single row 7. Similarly,@ regionis a set of ~lower limit is the retrapping current of a single junction
contiguousQ rows. which does depend on the damping, and it reproduces the

A formal perturbation expansion in the high-frequency numerics reasonably well. Combining the preceding criteria,
limit® is used to analyze the governing equati¢®ec. Il). ~ We then calculate the region in the parameter plane of the

We assume that the RS states are time-periodic solutions iagnetic fieldf vs the damping parametd? where RS
which some junctions whirli.e., the¢’s in the Srows are  statescannot exist. In accordance with experiments and

running oscillators and all the other junctions libratge., ~ simulations, we find that RS states occur most easily when
the ¢¥'s in the Q rows and all¢* are nearly stationajy ~PothI' andf are small. Throughout Sec. V we present addi-
Although the expansion is made systematic so that highetional numerical evidence to support these criteria.

order corrections could be obtained, we show that most of

the features of the RS states can be accounted for by the Il. FORMULATION

leading order(The only unresolved main feature is the phase

locking betweers rows) To the zeroth order, we obtain two . ‘ ) .
systems of algebraic equations: one for the dc, and anothdfd eguations of the system: the node and mesh formulations.
he node formulation is easier for simple geometries but it

for the ac components of the phases and currents. The % . . . :
system is nonlineatthus difficult to solvé; however, we ecomes cumbersome and impractical for two-dimensional

obtain bulk approximations which work well far from the 271aYS when inductances are included. Thus, we follow the

edges. On the other hand, the ac components obey the lingBf€Vious literaturé2%3%-32%and derive a compact descrip-

discrete Poisson equation with forcing from the dc solution:lONn Of the arrays in the mesh formulation. In particular, we

therefore, they can be readily obtainentethe dc solutionis [ollow closely Phillips et al®*2 and Tras® with a few
known. changes. Althqugh 'Fh|s fo.rmallsm was orlgmally developed
The bulk approximation determines analytically the dct® €ase numerical simulations, it is well suited for analytical
and ac distributions of currents and phases for any given R&0TK-
pattern. The first important result is that the dc current flows
uniformly in the S rows, but circulating currents are induced A. Governing equations
in the Q regions. These strongly affect the s;patial wave Num-  oyr description of the array shown in Fig. 1 assumes
bers of theS rows (also calculated analyticallythus ex-  several simplifications. First, we neglect thermal fluctuations
plaining why the spacing and speed of propagation of thgj e  zero temperatuyeand we consider all junctions identi-
fluxoids in theS rows varies from pattern to pattern, and ¢y (j.e., no disorder Second, we describe our basic circuit
even from row to row within a pattertiig. 2). In Sec. IVwe  ypjt, a single Josephson junction, by the resistively and ca-
test these findings numerically with good agreement. pacitively shunted junction model. In this standard model, a
_ Another main conclusion f_rom the leading-order ?”aWSiﬁunction driven by a current® is represented by an equiva-
is that the presence db regions breaks the array into a |ent circuit of three channels in parallel with a capacita@ce
collection of Q regions that arelecoupledrom each other, 3 yesjstanc®, and a tunnel junction with the critical current
as far as the dc equations are concern&tieQ regions are, l.. As a result, its state variable (the gauge-invariant

however, still weakly coupled through the ac componentphase difference across the junclids governed by
Thus, for example, the existence of the switched row 4 in

pattern 3 produces two X3 quasidisjoiniQ regions which Mdl=d+T ¢+sing=1", 1)

only interact weakly. This picture proves useful because it

reduces the problem of approximating thgnamical RS  where the nonlinear operatok” returns the total current

states of the array to obtaining th&tatic states of its through the device. In Eql) the current is normalized by

(smallep constitutiveQ regions. I., whereas time is expressed in units of the inverse of the
Indeed, this physical picture has further implications forplasma frequencyw, = (®,C/27l)"% In addition, I

the stability of the RS pattern§Sec. V). As explained above, =B 2_ (/27 R?C) 2 is the damping, with3, the Mc-

each RS state is only observed in an interval of the biagumber parameter. Alsop, is the quantum of magnetic

current, which depends on the magnetic field and dampingjyx. The instantaneous voltage across the junction is given
We show that the upper current limit of this interval is well by the Josephson Vo|tage-phase relation:

predicted by thedepinningcurrent of the larges® region.

This means that the RS state ceases to exist when the flux V(t)=l“<}5, )
penetrates any of th® regions which, in the absence of

irregularities, is usually the largest one in the array. For exwhere the voltage is normalized byR. Thus, a single junc-
ample, pattern 3 cannot hold beyond the current at which #on is analogous to a damped-driven mechanical pendulum,
static state of a 313 array depins. Along the same lines, of and its voltage corresponds to the rotation frequency of the
all the RS states, the largest upper current will correspond tpendulunt>—3’

There are two equivalent ways of formulating the govern-
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When several junctions are interconnected to form a netgenerality, alln(i,j) can be set to zero. Suppose they are not
work, like the one depicted in Fig. 1, the current distributionzero; then we can redefine the junction phases as
must fulfill Kirchhoff's current law. This results in coupling

among the junctions. It is convenient to decompose each &*(i,))— ¢*(i.]),
branch current into an external and a deviation current: -
-
1°=1 ot | gev- ) ¢>y(i,j)—277k21 n(k,j)—¢*(i,j), (10)

The external currenit,,; is chosensuch that it satisfies cur- ) o
rent conservation at all nodeéacluding external sources and Such that Eq(9) is unchanged except, nowll n(i,j)=0.
sinks. In general, it can be spatially nonuniform or time de-Crucially, both currents and voltages are invariant under this
pendent. However, as the steady bias curtgnts injected redefinition of the phases since qdding integer multiples of
(extracted at the nodes along the botto(top) edges, our 2 to ¢¥ changes neither siff nor ¢Y. This means that the
choice® for |, is the stationary uniform vertical flowin ~ dynamics and measurements remaientical for any com-
which | .= 4. on every vertical branch of the circufor all  bination of integersi(i,j), and we do not need to be con-
t), andl =0 on every horizontal bond. cerned with their initial values. Similarly, if the magnetic
The deviation from the external floly,, must be diver- field were controllable independently on each cell, adding an
gence free since current sources and sinks have already beigiteger number of flux quanté, into any cell would not
incorporated intd ;. Therefore, there exists a stream func- change the measurgeV characteristics, at least within this
tion (or mesh currenty at each cell whose discrete curl model. This is simply the array analog of the two-junction

determined 4, in the x andy directions: superconducting quantum interference device, whose depen-
dence on the penetrating field is atbg periodic. Because of
I =w(i,))—w(i,j—1), (4)  this periodicity in the magnetic field, the topological vortex
must be defined differently in 2D arrays and in continuous
i) =—[w(i,j)—y(i—1j)]. (5) superconductors, as we will discuss at the end of this section.

. . L The total magnetic field in Eq9) can be decomposed
(In the rest of this paper we will not write time dependencesiq two parts:

explicitly when they are obvious, such as hgre.
In order to ensure that these relations hold also at the D(i,j) =P oyt Ping(i,j)- (11)
edges of the array, we define artifictadundary cellsvhich
have either the horizontal indéx0 or N*+1, or the verti-  The first term is produced by the external field applied per-
cal indexj =0 orNY+ 1. This yields the boundary conditions pendicularly to the plane of the array, which we assume to be
of the problem: constant and uniform. It is usually parametrized as a dimen-
sionless frustratiori normalized to the flux quantum:
$(i,j)=0 if i=0, N*+1 orif j=0, NY+1. (6)

. .. . . . f=® g/ Do, (12
This condition is equivalent to “grounding” the value @f
outside the array. such that, in terms of, the period of the external field is
Combining Egs(1)—(5), we obtain the first two sets of unity. The second term, the induced field, can be written
governing equations generally as the sum of all the contributions from the branch
currents
M (i,)) =, ) —(i,j—1), (7
M@(,)]= e = Lo, ) = (i = L)), (8) Ping(b1) =2 2 Lo (13)

where N was defined in Eq(l). o .
The other source of intrinsic coupling between the junc-Wher6k runs through all the branche_s Qf the circuit, W*_“'e
corresponds to the four edges of celljj. The branch in-

tions is due to a macroscopic quantum constraint: the qu>éi i ob | tri tants determined
quantization condition around each cell. Given that the cor>"° arrl]ce Nk ig? purely geometric _constants determine
ners of each cell are superconducting islands described gj°™ the circuit

well-defined phases, the phase change around ¢dl) (

yields the third and final set of equations of the system B. Matrix-vector notation
. . . . . The above equations can be cast into a compact matrix-
y —AY _ X X
[ (1) = ¢ (LDI= 1471+ 1) = ¢ ])] vector notatior?! For aN*xNY array, all branch variables
®(i,j) o (e.g., currents®, voltagesV, and phaseg) can be written
+2m D =2mn(i,]) 9 as vectors of dimension equal to the number of branches, i.e.,
0

(N*+1)NY+NX(NY+1). Thus, for instance, the vecteb
fori=1,... N*andj=1,... NY, where®(i,j) is the total consists of all the phase$* and ¢”. On the other hand,
magnetic field penetrating the cell. The winding numbersvariables defined at cell@.g., the mesh current and the
n(i,j) are a set of integers that arise because the islanthduced flux®;,y) form vectors of dimensiotN*NY. These
phases are only defined up to multiples of. ZThen(i,j) are  two groups of vectors are connected via a branch-to-cell con-
fixed by the initial condition and remain constant as long asectivity matrix® M which takes a directed sum as we loop
the array is kept superconducting. However, without loss ofiround a cell:
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C. No-inductance approximation

Computing theull equationg17),(18) quickly becomes a

More mathematically, this operator takes the discrete curl of€avy task as the system size increases. In previous numeri-
¢ around every celli(j). Conversely, the discrete curl of cal studies, these computational limitations have been cir-
the cell variables is obtained by applying the transposed celcumvented either by using acceleration schéneshen the

to-branch matrixvi .
Using this notation, the total flugl1) can be written as

O=P,f+MLPIP, (15

whereL” is the branch inductance matrix, ahds a constant
vector.
Moreover, Eqgs(4),(5) can now be written simply as

lgev=M T‘/’a
and Eqgs(7),(8) become

M¢]:Iext+ MT'r//r (17)

where is operated component wise and the vedtgrhas
components that are zero on the horizontal edged gndn
the vertical edges, as defined by our choiceststionary
uniform vertical flow

Finally, we can use Eq€$14) and(15) to recast the flux
guantization conditior{9) as

(16)

1
M+ 2wf+E(Lm¢+MLblex,)=0, (18
where components df” are normalized tqugp, p is the
lattice constant) | = ® /271 . ugp is the dimensionless pen-
etration depth, theneshinductance matrix is defined as
LM=ML"MT, (19

and we have sai(i,j)=0.

To summarize, the governing equatiofts7) and (18)
form a closed differential-algebraic system thrand ¢, with
parameters, I, I ., A, , and the coefficient matrik®. This

inductance effects are of intergstr se or by “truncating”

the matrix L™ (i.e., neglecting some of its components
Three truncatiorfs®1*21® are often used: no-, self-, and
nearest-neighbor inductances. Self-inductance neglects the
intercell magnetic coupling by keeping only the diagonal
components o™ (which then becomes trivially invertible
Nearest-neighbor inductance includes, in addition, magnetic
coupling between neighboring cells. An important remark is
that not only the mesh inductand€” but also the vector
MLPI ., must be provided in order to complete the system,
and the choice of ., may affect the results wheh® is
truncated"8 (In contrast, the choice df, is unrestricted if

the full inductance matrix is usedTruncating the system in

a physically consistent manner is a subtle issue, and, for
simplicity, we shall assume no inductance in this article.

In contrast to what one might guess from its name, the
no-inductance approximation domet eliminate the intercell
coupling. Counterintuitively, it leads to an even longer-range
coupling than the self- and nearest-neighbor truncations. The
no-inductance approximation set$=0, thusL™=0. The
flux quantization conditior{18) is then just

Mop+27f=0. (20

The same equation can also be obtained in the it o

for any L®, which allows the no-inductance limit to be ap-
proached from the inductive system continuously. It is im-
portant to note that the conditiq20) is now aconstrainton

¢, which must be satisfied atll times. The discrepancies
betweernM ¢ and— 2= f cannot be filled byocally adjusting

the induced field, as when the inductive terms were present.
This leads to a global coupling of the junctions over the
whole domain. To see the coupling mechanism provided by

form of the system is compact and intuitive. It can be seen a§9- (20), operate the loop surM on Eq. (17). From the

a coupled-oscillator system in which the “oscillatorg’ are
driven by the “coupling field” s in Eq. (17). In return, the
oscillators collectively feed back onto the field in EG8).
This picture suggests the following integration stép&
first, given ¢ at some time, solve Eq.(18) for L™y; then,

invert the matrixL™, together with the boundary conditions

(6), to determine the fields. This gives us the “drive” on

the right-hand side of Eq17), which is used to update the

oscillators¢ in time.

left-hand side of Eq(17) we obtain

MM )(i,j)=Md+TM¢p+M[sing]

but the first two terms vanish, since E@0) must hold at all
times. From the right-hand side of E@{.7) we obtain

M(lext+MT‘//)=MIext"'MMT‘/f:Mlext_A’/’a

where we have introduced the discrete Laplacian

We conclude the general formulation by pointing out that Au(i =[]+ D)+ (i, j— 1)+ i+ 1)+ (i —1,)]

Egs. (17), (18 possess two simple symmetrféslf we
find a solution[¢(i,j,t),y(i,j,t)] for f and 4., then
[—(i,j,t),—u¥(i,j,t)] is a solution of the system for f

and — 4, the other parameters being the same. Similarly

[—o(—i,—j,0),¢(—1,—j,t)] is also a solution forf and
—l4c (sinceM is changed to- M due to the reversal of the

spatial coordinatgs Therefore, we only have to study the

guadrant=0 andl 4 =0. Together with the unit periodicity
in f, the frustration can be further restricted te<0<1/2

—4y(i.j). (21

For the stationary uniform flow .y, the termMl,=0.
Thus, we arrive at a discrete Poisson equation

Ay=—M[sing],

in which the distribution of the mesh current is dependent on
all the junctions in the array.

(22)

without loss of generality. Thus, in the rest of this article, by Equations(17) and (22) constitute the governing equa-
“large f” and “small f” we mean frustration values close tions for the no-inductance case, and can be integrated as

to 1/2 and O, respectively.

before. Provided that the initial condition satisfies the con-
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straint(20) and its time derivativé ¢=0, Eq.(20) is satis-  tal branct;::-s(?), whose drive is zero, converge asymptoti-
fied for all t. An immediate advantage of the no-inductancecally to ¢** =0 due to the damping. On the other hand, the
approximation is that the sweep of the parameter space i4ncoupled vertical junction@), driven byl 4, have a differ-

greatly simplified since the number of parameters has bee@nt dynamical behavior. For small dampiligthey can con-
reduced to threef, I', and| 4. verge asymptotically to one of two distinct stable stdfes:

the superconductingstatiq state, which exists only when
I <1, in which the drive is balanced by the sinusoidal non-
_ _ _ ) linearity, (i.e., ¥* =arcsify.); or the Ohmic(whirling) so-
Before closing this section, we consider now the concepfytion, where the first time derivative balances the drive, and
of vorticity in these arrays. As for |ncompre33|ble planar 4 increases at a nearly uniform rate=14. /T (i.e., the pen-
fluid flows, we can define a vorticity by taking the cébly  gylum “whirls”). The two attractors may coexist for the
applying M) of the “velocity” field which, in our case, same drive, and hysteresis may occur.
correspond$ to the branch curren®. This current vorticity When the junctions are coupled, the simple dynamics of
the independent junctions is altered, and complex spatio-
O=MIP=M(lextMT) =Ml Ay (23 temporal solutions, which do not have an analog in the un-
measures how currents whirl, and can take any real value§oupled array, may emerge. Nevertheless, in the case of the
(For our stationary uniform vertical flowl ! o, vanishes. RS solutions the two states of the driven single junction
In contrast, the notion of topological vortex(or chargé mentpned abovestatic and v_vhlrllng are still valuable
is commonly used in Josephson arrays in analogy to continuuilding blocks” for the analysis of the whole system. Spe-
ous superconductors. In type-Il superconductors, the vorticedfically, the RS states are characterized by alternating re-
would correspond to the integer winding numba(s, j) in gions in wh|ch. the vert|cal_]unct|ons are either stationa®y (
the flux quantization conditio¢®). But, as we showed above, '€giong or whirling (S regions. There are, however, some
the n(i,j) are dynamically irrelevant in the arrays. There- significant differences with the uncoupled case. For instance,

fore, an alternative, less physical definition for togologi- the _time-averaged cu_rrent distribution in the coupled array
cal vorticity has been usetf3218 deviates from the uniform flow. Hence, the phases of the

stationary junctions can have other values than 0 or
1 - arcsifg.. In addition, the rotations of the vertical whirling
{(=5-M(9—9). (24)  junctions induce ac oscillations on the stationary junctions,

and phase locking among the whirling junctions. Our analy-
Here, ¢ denotes restriction of the components of the phas@is in this section is capable of explaining most of these
vector ¢ within [ — 7, 7). The value of¢ at each cell takes €ffects.
only integer valuegtypically 0 or £1) and jumps discon- We note that our analysis is restricted to solutions with no
tinuously as the system evolves in time. In effect, this defi{(statig vortices trapped in any of th@ regions. The “no-
nition detects when one of the four junctions in a cell rotates/ortex™ state is expected to be most relevant to determine
and crosses = (mod 2r), sinceM ¢ changes discontinu- the para}met(_er regime in which R_S states appear. Similarly,
ously by 2r at that instant. This is the 2D analog of marking th€ vertical junctions in thes regions are assumed to be
the location of a 1D kink at the point whete= 7 (mod 27) vyh|rl|ng at almpst constant frequency. MO(e nonlllnear rota-
regardless of whether the kink really has a localized structur%ons are certainly possible as we briefly discuss in Sec. VI,
or not. This particlelike picture is frequently useful but, by ut are neglected.
neglecting spatial distributions, there is a potential loss of
information about the true dynamical state of the system. On
the other hand, the current vortici§y would reveal more In previous perturbative analyses of junctions and arrays,
accurately how localized vortices are. However, for the RSt has been customary to trekj, as a large parametéf?
states treated here, our simulations show that the topologicéowever, partially RS states can exist only wHegp is suf-
vorticity ¢ moves together with a peak of the current vortic-ficiently small, as we will show below. Therefore, we use the
ity Q (Sec. IV B). Thus, we use both definitions interchange-rotation frequency of the pendulum=14./T" as the large

D. Vorticities in 2D arrays

A. Perturbative analysis

ably at our convenience. parameter in our perturbation. That is, we will consider the
high-frequency limit> w> 1, which can be satisfied for any
1. ANALYSIS finite 1 4. if the dampingl is small enough.

Hence, we assume that the variables in the RS states can

In this section we present a perturbative analysis of thée expanded in powers af 1. The phases of the horizontal
systematically so that it is possible to proceed to higher or-
ders, we show that most of the fundamental features of the o - o
row-switched states can be explained by the leading order of #(i,],1)=o(i,)) + 22 o Pep(iLj,7), (25)
the expansion. =

Before writing down the RS solutions, it is useful to think while the mesh current is given by
of the array withuncoupledjunctions. This limiting case w
corresponds to imposing=0 in Eq.(17), thus reducing the N N T P (i
array to a collection of uncoupled pendula, independently Y. %(I’JH%(I'J’Tszl o (17,
responding to a constant drive. The junctions on the horizon- (26)

oo
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where we have introduced the normalized time where " denotes differentiation twice with respect to
Moreover, for each type of row we obtain a different equa-

T=ot= (14 /T')t. tion:

Thg notation () expresses time-independedt) quantltlgs, &Y' (], 7 =—sin(r+ &%)~ Foliri, )

while (-) are for the time-dependel@c) parts whose time

average is zero. Note that the correction@fw 1) in Eq. +Po(i—1j,7), jeS (35

(25) turns out to be zero, so we neglect that term from the

start. and

The form for the vertical junctions must be different in the , . .
switched and the quiescent rows. In the switched rows, all 3 (1], 7)=—to(i,j, ")+ o(i—1j,7), jeQ, (36)

the junctions are whirling and stationary: their phases grow,

to the lowest order, constantly in time which completes the full ac system. .
These systems of equations are to be solved with bound-

_ o ary conditions
HAJO=r+ ¢+ 2 @ Pe(if.). S
(27)

Meanwhile, in the quiescent rows the junctions are libratin
around fixed values, and thus, the leading order is indep
dent of time:

Yo=o=0 (37)

at the boundary cells.
eg A simple but important observation can be made at this
r]:Soint. Using Egs(31) and(37) ati=0 andN*+1 (i.e., at the
right and left edges it follows that

#Y(i,j,t)=pY(i,j)+ 22 o PPl 7)., jeQ. (29 Po(i,j)=0 Vi, if jeS. (38)
i Therefore, the leading-order dc mesh curreanhishes in a
We imposeyy, and the higher-order terms to be periodic in switched row?® just as it does in the top and bottom bound-
time. In general, the period has to be modulated and, thugyry cells atj=0 andNY+1. In other words, the switched
expanded inw ! (strained coordinaje However, since in row is equivalent to having another boundary row, which
the following we will focus on the leading order system, we splits the array into two. Thus, to the leading order, a par-
set the period to be exactlym2in 7 for simplicity. tially row-switched array with many switched rows can be
The perturbative calculation proceeds in the usual way bylescribed as a collection of disjoint quiescent regions,
substituting Eqs(25)—(28) into Egs.(17),(20); Taylor ex-  coupled only weakly through the ac component. This useful
panding the sine in Eq1); and equating terms of the same picture is exploited later.
order inw. In principle, this procedure can be carried out to  The solution of the leading-order systems is otherwise
higher orders if secular terms are eliminated by satisfyinghontrivial since the dc equatiori29)—(32) constitute a non-
solvability conditions when they arise. linear algebraic system, and the dc solution is in turn needed
Balancing the leading-order terms, we obtain two sets of0 solve the ac syste33)—(36). Thus, in general, they have
equations since the time-independefdc) and time- to be solved numerically—although we show below that use-
dependentac terms must cancel separately. First, the dcful approximations can be obtained under certain assump-
terms yield the following equations for both types of rows: tions.
Once the leading-order solutions are found, the calcula-
CX N N tion could be carried out to higher orders. The next-order
sindo(h1)=dol11) = doll.J 1), @9 correction leads to a particularly simple set of equations:

¢é<i,J+1>—¢é<i,1>=2wf+@<i+1,j>—@<i,j>,(30) )T @3 (L) = ga(in)) — gn(ij—1), (39

and one more equation which depends on the type of row  $3"(LD)+T % (i,))=—¢a(i,) +yu(i=1j), (40
(switched or quiescent o o _ . o
G5(i,j+1) = ¢5(1.)) = g3+ 1)) - 4(0.), (4D

for all 7 and regardless of whether the rgws switched or
- o o quiescent. Terms from the sinusoidal nonlinearity do not
lge—Sind¥(i,j)=wo(i,j)—o(i—1j), jeQ. (32  come into play at this order, but further expansions would
) ) certainly involve more complications.
These equations constitute the full dc system. It is important to note, however, that the salient features
Similarly, from the ac terms we obtain for both rows ¢ the solutions observed in the numerics can be explained
from the leading-order equations. Therefore, we restrict our

0=yo(i,i)—o(i—1j), jeS, (31)

&% (i, 7)=oli,j, 1) = doli i —1,7), (33  analysis to the dc and ac equations in the following sections.
On the other hand, we will also point out a remaining prob-
d5(i,j +1,7)— P3(i,j, 1) =3I +1,j,7)— 4(i,]j,7), lem which is likely to be resolved only by considering the

(34 higher-order corrections.
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B. Analysis of the dc equations RS states, wher® rows are present. From E@43) the

The dc equation§29)—(32) constitute a nonlinear alge- horizontal phases must satisfy a telescope sum

braic system which must be solved numerically in general.
However, to gain insight into the system, we will now obtain
approximate solutions to the system when there is a large
asymmetry between its two dimensions. We will then com
back to the full system and discuss its solutions.

jot+1

> sing(i)=oliz+ 1)~ holj1—1)=0,

1=h

(48)

Svhere we have used the fact that both rows-1 andj,
—1 must be either switched or in the boundary cells, and

thusm—o from Eq.(46) or Eq (37). Now, Eq.(45) can be

solved with Eq.(48) to obtain??
Consider the case when all quiescent regions in the array a48)

are longer horizontally than vertically. This happens, of
course, when the array itself satisfid$>NY. More impor- 2
tantly, arrays whose dimensions do not fulfill this condition

are also broken into smaller, laterally long, almost disjointwith j=1, ... n. This gives the time-averaged phases of the
quiescent regions after several row-switching events. Thugjorizontal junctions in the bulk of th@ region. Then, from
this “large aspect-ratio” approximation is important to char- Eq. (43), the mesh current in the same region can be com-
acterize the RS states which appear in the course of the rovputed as
switching process. Remember we also assume that none of

1. Large aspect-ratio approximation

(49

¢—’5(j+jl—l)=2wf<'

. . . . . j
the Q regions contains static vortices, which could be — . = sin(
trapped for largeNY andf, and for smalll 4. In Sec. V we Yoli+ji=1)= Z singip(/) = sin(m f) S'r[Wf(] n]
will give an estimate of the values éfandNY for which we (50)
expect this assumption to be valid. for j=1,... n—1. This procedure allows us to solve for

In such a situation we expect a nearly “uniform” solution T )
in the bulk of the array with some edge corrections near th(?aChQ region in the array independently.
right and left boundaries. Hence, far from the boundaries, we The remaining variables are easy to find. Recall gt
assume the vertical junctions in the quiescent rows to bevanishes everywhere in tiregion. The rest of the horizon-
comeindependentf i, tal junctions¢j lie either between tw& rows, or between an
- - Srow and a boundary cell. In either case, it follows from Eq.
Py i) =a3(j) for jeQ. (43) that
On the other hand, we assume a whirling soluttdior the
switched rows in which waves with well-defined wave num-

inside ar region.

$o())=0,

bersk(j) propagate:

SUi.§)~—k(j)i+d(j) for jesS. (42

Note that the wave numbé(j) and the phase consta#j)

Finally, the wave numberk(j) for the switched rows j(
€ S) can be calculated from E@44). One notices thak(j)
can change from a row to another, depending on the adjacent

horizontal junctionsgg. On the other hand, if there is &

may differ from one switched row to another. The other dcregion with three or more row(j)=2f for all the rows

variables¢g, and lﬂo are also assumed to béndependent.  except for the two rows at the top and bottom borders of the
Thus, the dc equations reduce to region; this is becausé=0 inside the region. In this sense,

_ S, ko=2mf is the “natural” wave number fo6 rows.
singp(j) = tho(J) — o(j — 1), (43 This concludes the solution of the simplified equations
(43)—(47). We now exemplify this procedure with four RS
i+ —dX(j)=2mf—k(j) for jeS, (44 states of an array with=7 rows, as depicted in Fig. 2. In
Sec. IV we will compare the predictions with our numerics.
: N ; Pattern 1:S={1,...,%. This is the totally row-switched
(it —gp(j)= : ; . : .
Poli+1) = olj)=2mt for jeQ, 49 state in which there is n@ region. Thus, the horizontal
Do(i)=0 for jes, (4g) ~Phasesare
— 5=1(0,0,0,0,0,0,0,D.
y(j)=arcsing. for jeQ. 47 o= P

[The jth component of the vector i$5(j). Note thisj runs
0

This simplified set of equations is still nonlinear but solv-éhrough 1....8 for theseven-row arraj} In addition,zp—o(j)

able. We begin by analyzing all the quiescent regions in th
array(if any), delimited by switched regions or by the physi- ~ ©- andk(J) 2mi=K, for all rowsj=1,....7. .
cal boundaries. Consider a quiescent region spanning from Pattern 2:5={2,4.6, (and so,Q= {1 35 ). In this
fow j, 10 j, (>].). Such a region contains=j,—j,+2  Symmetric pattern there are foQ regions, each consisting
rows of horizontal junctions including the top and bottom ©f ©nly one row, and three one-ro regions. By solving
borders, anch— 1 quiescent rows of vertical junctions. We €2chQ region independently, we find

emphasize that these vertical phases are all given by Eq.
(47), thus,l 4. <1 is necessary for the existence of partially

P=mf(-1,1-11-1,1-1,).
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Then, for theS rows j=2,4,6, we have,//—o(j)z — sin(af) and(32) are closed within eac) region, and can be solved
andk(j)=4=f. That is, the thres rows have an identical independently. This system is identical to the superconduct-
wave number but are different from the natd{aj Ing (Statlo equations for an isolated 2D array of the same
Pattern 3:5={4}. In this case the two symmetr@ re- size_ as the_Q region. When this subpro_blem_ of finding the
gions, rows 1-3 and 5—7, are separated by the ceBtaly.  Static solutions for the independe@tregions is solved, the
We obtain remaining unknownsgy in the S regions, can be determined
from Eq. (30). This two-step procedure is completely analo-
oi=mf(—3,-1,1,3-3,—1,1,9. gous to theﬂe used in the large aspect-ratio approximation,

except thatpy in the Q rows now depends on and, thus,

The wave number of th8 row Isk(4)=Bf. J(i,j) in the S rows cannot have the form given in E
Pattern 4S={2,3,4,%. In this highly asymmetric switch- 502()_’]) g q.

ing pattern there are twQ regions. We obtain How do we obtain the static configurations? Sinc®a

region can take any size in thedirection (up to NY), we
¢p=mf(—1,1,0,0-2,0,2,0. need, in short, a general calculation scheme of static states
for an arbitrary rectangular array. An analytical formula is
The S rows have the following wave numbeiis(2)= 3 f, not known even for the no-vortex solutiofene of the many
k(3)=2=f, andk(4)=k(7)=4=f. Note that the rows 2—4 possible superconducting statege are primarily concerned
are contiguous but all have different wave numbers. The rowith. Thus, they must be found numericaff/!® A rare ex-
3 is surrounded by othe rows, hence has the natural wave ception is theladder array, of size Nx 1, for which an
number. Meanwhile, the rows 2 and 4, which are contiguougccurate analytical approximation has been obtaffeid.
to Q regions have different wave numbers. shows that the full static solution differs from the bulk ap-
A similar bulk approximation can be obtained for the proximation in the existence of skin layers near the left and
other limit of the aspect ratio. We present teimall aspect- ~ right edges. Crucially, resolving the phases in the skin layers
ratio case in the Appendix. is central to the existence and stability of the static solution.
One might wonder what has happened to the phase cor-he ladder case is special but important since it is the most
stantsé(j) of the switched rows$42). Indeed, thes(j) have  persistent in the parameter space amQnggions of a given
disappeared in the simplified systé#8)—(47), making them width224® In Sec. V we show how the stability of the RS
arbitrary. However, simulations show that the switched rowspatterns is connected with the stability of the static states.
are weakly coupled, so that ths drift to some particular
values(if f#0). This phase locking has been noticed in the C. Analysis of the ac equations
completely switched state and left unexplaiféd® As we
show in the numerics of Sec. IV, it is also a feature of the
partially RS states. The indeterminancy &fn our analysis ) ] ] ) ) )
is not merely due to the assumption of the whirling solutionSoidal drive sinf+ %)-. Therefore, if the dc solution is
(42). Rather, it is already inherent in the dc equatié2@—  known, the ac system is simple to analyze.

. . . A ing that the h td , th luti
(32) for which the addition of a constant to all thg¥(i) Ssuming that f€ Normogeneous part decays, tne Soluton

7 . . locks to the forcing and the time dependence can be factored
within any switched row leaves the system unchanged. Sincg,;; o

the drift occurs in a much slower time scale than the basic

We now study the ac syste(83)—(36). We only need to
note that this is dinear system which is forced by the sinu-

oscillation frequencie®’ we conjecture that thé(j) could &% A

be determined from solvabilitfor secularity conditions that vl . o

might arise from higher orders of the expansion. That was $3 (., 7)=| B|(i.)exp(ry—1)+cc, (51
the case in one-dimensional series arf3yghere a similar ’% C

slow phase drift and eventual locking was explained in that . _
manner. However, it is beyond the scope of this paper tavhere c.c. denotes complex conjugate. Then, the spatially
develop a similar calculation for the 2D array, and, in thedependent complex amplitudes must satisfy

following, we will use the values 06(j) obtained from the . . .
numerical simulations. —A(i,j)=C(i,j)—-C(i,j - 1), (52

2. Solving the full dc equations ~Ba.)==CO.DFCA=1)+(0.)), (53
We now consider how to solve the full dc system beyond A(i,j+1)—A(,))=B(+1,j)—B(,j) (54)

the bulk approximation—a problem which requires, in gen- ith

eral, numerical solution. It is important, however, to note that™!

the decoupling of the equations introduced by the switched J=1 .

rows is still present so that the problem reduces to calculat- o ——exd i ,j)\/__]_] if jeS

ing static solutions of smaller arrays. fi.j)=y 2 (55
The important point to recall is given by E@38): the 0 if jeQ.

mesh current is still zero in a$ rows. This breaks the array
into disjointQ regions, as far as the leading-order dc part is Eliminating A and B from the equations, we obtain a
concerned. Mathematically, this means that ES), (30), discrete Poisson equation far.
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AC=—pu (56)
with the source term
p(i,))=1(0,))—f(i+1j) (57)
and, from Eq.37), boundary conditions

C=0 inthe boundary cells. (58) 0 I
In the rectangular domain this problem can be solved via
the double discrete Fourier-sine series 0 50 Tt 100
N mim njm
C(i,j)= > > Cppsin sin J (59 FIG. 3. Time evolution in the centrébwitched row of pattern
m=1n=1 ' N*+1 NY+1 3: (a) horizontal phasep*(16,4t) and(b) mesh curreni/(16,4f).
ith After a short transient, the solution converges onto a periodic at-
wit tractor with dc values and ac amplitudéshown together as the
NN bands delimited by the dotted linesell predicted by the analytical
R 1 imm inm formulas in Sec. IIl.
Chn=—— i,j)sin sin ,
e azm,nizl 121 wllDsin G 1) NY+1
(600 initially set quiescent; ifl & is too small, then the rows we
where have set switched cannot maintain the whirling motion, and
exhibit retrapping, become quasiperiodic, or show highly
azm'n=(NX+ 1)(NY+1) nonlinear oscillations. In those cases, we then adijystintil

we find the clean periodic RS solutions which we aimed at.
% | sz( mar ™ )} 61) Not only must we tune,. , but the damping parameter
2(N*+1) 2(NY+1)/ | must be small enough in order to find clean RS statds.i¢f
] ) too large, it is difficult to find any partial RS states at all. For
Finally, A and B are determined from Eqg$52) and (53).  jntermediate values, such &=0.4, some RS patterns are
This completes the analysis of the leading-order eq“at'ons-observed, but some others cannot be found. For the under-

damped cas€ =0.2 studied here, it becomes easy to find an
IV. NUMERICS appropriate range dfy. in which the system converges to
A. Finding RS states in simulations the expected RS pattern. This dependence on the damping is
o ) . in qualitative agreement with experimental findirtgdt is
_ To test the validity of the analysis developed in the pre-giso consistent with our assumption of the high-frequency
vious section we now compare its predictions with numericalimit since a smallef” for a givenl 4. corresponds to a larger
results. The full governing equatioii7) and(20), together
with the boundary condition6), are integrated using the  Generally, patterns with large quiescent regions are more
standard fourth- and fifth-order Runge-Kutta integrator withy;tficult to obtain: for example, the RS stag= {1} (with
adaptive time step. Ours is an elementary nonoptimized Vef5ne g region of six rows has a smaller interval of suitable
sion of the previous mesh-formulated cote® which en- | “ihan the symmetric pattern B={4} (with two Q re-
ables us to switch between no-inductance and simple induggd -« of 3 rows, even though both states have only e

tance models. The results presented here do not includ®\y  These observations and the above parameter depen
mdu_ctances nor the effects _of temperature and disorder. dences will be discussed in more detail in Sec. V.

Since most of the analysis has assumed thxe large aspect- gefore presenting detailed comparisons between numerics
ratio approximation, we study an array with’=31 and  onq analysis for patterns 1—4, we first illustrate convergence
NY=7, with small dampind”=0.2 and a moderate external i, Fig 3 There we show the time evolution of two variables
field f=0.1. We use as initial conditions the predicted largej,, ihe array for pattern 3, usin. =0.5. Since the initial
aspect-ratio dc approximationsy” (and the corresponding condition(taken as the bulk approximatipis not a solution
first-time derivatives They are expected to be close enoughof the full system, there is a short transiett(50) until the
to the true RS states to facilitate convergence, but we leavaystem settles onto a periodic attractor. Recall that only row
the ac part to be adjusted by the system. We choose a valdeis switched in this pattern. Figurg&@ shows the phase
for 14, between 0 and 1, and monitor whether the ensuingp*(16,4) of a horizontal junction adjacent to the switched
dynamical state is indeed the attempted RS pattern. row and in the middle of the row, where the large aspect-

The system, of course, does not always converge to theatio (bulk) approximation is expected to be valid. The ap-
row-switched state we have targeted; the chosen initial conproximated average value isi3~0.94, as predicted in Sec.
dition may be out of the basin of attraction of the target statelll. Similarly, the mesh current in the central ce(16,4),
or the state may not exist, or it may be unstable for theshown in Fig. ), is #+=0 on average with some oscilla-
chosen parameters. The outcome from using “wrong” pa-tions, as expected in any switched row. Not only the average
rameters is, as far as we have tested, as followsi;Ifs too  values but the ac amplitudes are also well estimated from the
large, then vortices start to enter in some of the rows we havac leading-order equations, as demonstrated in Fig. 3.

+ sir?
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#1

#2

FIG. 4. Time evolution of the vorticities in the middle of the
array of pattern 3. The solid curve depicts the current vorticity #3 1
Q(16,4t), while the topological vorticity/(16,4t) switches dis-
continuously between (o vortex and 1(one vortex in the cell
This discontinuous “tagging” of the position of the vortex is clari-
fied by the dotted curve, which corresponds to &¢%6,4t). In- T 10

spection of that magnitude indicates that every time it becomes 7 #4 :mq:
:m:* —_1

(i.e., the phase is equal te) one topological vortex enters the cell
J I
B. Vortex motion 1= > 31

5

8

Zeust
(and¢ is increased by one j E_#
1

We illustrate now the two vorticities defined in Sec. Il. In
Fig. 4 we show the current vorticitf2 and the topological
vorticity ¢ both at the central cell15,4) of pattern 3 after
convergence. They display similar periodic behavior though
() is continuous whereasswitches discontinuously between  FIG. 5. Snapshots of patterns 1-4 showing spatial distributions
0 and 1.¢ becomes unity when a charge enters the cellpf the current vorticity) as density plots. Dark regions correspond
which occurs in this case whe#¥(16,4), the left junction, to large positive(). Compare them with Fig. 2 where the same
crossesr (modulo 27). Therefore,{ becomes unity when spatial patterns are shown in terms of the topological chérdie
cos®’(16,4)=—1, as shown in the figure. Similarly, when observe that the topological vortices are generally located on peaks
the right junctiong¥(17,4) (not shown turns and crosses,  ©f {1, and propagate locked to the underlying wave.
the charge? is reset to zero.

As a complement to the time evolution of the vorticities in
one cell, we also show snapshots of their spatial distribution
for all patterns 1-4 in Figs. 2 and 5. In Fig. 5 each cell is
shaded according to the value of the current vorti€lty,j):
dark regions indicate positive larg@, while bright parts We now present a quantitative comparison of the analysis
correspond to negativ@. The same snapshots, but showingof Sec. Il to numerical simulations. The analytical predic-
the topological charges are given in Fig. 2. Even thoudh tions correspond to the large aspect-rgbalk) approxima-
represents the spatial structure more clearly, we observe thabn both for the dc and the ac components. For the numerics,
a charge in a cell corresponds to a peakhfand that the we simulate a 3X7 array, and the system is allowed to
charges propagate through the array on top of the underlyingonverge to periodic solutions for patterns 1-4 using
wave. =0.2,f=0.1, andl 4= 0.6 (except for pattern 3, in which

Thus, we can usé€ to visualize the wavelength and the |4.=0.5 had to be used
propagation speed in each row. In all patterns 1-4, the We first check the predicted spatial wave numbeig in
charges move across the array at a nearly constant speed,the S rows just discussed above. In Fig. 7 we show a “snap-
seen in the space-time plots &fin Fig. 6. They propagate shot” of the ¢Y in the S rows (2,3,4,7 of the nontrivial
only through theS rows, and are apparently in phase in all pattern 4. To ease the display and comparison of the numeri-
rows for patterns 1 and 2. However, in pattern 4 $wws  cal results, we have juxtaposed the rows one after the other.
are not in phase, and the propagation velocities vary fronwithin each row, the spatial dependence is clearly linear,
row to row. Thus, the simplistic picture where vortices carrythus justifying the whirling mode assumpti¢42). The pre-
all the flux and move with the same speed in all veows  dicted wave numbersk,=3#f, k;=2#f, and k,=k;
within a patterf? leads to estimated speeds in disagreement=4+f (dashed linesare almost indistinguishable from the
with our simulations. This further proves that the underlyingnumerics(solid lineg except for small deviations close to the
assumption that the topological vortices are particlelike obedges.
jects which concentrate all the flux is not accurate. Instead, Recall that in our analysis of the dc equations the inter-
the RS solutions are not localized states and the flux is spaew phase differenceé(j) are predicted to be arbitrary in
tially distributed, as suggested by previous wofkand dem- Eqg. (42). Hence, only theslopeof the spatial dependence is
onstrated in our analysis. Therefore, in these states, the toppown and the dashed lines are adjusted to match at the
logical vortices merely mark where the rotating junctionscenter of each row. Conversely, this is a way to determine
crossm (mod 2m) (see Sec. Il ) and they travel at the the §(j) from the numerical simulations. For the four pat-
phase velocities of the underlyirfgonlocalizedl waves. Our  terns, we obtain:

analysis correctly estimates the spatial wave numbérss,
gwe propagation speedas shown below.

C. Spatial structures after convergence



10 904 MAURICIO BARAHONA AND SHINYA WATANABE 57

row 2 7
40 |
g
20
Med=————————— = *— 0 32 64 96 128 160 192
- T vertical edge index
m FIG. 7. A snapshot of the vertical phaseé in the switched
_— rows S={2,3,4,% of pattern 4 in aN*=31 by NY=7 array. Each
: I I I I I 1 i i oW solid line connects the numerical phases of the 32 junctions in each
2171 : 17 switched row. The dashed linéalmost overlapping with the solid
186 i #3 i 16 oneg are the analytical approximation in Sec. lll which predict the
) | 5 observed spatial wave number very well. The horizontal axis de-
4 notes the “vertical edge index,” which numbers the vertical junc-
62k : 3 tions consecutively as+ (N*+1)(j—1) fori=1,... N*+1 and
31E ! 2 j=1,... NY. This enables us to display the 2D array in a single axis
i 1 by juxtaposing one row after the other. As a guide to the eye,
. 4 vertical dotted lines are added to separate the rows.
QU L :
= l voltages. As observed, symmetric patterns 1-3 have rather
= —— constant amplitudes throughout the middle of each row, but
8 —*’"—»4/::: the asymmetric pattern 4 shows spatial fluctuations. Our es-
e timates, shown as dotted lines, reproduce the spatial structure
o 10 20 fairly well. It is quite remarkable that our approximation
t roughly captures the behavior at the right and left boundaries

even though we have used the bulk approxima%[to-

FIG. 6. Space-time plots of the propagation of topological vor-gether with the numericas(j)] to solve the ac system.

tices for patterns 1—-4. The vertid@pace axis is the cell index: the . : .
cell (i) is indexed one dimensionally biy- NY(j —1) by juxta- Since the mesh current is determined from the phase con-

i ' XYy i i .
posing row after row. Within each of the symmetric pattefhs3), flgL_Jratlonsd)_ ! "F also compares well W'th the large as_pe<_:t
the vortices in the switched rows have the same wavelength and afgti0 @pproximation. Thus, we do not display the quantitative
in phase. However, in the asymmetric pattern 4, the spatial waveomparison ofys, and instead present more descriptive 2D

numbers differ from row to row. contour plots of thenumerical s on the 31X 7 array geom-
etry. The contour curves of the dc componenaire shown
Pattern 1:41)=&7)=0, §(2)= 6(6)=0.05, in Fig. 10. If the 2D array were continuous, the induced
0(3)=6(4)=46(5)=0.1. currents would flow(on averaggalong these curves. Since
Pattern 2:5(2)= 6(4)= 6(6)=0. the array is discrete, the flow is restricted to the branches, but
Pattern 3:6(4)=0. the level curves still describe roughly the way the currents
Pattern 4:82)=-1.8, 6(3)=—4.7,5(4)=0.2, circulate. Furthermore, the dc values in Bieows are nearly
o(7)=0. zero, as expected. In th@ regions, currents circulate in the

Note that in each case o®§j) is set to zero and taken as clockwise direction {,<0) on average. This would induce
the reference, which is equivalent to choosing the origin of @ magnetic field through th@ regions in the opposite direc-
In the following, we will use these numerical values &f tion to the external field. Although it is interesting to ask

when neededmost importanﬂy, for the ana|ytica| values of whether the induced field cancels the external one to prOduce
the ac components a Meissner-like region, that question only makes sense when

Next, we compare the predicted dc values with the nuinductances are included. Note also that all contour plots are

merical mean values after convergence. As we showed ialmost left-right symmetric, but show a slight asymmetry.
Fig. 3@), each horizontal junctios* librates around some This is presumably due to the presence of edges and the
dc value after convergence. These average values are plottpceferred direction ) of propagation of the waves across
(solid lines and compared to the large aspect-ratio approxithe S rows. Such details are not captured by the bulk ap-
mation (dotted line$ in Fig. 8. The prediction is uniform proximation and the full solution of the dc equations be-
within each row because edge effects were neglected—-eomes necessary.
consequently, it works well everywhere except close to the Finally, the amplitudes of the ac oscillations ¢f are
right and left ends. Similarly, the dc values of the verticalshown in another set of contour plots in Fig. 11. The ob-
junctions in theQ rows (not shown are all predicted to be served nodal structurdsypical in linear forced systems in a
¢Y=arcsiny; in the bulk approximation, and the agreementbounded domainshow the spatial distribution of the modes
is very good except for the edge corrections. locked to the driving dc solution. The magnitude of these ac
In Fig. 9 we show the ac amplitudes of the vertical junc-amplitudes is comparable to the dc values in Fig. 10, even
tions, i.e., thdB(i,j)| calculated in Sec. Il C, converted into though the oscillating components of the phagesre much



57 ROW-SWITCHED STATES IN TWO-DIMENSIONAL . .. 10 905

=1 2 3 4 5 6 7 8 row=1, 2, 3, 4, 5, 6 7
1E 4 P 031 #1 |
: : ; 0.2p- 1 Noweee/
OE i i 0.1 \’ﬁ/\wj\_\/\ﬂj """
—1F : 0 : : :
1E i 031 #2! 5 i
L #2 s ~ ool = e 5
: ] = 02 A Ao
— 0t b} 3 : .??- 0.1+ : Mﬁ:-——w’\/ i E
e : : E 0 " : S
¥ —1t ' ' ' ' =)
g o £ o3l w3l
8 1tu3 Z 0 :
N o I
0 N oar i :
e VR 0 e ' i
:: : ; TTERTI SRS Y'Y T R
e T 02t /% W e
0f oo : i 010 A g VAN A g g
i E i L i o E : i /\/\/\fv\/\ ;
-1 i i s j 32 64 9 24
31 62 93 248

s vertical edge index

horizontal edge index )
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FIG. 8. The dc values ofp™ for pattens 1-4, showing the 1_4 piotted against the vertical edge index, defined in Fig. 7. For

spatial distribution of the average horizontal phases. The horizontal, -, row itaN*+ 1 = 32 points are connected. The large aspect-ratio

axis is the “horizontal edge index,” defined as-N*(j—1) for  455rgximation, shown as dashed curves, can describe the spatial
&*(i,j). There areNY+ 1= 8 horizontal edges so thatuns from 1 distribution fairly well.

to 8. For eaclj, the N*=31 phases in the same row are connected.

The dotted lines are from the large aspect-ratio approximationy, . this upper limit is reached when vortices enter any of the

which accurately estimates the numerical results in the bulk of th regions from the edge. The entrance of flux might produce
array. The dc values are predicted to be multiplesréf The ap- further switching of rows(resulting in another RS state

imati ffects of the left and right edges, and, .. . L
proximation neglects the effects of the left and right edges, an where the originalQ region has been subdividear a more

thus, inevitably misses the skin layers at both lateral boundaries. . . .

Vertical dashed lines mark the separation betwigsn complicated state where the flux remains static or moves
through the originalQ region in a highly nonlinear motion.

smaller, ofO(w~2), than their dc values. This is consistent In either case, the original RS state is no longer maintained.

with our analysis which assumes that the mesh current has dts discussed in Sec. I, eadd region is decoupled up to

and ac components both 6f(1). the dc leading order and is equivalent to an isolated super-
conducting array of the same dimensions. If, as we assume,
V. PARAMETER REGION FOR RS STATES no vortex has been trapped beforehand in @heegions,

arrays with more rows depin at smaller valued gf as can

In this section we determine where in the parameter spadee shown numericall§® Therefore, ousecond assumptids
we expect RS solutions. This is a difficult task, partly be-that, asl 4 is raised in an RS state, a vortex first enters the
cause the parameter space is large. Even after neglectingrgestof the remainingQ regions, causing further breakup
induced fields(i.e., A, =) we are left with three param- of the array.
eters:f, I', andl 4.. In addition, there can be multiple attrac-  Thus, if the depinning current for the no-vortex supercon-
tors coexisting for a given parameter set. Recall, for exducting state of any number of rows is known, these two
ample, how in the previous section patterns 1, 2, and 4 werassumptions enable us to estimH&* for any given pattern.
obtained using an identical parameter set, and pattern 3 al$tor example, pattern 3S={4}) has twoQ regions of the
used a similard 4. value. A thorough determination of the same sizdthree row$. We expect then that this state is not
parameter regime would then require a rigorous study of thgustainable beyond the depinning current of a<3larray.
bifurcations of the branches of all the attractors — an exploAt zero temperature and without disorder, the likely scenario
ration which exceeds the scope of this article, and is perhags that flux enters the center row of each of the two regions,
too detailed to justify the necessary effort. Here, we take &o that a new RS state, pattern2<{2,4,6}), ensues. This
more heuristic approach, and make several assumptions tgate has now fouf) regions, each consisting of one row.
estimate the current intervel™",1™®] in which a given RS  The upperl 4. value for this state should coincide with the
state is an attractor, as a functionfolindI'. We base our depinning current of the 341 “ladder” array. Beyond this
assumptions on the results of previous sections, and we demalue all rows switch and pattern 1 is obtained. We have
onstrate their validity by additional calculations in the fol- indeed observed such a sequence of row-switching events
lowing. when we gradually increask, from zero, using a clean
initial condition: = ¢=0 everywhere. Similarly, the largest
Q region in pattern 4 has 2 rows. Thereforg, should co-

We first estimate the upper currd® at which a given incide with the depinning current of a superconducting no-
RS state ceases to be an attractor. fiat assumptiorstates ~ vortex 31X 2 array. In Table | we summarize the excellent

A. Upper current limit
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FIG. 11. Level curves of the ac amplitudes of the mesh current

FIG. 10. Level curves of the dc mesh currgntor patterns 1-4, 4 for patterns 1(top) to 4 (bottom), on the 2D grid of 3K 7 cells.
indicating how the induced circulating currents flow. The total cur-Contour levels at 0.1, 0,2..,1.5 are shown. The magnitudes are
rent flow is the superposition of the induced flow and the injectedgenerally large in the switched rows, but even quiescent rows have
uniform current flow. Contour levels at0.1,-0.3,... —1.1 are  some oscillations and, thus, are not purely superconducting. Our
drawn on the 2D grid of théN*=31 by NY=7 array. Pattern 1 |eading-order analysis in Sec. Il C predicts that these ac oscilla-
shows little deviation from the uniform current flow on average, tions obey the discrete Poisson equation with forcing originating
thusy=0 and no curves appear. In the other patterns, the dc valuesom the dc components. The figure shows nodal structures typical
of ¢ in the switched rows are zero, while the values are negative itin solutions to such a problem.
the quiescent rows. Therefore, currents circulate in the clockwise
direction in each quiescent region “along” the level curves shown.pose that, as the drive increases, just before the entrance of a

Strictly, the currents are restricted to the grid, but the level curves/ortex into aQ region, a junction barely holds itself at a
provide an intuitive description of the flow. Note that the boundary qritical angle
condition =0 is imposed at a half cell outside of the array bor-
ders; this explains why some of the contour curves intersect the d)crit: + /2. (62)
array edges.
When it is forced to turn beyond that value, depinning takes

guantitative agreement between the numerically observet lngryljeu:}nzsleltlﬁ%glgplre??ujﬁa?gr?TJ:lvdeer?;r?(i:r?currt)elsgiﬁ 5%‘;?}'6
M val f several R rns, and th innin r: : !

alues of several RS patterns, and the dep 9 CUlhecomes unstable through a saddle-node bifurcation.at

ren_ts of supercon_ductlng arrays with the same dimensions a:sly with ¢= /2 as the bifurcation angle. Although the cri-
their largestQ region.

We h Iso tested i ith 1 dditi erion for global depinning is different in a coupled array,
€ have also tested our assumptions with four acditiona,;q simple heuristic criterion has been used to predict the

patterns, all with only one switched ro®={4} (the sym-  qeninning current in ladder arrays with remarkable
metric pattern 3 S={3}, S={2}, and S={1} (the most accuracy’
asymmetric pattejn This illustrates the dependence of the  Take, for instance, an array at zero temperature with small
upperl ™ not on the number of switched rows, as above, but\y in a ground state with no pretrapped vortices. Then, the
on theirlocation For givenf andl’, | ™becomes smaller as first junction to crossp®'= =+ /2 is, for >0 andl 4. >0,
the switched row is shifted from the middle of the array tothe vertical junction which sits in the center row at the left
the bottom because the large3tregion increases its size edge. Thus, the flux would penetrate the array through that
from 31X 3 to 31X 6. Excellent agreement is again obtainedjunction and destroy the RS state. This is readily deduced
between our criterion and the numerical observatidreble  from the circulating current shown in Sec. IV which rein-
). forces the drive near the left boundary. Such a current is due
We now make thethird assumptionthat enables us to to the presence of the left and right boundaries, which our
obtain analytical estimates ¢f"® in some cases. We pro- large aspect-ratio approximation neglected. A full analysis of
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TABLE |. Stability intervals[1™",1™] (two middle columnsfor eight RS patternétwo of them iden-
tical) in the 31X 7 array using = 0.05 andl’=0.2. The sef denotes the switched row numbers, and patterns
from Fig. 2 are labeled. The intervals are calculated numerically by gradually chdrgiagd following the
corresponding branch of the RS state until instabilities appear. For example, pattern 2 is found in the interval
[0.335, 0.945 for this set of parameterd £0.05]'=0.2). The upper limit " can be predicted accurately
by the depinning current?®? of the largestQ region of each patterfwith dimensionsN*x NY, shown in
parenthesgs The lower limitI™" is harder to estimate, but the retrapping curréfitof a single junction
serves as a rough estimate: f6r=0.2, the value isl™=0.252, which is smaller than the observed
I Mn=0.305—0.335. The first four rows show patterns 1—4 from Fig. 2. The next four patterns all have a single
S row, but its location is different. Among these four, pattern 3 has the widest stability interval because its
largestQ region (31x 3) has the smallest number of rows.

S (Fig. 2 | min | max | dep (N*X NY)
{1,....% Q) 0.335

{2,4,6 ) 0.335 0.945 0.947 (341)
{4} (3) 0.315 0.815 0.825 (343)
{2,347 (4) 0.328 0.912 0.912 (322)
{1 0.305 0.625 0.622 (316)
{2 0.305 0.685 0.681 (315)
{3} 0.315 0.776 0.778 (314)
{4} ) 0.315 0.815 0.825 (313)

the skin layers would be needed for a general analytical preapproximated by the solution of the following implicit non-

diction, but there are two tractable limiting cases of interestlinear equatiofy which comes from imposing E62) to the
The first case is a “small aspect-ratio” superconductingleftmost junction:

region, i.e., with many more rows than columnd¥g N¥).

As discussed in the Appendix, a bulk approximation can then r—1

be used, which approximates accurately the phases near the arcsinl— T:S)+78FCCO$ Lap) = mf (64)

left and right edges — because, in this case, the skin layers

are chated near the.top and bottom bouqdari_es. Should sUGith r= o+ Ja?—1 anda=1+ \/ﬁﬂfy/coswf. After a
a region be present in a RS state aQ aegion, it would be o ossover atf~0.46, the static checkerboard pattern be-
easily broken even with a small value lof.. Since the cen- ,mes more robust, and this formula ceases to be valid. We
tral leftmost vertical junction has the largest angled), it i not discuss RS states in this high range fofIf our
crosses the critical anglé2) at a critical current assumptions are correct, this critical curve should predict the
_ | of pattern 2. In addition to the single comparison pre-
max_ 1 [ sif@f(2N*+1)] 63 sented in Table | for this pattern, we test it fB=0.2 and
SAR S (N*+ 1)l sin( rf) ' 0.4 and several values 6fin Fig. 12. As shown there, the
numericall ™ values of pattern 2 from simulations are pre-
From Eg. (63), the region remains stationary whdp, dicted very accurately by the analysis of the depinning point
<IZ8R and f<1/(2N¥). If f>1/(2N*), a vortex enters the of the ladder.
NY>N* region for anyl 4. >0. We have tested these conclu-  Up to now, we have assumed that the magnetic flux pen-
sions numerically with good agreement. Moreover, note thaetrates theQ regions from the left edge of the array. How-
other physical argumenftspredict that the edge barrier for ever, the flux can also enter the array from the top or bottom
the penetration of flux in this limit would be roughly given boundaries of & region in certain situations. Considea
by f.~1/(7N*). The condition(63) results from the insta- region with a large aspect ratio and no trapped vortices, but
bility of a static state, and it does not depend &h the  when the number of rowll” is large. In this case, the bulk
damping coefficient. approximation obtained in Sec. IlIB1 can still be used.
The second case is the “ladder array,” with columns  From Eq.(49) the maximum angle for the horizontal junc-
and a single rov® Its superconducting states, including tions is ¢*=NY#f attained at the top and bottom edges of
states with trapped vortices, and their bifurcations have beete region. It is clear that this value becomes larger than the
studied comprehensivefy.One of the results of that work is critical angle(62) when f>1/(2NY). Thus, for a fixedNY
the curve of the depinning current as a functiorf pfhown  while f is increased, the flux would enter tH@ region
as a solid line in Figs. 12) and 12b). This monotonically roughly above that value of the frustration. The entrance of
decreasing curve is again independentl'gfand becomes flux in this manner puts a limit on the applicability of our
insensitive toN*, as soon adl* is greater than about 5. For analysis. The assumeub-vortex Qregion is expected to
f up to about 0.46, the depinning is caused by the disappeaexist only when the number of rows is smaller than about
ance of the no-vortex solution. This part of the curve is well1/(2f). Thus, our analysis does not apply for the initial
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more difficult both in the presence of; (which tends to
expel the fluxoids from the&) regions, and of self-fields
(which tend to shield th& regions from the entrance of
vortices.

Iret B. Lower current limit

As shown in experiments and simulations, RS states ap-
pear only when the junctions are underdamped. However, all
05 the critical currents calculated until now arelependenbf
I'. We claim that the explanation of thedependence of the
RS states requires an estimate of the lower lifiif. Unlike
the upper limit, in which the superconducting solution @ a
region ceases to exist, our numerical observations suggest
that the lower limit is caused by an instability mechanism in
an Sregion. As the bias current is decreased from the values
in which a clean periodic RS state is observ&dregions
start to have trouble in maintaining fast whirling oscillations.
Typically, the system begins to show amplitude modulations
in a slow time scale, becomes highly nonlinear, or gets re-
s trapped altogether.

The variety of possible scenarios makes an accurate esti-
mate much harder than fof"® In order to make progress,
we have to rely on a rather rough estimate, based on the

_ II‘CT

L 1 dynamics of a single junction. Recall that the vertical junc-
08 L ) tions in anS row are in the resistivéwhirling) state. For a
r No RS states single underdamped junction, its inertia is enough to main-
08 T tain a whirling solution until very close to the retrapping
04| i currentl ™ when it jumps back to the stationary state. Only
RS states £ - . .
o2l Rs (I | near that value does a strong nonlinearity come into play.
' ) Ignoring the interjunction coupling, we use this current as
% o 03 03 07 05 our estimate for the lower limit™" of an RS state. Because
f of collective effects, the state may not be immediately re-

trapped into a stationary state, or, on the contrary, be re-

FIG. 12. (a) Stability region for pattern 2 witH'=0.4. For  trapped earlier. However, we expect that,lgs is lowered
f=0.05, 0.1, 0.2, we swedp, to determine numerically the stabil- toward thel " value, some nonlinear effects start to become
ity interval [1™" 1M denoted by the vertical arrows with end- apparent, so that the simple periodic RS state is altered.
points atl™" (O) and|™ (@). The solid line is our estimate for ~ The estimate ol is standard® For the underdamped
IM{(f), given by the depinning current® of a ladder array. The casei.e., [ <I'* ~1.2), the retrapping is produced through
dashed line is an estimate fof", given by the retrapping current g homoclinic bifurcation at™'< 1, and the -V of the single
1" of the single junction aF = 0.4. Therefore, the shaded section is junction is hysteretic. For all>T*, I™®'=1, and there is no
the estimated region of th!Q,c-f plane where pattern 2 exists_, for hysteresis. In general,ret is calculated numerically, but an
I'=0.4. Note that the region does not extend beyond a crifical asymptotic expressiomfe‘~4l“/w can be used aE_—0.
=fre(0.4). (b) Same as@ but for I'=0.2. Although the upper From the definition ofl ™ our estimate fol™" is thus

estimate %P is unchanged, the lower estimdt& decreases with'. independent of . N*. NY. and the particular RS pattern. but
Consequently, pattern 2 is expected to be observed in a larger p%- P d th ,d - Th t'p ¢ foF—Og d 0 4
rameter region for smalleF, as shown by the five intervalar- afef)eer]IO\S/vﬁnas ?jasarrlgi()jlﬁes ieneliiglg(aahe;ind 1_Zb.) ?enspe(.:

rows) obtained numerically. The region does not extendffarger . . . . ;
than fr0.2). (c) Phase diagram for the existence of RS states infively. The comparison with the numerical values BF (the

thef-I' parameter plane. The curfe- frg(I") separates the regions POINt when the RS states lose their whirling chargdtenot
in which RS states may or may not appear. ForT'*~1.2, 1™ SO good, as expected. However, our estimate seems to serve
=1, thus, no RS states are expected for &nyhis diagram ex- as a reasonable first guess.
plains the previougqualitative observation that RS states occur
mo;t gasily when junctions are underdamped and the applied mag- C. f-T' parameter region for RS states
netic field is small.

In the usual experimental setup, th&/ characteristic of
stages of the row-switching cascade in large arrays, whean array is measured by sweeping the dc current under a
there are stillQ regions with many rows. However, even in constant applied magnetic field at a fixed temperatwtéch
such arrays, later steps of the cascadben theQ regions controls the penetration depth and dampind’). For some
have been subdividedtan be described by assuming no- combinations of the experimental variablgsagnetic field
vortex Q regions. In addition, our preliminary simulations and temperatujeand, thus, of the underlying parametdrs
indicate that keeping a vortex trapped iQaegion becomes I', and\, , thel-V shows RS steps. For others, it does not.
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We will now summarize the preceding sections and combinever, the full numerics show that there is a slow drift towards
their results to estimate thd'( f) parameter region, in the a specific set of5(j) for each pattern. Several authb?s®

limit A, =00, in which RS states appear. have studied this interrow phase locking in pattern 1, but a
First, in Sec. V A we showed two limiting cases in which satisfying answer has yet to be developed. The zero-field
| can be obtained analytically, i.e., whét{=1 (ladde)  |imit (f=0) is an exception in that exact neutral stability and

and whenNY>N*. Numerical simulatior’$-*"*®show that 4 family of periodic solutions can be foufid®implying that

| changes monotonically between these two limitsNds  there is no interrow locking. On the other hand, a slow drift
is varied. (This result is also expected from physical starts to occur a$ is perturbed away from zef§.we con-
grounds: for fixed\™, the magnetic flux penetrates the array jecture that the arbitrary phases should be constrained by a
more easily ad\¥ is increased.An obvious consequence of solvability condition in the higher-order expansions of our
this is that the ladder array has the largest parameter domajhalysis, which is automatically satisfied wher0. Finding
for the no-vortex superconducting state. Therefore, recallinghat condition, however, is likely to be an elaborate task.
our link between depinning and row-switching, RS states QOur analysis is based on such simplifications as zero tem-
whoseQ regions are all ladders, e.g., pattern 2, are thoughperature, no disorder, and no self-fields. Clearly, the effect of
to be the most stable in the same sense. In other words, wheglaxing these assumptions should be also investigated. Ther-
an isolated ladder of lengt* cannot maintain superconduc- mal noise, self-fields, and inhomogeneities alter the switch-
tivity, the 2D array of sizeN*XNY cannot show row- ing sequence in simulations of the row-switching
switched behavior. Consequently, the solid curve in Figscascadé?3218This might explain the irregularity of the row-
12(a) and 12b) not only gives the upper limit"®for pattern  switching order observed experimentally by a&f and
2, but also establishes the critichl;, for eachf, above Lachenmanret al?® On the other hand, the directed use of
which no RS states can be observed. . disorder(e.qg., by removing some of the edges in the array
Second, we concluded in Sec. V B that i of all RS~ might prove a valuable strategy to enhance the locking prop-
states with damping’ can be estimated by the retrapping erty of the array4? Including inductances would also change
current of a single junction with the sanie These are the the current distribution$3:%? Previous work??'® and our
dashed straight lines in Figs. &212(b). own preliminary calculations including self-inductances,
Hence, the RS states can only exist in the region conshow that RS states persist at least for small inductances. Our
tained between these upper and lower limits, shown as thexpansion could be extended to include inductances and then
shaded area in Fig. 1&. Those limits intersect at a value proceed to describe the modified solutions. However, quali-
frg(I') beyond which no RS state is possib[&ee Figs. tatively new phenomena can also arise. For example, it is
12(a) and 12b) for the procedurd.For junctions of moderate known®1%2?6that, if any inductance is included in the model,
to large dampingI{ >I"* ~1.2), the dashed line is above the a coherent statédynamical checkerboard patt¢ramerges
curve, meaning that RS states are impossible forfarn  nearf=1/2 when the RS states cease to exist.
the other hand, for highly underdamped arraljs<(.2), the In this article, we have only considered “clean” RS
line always remains below the curve; hence, RS states amtates, formed by whirling and no-vortex superconducting
possible for anyf (although the region of near 1/2 would regions. Thus, we have assumed that @eows do not
need more careful consideratjorBetween these two ex- contain any static vortices. It is generally expected that the
tremes of damping, the line intersects the curve at the criticallepinning of aQ region would become easier when it con-
valuefg(T"), which constitutes a phase boundary inthd&  tains a pretrapped vortex. Therefore, the existence of states
plane. In other words, the parameter plane is divided intawith static vortices probably doemt affect the critical curve
two regions(RS and no-RBby the curvefgr(I') in Fig. in Fig. 12c). However, the question of how the depinning of
12(c). This is in qualitative agreement with previous obser-a static 2D array depends on various parametErsf { N,
vations, and awaits more systematic experimental testing. and NY) is not fully understood, except in the case of the
ladder?” and requires further scrutiny. Similarly, tierows
in the RS states were assumed to be in the whirimgymal
resistivg state. Our simulations sometimes show ‘“‘general-
In this article we have used a weakly nonlinear perturbaized” RS states which contain one or more rows that are
tive analysis to study the row-switching phenomenon and taeither switched nor quiescent, but “active.” The states
approximate the RS solutions. For the bulk of the array, wecould be born, for instance, whdg. is increased so that
have obtained analytical expressions for the phase and cuvertices start to enter @ region but not strongly enough to
rent variables. In addition, we have estimated the parametewitch it. Junctions in the active rows undergo highly non-
regime for their existence. For this, the consideration of thdinear oscillations, and propagating vortices are localized.
lateral edges has played an important role. The predicte@hese states create additional steps inlthecharacteristics
spatial current distributions and the parameter regime coulbetween two RS steps, and are detectable. Thus, they should
serve as a guide for more systematic experimental studies. e considered for a comprehensive treatment of row switch-
the rest of this section we briefly state open problems anéhg.
possible future directions. Apart from investigating the RS states, we have intro-
The leading-order solutions show good agreement witlduced in this article a systematic approach to the analysis of
the numerics, but leave one phase per row undeterminethe dynamics of 2D Josephson arrays. Unlike 1D arrays,
This is §(j) in the large aspect-ratio approximati®#?) and  which have already led to a great amount of insight into
such an arbitrary phase is still present in the unapproximatetiportant phenomen@uch as soliton propagation and inter-
leading-order dc equations, as discussed in Sec. Ill. Howaction in the parallel-connected arrdys? or synchroniza-

VI. SUMMARY AND OPEN PROBLEMS
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row=1,2,3,... .31 Orlando encouraged our studying the row-switching phe-
' ' nomenon, and taught us the necessary background on Jo-
sephson arrays. We especially thank Enriquad for shar-
ing with us his unpublished experimental results and
simulations, computer codes, and general knowledge of the
field. We also benefited from valuable discussions on formu-
lation and computational issues with Joel Phillips and Jacob
White. Fruitful conversations with Amy Duwel and Mac
Beasley are also acknowledged. Although the calculations
vertical edge index presented here have been carried out on standard worksta-
tions, preliminary computations were performed at MIT on
FIG. 13. Dimensionless ac voltage amplitud&sfor pattern 1 the Connection Machine 5, project SCOWARPA Contract
in a large array of siz&l*=63 andNY=31. The other parameters No. MDA972-92-J-1032 Research supported in part by
are the ones used in pattern 1 in Fig. 9. The amplitudes decalMSF Grants No. DMR-961004@hrough Terry Orlandpand
quickly from the boundaries, and nearly vanish inside the array. Thé©MS-9500948(through Steve StrogatzM.B. gratefully ac-
tendency was already present in Fig. 9 for the<3larray, butitis  knowledges the financial support from the Ministerio de
clearer here. Consequently, were it to be used as an oscillator, tfeducacim y Cultura of Spain.
total ac output voltage for this pattern would not scale favorably
with increasing size.

e
™

amplitude( §Y)
o

APPENDIX: SMALL ASPECT-RATIO APPROXIMATION

tion, clustering, and magnetlike phase transitions in the Following the large aspect-ratio approximation presented

D in Sec. Il B 1, we calculate now a bulk approximation to the
series-connected arrd$49, 2D arrays have been much dc equations’29—(32) in a Q region with a small aspect

harder to analyze. This is partly due to their network equa-__. . . . : .
tions being more complicated, and also to their having atio, i.e., when its vertical sizd” is mgch larger th‘?‘”“x_-
wider variety of solutions. As our weakly nonlinear analysis ar from the .top and bottqm boundarles, the solurtion is ex-
shows, the difficulty regarding the formulation is reduced bypec'ged to be independent p(gssummg thgre are no trapped
the compact mesh formalism introduced in previous numerivortices. Then, the dc equatior(@9),(30) simplify to
cal studies’2°4313218y/e fee| that the transparent form of
the mesh equations has the potential to provide analytical singg(i)=0, thus ¢y(i)=0, (Al)
information in the strongly nonlinear regime.

Of these strongly nonlinear solutions, two are of particu- — —
lar interest. First, coherent states, such as pattern 1 in Fig. 2, #y(i+1)— (i) =—27f. (A2)

might be suitable for oscillator applications fifs kept small

so that the whole array operates nearly in phase. Howevefom Ed.(32) and the boundary conditior87) we can con-
for the completely row-switched state to be useful, over-Struct the following telescope sum which must be satisfied:

damped junctions, which rotate less smoothly and, thus, pro-

duce larger ac amplitudes, should be employ@&tie exten- —

sion of our analysis for this cageoncerning only pattern)1 > sing¥(i)=(N*+1)l 4. (A3)

appears to be straightforward. However, we can already =1

point out a complication due to the spatial distribution of theFrom these two equatior@2),(A3) we can then solve for

ac amplitudes. Recall how th¢¥ amplitudes in pattern 1 the vertical phases in the buII,< of tigg region:

(Fig. 9 decay from the boundaries into the interior of the

array. This effect is more clearly illustrated in Fig. 13 where -

the ac amplitudes are computed for pattern 1 in a larger array oy(i)=2xf

(N*=63 andNY=31), the other parameters being identical.

The amplitudes decay quickly, and nearly vanish inside the

array. Consequently, the total ac voltage does not increasé

significantly even when more junctions are interconnected.
Finally, flux flow*”*218is also a highly nonlinear but dis- ] (N*+ 1)sin(arf)

ordered regime in which localized vortices propagate “dif- a=arcs sinf (N*+ 1) 7f] de | -

fusively.” Theoretical studies so far have been based on phe-

nomenological pictures of vortices and their interactidms. Compare this with the large aspect-ratio c&® in which

more formal treatment of these solutions and a detailed pre=;— . . . .

diction of, for instance, the flux-flow resistance is strongly po=arcsirlyc is independent of in the bulk of aQ region.

awaited both from the theoretical and experimental points of? contrast, in the present small aspect-ratio case, the exter-
view. nal field f is absorbed now by theertical junctions in order

to ensure the flux quantization restricti(80). Note also that
consideration of the top and bottom edges is crucial to intro-
duce matching across the switched regions or to the array
We thank Steve Strogatz for helpful guidance throughouboundaries, but is neglected here. Without the correction
the course of this project. Herre van der Zant and Ternffrom the edges, phase relations across $hews are not

N*+1

X

=il ta, (A4)

here
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well defined. However, the small aspect-ratio approximatiorexistence and stability of RS patterns in Sec. V. In this con-
is still significant because it provides a clue to an importantext, the small aspect-ratio approximation is the limiting case

guestion: what is the lower bound forQ region to remain  for which aQ region is most easily broken by raising either
unbroken? Thus, we use this calculation when we discuss thieor | 4.
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