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Row-switched states in two-dimensional underdamped Josephson-junction arrays
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When magnetic flux moves across layered or granular superconductor structures, the passage of vortices can
take place along channels which develop finite voltage, while the rest of the material remains in the zero-
voltage state. We study analytically an example of such mixed dynamics: the row-switched~RS! states in
underdamped two-dimensional Josephson arrays, driven by a uniform dc current under external magnetic field
but neglecting self-fields. The governing equations are cast into a compact differential-algebraic system which
describes the dynamics of an assembly of Josephson oscillators coupled through the mesh current. We carry
out a formal perturbation expansion, and obtain the dc and ac spatial distributions of the junction phases and
induced circulating currents. We also estimate the interval of the driving current in which a given RS state is
stable. All these analytical predictions compare well with our numerics. We then combine these results to
deduce the parameter region~in the damping coefficient vs magnetic-field plane! where RS states cannot exist.
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I. INTRODUCTION

Two-dimensional ~2D! arrays of Josephson junction
serve as ‘‘controlled laboratories’’ to investigate fundame
tal questions such as phase transitions,1 vortex propagation
and interaction,2–5 phase and frequency locking of couple
oscillators,6–9 and spatiotemporal pattern formation a
chaos,10,11 among others.12 A standard circuit geometry is
rectangular array driven by a dc current uniformly inject
from the bottom and extracted from the top in the prese
of an applied field~Fig. 1!. Their technological promise a
high-frequency oscillators13–15 depends critically on achiev
ing tunable, highly nonlinear, coherent oscillations of t
collection of junctions. However, such coherent oscillatio
are not easy to obtain,6,15,16as the arrays frequently break u
into incoherent substructures, and deliver output volta
with small ac amplitudes.

A striking example of such dynamical states with spa
structure is provided by therow-switched~RS! states found
in underdamped 2D arrays of square cells.17 As the bias cur-
rent I dc is ramped up, the dc current-voltage characteris
(I -V) of the array displays a succession of jumps betw
Ohmic branches of increasing resistance until, eventua
the normal resistive branch is reached. The observation
the branches are equally spaced in voltage suggested a
switching scenario, in which each jump corresponds to
the junctions in a row suddenly switching from the superc
ducting to the normal state, thus increasing the volta
across the array by a fixed amount. In the RS states, the a
then consists of superconducting and normal rows, coex
ing to form striped patterns as in the four examples show
Fig. 2. In other words, the magnetic flux moves across
array along certain rows~channels! where a finite voltage
develops, while the rest of the system remains in the ze
voltage state. This row-switching picture was later explici
570163-1829/98/57~17!/10893~20!/$15.00
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confirmed by measuring voltages across individual rows,18,19

and by direct imaging of the array.20

The row-switching phenomenon is robust to the change
the underlying lattice structure—in arrays of triangular ce
it has been observed both experimentally21 and in
simulations.22 Thus, row switching could also be relevant
other systems. For instance, similar channeling of magn
flux has been seen in continuous superconductors.23 More-
over, the hundreds of resistive steps which appear in theI -V
characteristics of high-Tc superconductors24 have been taken
as an indication of the layered weak-link structure in tho
materials.

The experiments on 2D arrays of square cells have

FIG. 1. 2D Josephson-junction array consisting ofNx57 rows
and Ny57 columns of square cells. The cell at (i , j ) is shown
enlarged. Each junction is described by a gauge-invariant ph
difference:fx for the junctions on the horizontal edges, andfy for
the vertical junctions. A uniform dc bias currentI dc is injected into
every node on the bottom edge and extracted from the top. The
and right sides areopenboundaries. The mesh currentc denotes
the deviation of the current distribution from a uniform current flo
in the vertical direction. A uniform magnetic fieldf , in units of the
flux quantumF0, is applied normally to the plane of the array.
10 893 © 1998 The American Physical Society
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10 894 57MAURICIO BARAHONA AND SHINYA WATANABE
vealed other properties of RS states. First, they only app
when the junctions are sufficiently underdamped.17,19,20,25

Otherwise, theI -V characteristics present an extended reg
of flux-flow leading to the Ohmic branch of the entire arra
Second, RS states are only observed for sufficiently sm
applied magnetic fields. If the field is too large, there are
individual RS steps; rather, one giant step emerges19,18 in the
I -V. The origin of this giant step has been attributed to
interaction of self-fields with a coherent array oscillation
the form of a dynamical checkerboard pattern.26 Therefore, it
is important to establish the parameter regime for the app
ance of RS states and to determine their current and p
distributions in order to understand such transitions betw
coherent and localized states.

Much of the previous theoretical work on 2D arrays h
consisted of numerical simulations27–30,4,22,2,31,32,18,25which
reproduce the measurements reasonably well. RS states
been discussed briefly,29,2 or more in depth22,32,18in order to
characterize the dynamics of the two types of rows fou
experimentally:~1! switchedrows ~‘‘ S’’ rows!, across which
there is a finite dc voltage, and~2! quiescentrows ~‘‘ Q’’
rows!, across which there is no dc voltage drop. The sim

FIG. 2. Four snapshots of RS states in arrays ofNx531 columns
by Ny57 rows. Two types of rows are observed: quiescent (Q)
rows ~in white! across which there are zero dc voltage drops, a
switched (S) rows ~shaded areas! across which there are finite d
voltage drops. Black dots denote topological vortices, defined
Sec. II. They are~roughly! equally spaced in theS rows of the
symmetric patterns 1–3, but the spacing can change from row
row in asymmetric patterns such as pattern 4. Correspondin
their propagation speed~represented by the length of the arrow!
may change from anS row to another within a pattern. In pattern
1 and 2, the vortices move in phase, even when theS rows are
separated byQ rows. These patterns are numerically generated
ing G50.2, f 50.1 andI dc50.6 for patterns 1, 2, and 4, andI dc

50.5 in the case of pattern 3. Thus, patterns 1, 2, and 4 corres
to coexistingdynamical attractors of the system.
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lations show that the junctionsfy in the vertical branches o
theS rows are in the normal resistive state~rapidly rotating!
whereas those in theQ rows are nearly superconducting~sta-
tionary!. Nevertheless, as we show, the junctions in theQ
rows are still oscillating, which causes finite ac voltage dro
and associated losses. This is why we hesitate to call thQ
rows ‘‘superconducting.’’

Moreover, the numerical investigation22,18 of the row-
switching sequence shows that, even in the absence of
perature and disorder, the observed patterns and the ord
their appearance depend on several factors: the initial co
tion, how the current is varied, the magnetic field~both ex-
ternally applied and self-induced!, etc. This is a clear indica
tion that multiple attractors coexist for identical parame
values~as patterns 1, 2, and 4 in Fig. 2 show!. When inho-
mogeneity in the junctions is included, it becomes ev
harder to predict which row will switch next, except to co
jecture that it will occur at the ‘‘weakest part’’ of the array.22

Phillips et al.32 have studied the RS patterns in detail wh
inductances are included. When self-fields are small, thS
rows appear to be globally phase locked even if they are
apart, separated byQ rows in between. This means that to
pological vortices in theS rows appear to propagate togethe
just as seen in pattern 2 in Fig. 2. However, for gene
asymmetric patterns, such as pattern 4, vortices do not m
together. Stronger self-fields are also found32 to break this
phase coherence.

Compared to the numerous experimental and numer
studies, analytical results are much scarcer for 2D arrays
far as we are aware, previous authors have focused on
simplest solution, namely, when the whole array is on
normal branch of theI -V curve~pattern 1 in Fig. 2!. This can
be interpreted as the special RS state when all the rows h
become normal; that is, the ‘‘completely row-switched’’ s
lution. These studies have concentrated on explaining
global phase-locking mechanism needed for oscillator ap
cations. The complete RS state is found to be only neutr
stable under zero magnetic field6,33 ~which implies that rows
are decoupled!, whereas a nonzero field induces interro
locking. These inter- and intrarow coupling mechanis
have been studied by several methods: isolating two cell
the array,34,7 perturbation methods,7 and harmonic
balance.10,8However, those results are not directly applicab
to generic RS states, which exist only in a certain param
regime, since the completely RS state extends to any la
bias current for any damping.

In this paper, we study analytically the generic RS sta
and test our predictions against numerical integrations of
system. First, we cast the governing equations and
boundary conditions into a mesh formalism to ease the a
lytical procedure~Sec. II!. In this notation, the system can b
viewed as an array of coupled oscillators in which the jun
tion phasesf ~the pendulumlike oscillators! are coupled via
the mesh currentsc ~the current distribution in the array!.
The coupling arises from the flux quantization condition. W
neglect self-field effects in the equations, thus reducing
parameters of the system to three: the bias currentI dc, the
junction damping coefficientG, and the magnetic fieldf . In
this way, many properties of the RS states can be expla
without undue complications. We also discuss the notion
vorticity in these discrete arrays.
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We use primarily four examples~depicted in Fig. 2! in
order to illustrate and test our results. It is convenient to la
each RS pattern by theset Sof its switched rows. Therefore
patterns 1 to 4 are labeled asS5$1,2,3,4,5,6,7%, S5$2,4,6%,
S5$4%, andS5$2,3,4,7%, respectively. We also define anS
region to be a set ofcontiguous Srows. For example, patter
4 in Fig. 2 has twoS regions, one with three rows 2–4 an
another with a single row 7. Similarly, aQ region is a set of
contiguousQ rows.

A formal perturbation expansion in the high-frequen
limit 35 is used to analyze the governing equations~Sec. III!.
We assume that the RS states are time-periodic solution
which some junctions whirl~i.e., thefy’s in the S rows are
running oscillators!, and all the other junctions librate~i.e.,
the fy’s in the Q rows and allfx are nearly stationary!.
Although the expansion is made systematic so that hig
order corrections could be obtained, we show that mos
the features of the RS states can be accounted for by
leading order.~The only unresolved main feature is the pha
locking betweenS rows.! To the zeroth order, we obtain tw
systems of algebraic equations: one for the dc, and ano
for the ac components of the phases and currents. Th
system is nonlinear~thus difficult to solve!; however, we
obtain bulk approximations which work well far from th
edges. On the other hand, the ac components obey the l
discrete Poisson equation with forcing from the dc soluti
therefore, they can be readily obtainedoncethe dc solution is
known.

The bulk approximation determines analytically the
and ac distributions of currents and phases for any given
pattern. The first important result is that the dc current flo
uniformly in theS rows, but circulating currents are induce
in theQ regions. These strongly affect the spatial wave nu
bers of theS rows ~also calculated analytically!, thus ex-
plaining why the spacing and speed of propagation of
fluxoids in theS rows varies from pattern to pattern, an
even from row to row within a pattern~Fig. 2!. In Sec. IV we
test these findings numerically with good agreement.

Another main conclusion from the leading-order analy
is that the presence ofS regions breaks the array into
collection ofQ regions that aredecoupledfrom each other,
as far as the dc equations are concerned. TheQ regions are,
however, still weakly coupled through the ac compone
Thus, for example, the existence of the switched row 4
pattern 3 produces two 3133 quasidisjointQ regions which
only interact weakly. This picture proves useful becaus
reduces the problem of approximating thedynamical RS
states of the array to obtaining thestatic states of its
~smaller! constitutiveQ regions.

Indeed, this physical picture has further implications
thestability of the RS patterns~Sec. V!. As explained above
each RS state is only observed in an interval of the b
current, which depends on the magnetic field and damp
We show that the upper current limit of this interval is we
predicted by thedepinningcurrent of the largestQ region.
This means that the RS state ceases to exist when the
penetrates any of theQ regions which, in the absence o
irregularities, is usually the largest one in the array. For
ample, pattern 3 cannot hold beyond the current at whic
static state of a 3133 array depins. Along the same lines,
all the RS states, the largest upper current will correspon
el
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patterns whose largestQ region is a single row, such a
pattern 2.

However, this argument does not explain the simple
servation: the RS states are found only in underdamped
rays, because the depinning currents areindependentof the
junction damping. This indicates that the lower current lim
also plays an important role. A crude approximation for th
lower limit is the retrapping current of a single junctio
which does depend on the damping, and it reproduces
numerics reasonably well. Combining the preceding crite
we then calculate the region in the parameter plane of
magnetic field f vs the damping parameterG where RS
statescannot exist. In accordance with experiments an
simulations, we find that RS states occur most easily w
bothG and f are small. Throughout Sec. V we present ad
tional numerical evidence to support these criteria.

II. FORMULATION

There are two equivalent ways of formulating the gove
ing equations of the system: the node and mesh formulati
The node formulation is easier for simple geometries bu
becomes cumbersome and impractical for two-dimensio
arrays when inductances are included. Thus, we follow
previous literature,27,29,4,31,32,18and derive a compact descrip
tion of the arrays in the mesh formulation. In particular, w
follow closely Phillips et al.31,32 and Trı́as,18 with a few
changes. Although this formalism was originally develop
to ease numerical simulations, it is well suited for analytic
work.

A. Governing equations

Our description of the array shown in Fig. 1 assum
several simplifications. First, we neglect thermal fluctuatio
~i.e., zero temperature!, and we consider all junctions ident
cal ~i.e., no disorder!. Second, we describe our basic circu
unit, a single Josephson junction, by the resistively and
pacitively shunted junction model. In this standard mode
junction driven by a currentI b is represented by an equiva
lent circuit of three channels in parallel with a capacitanceC,
a resistanceR, and a tunnel junction with the critical curren
I c . As a result, its state variablef ~the gauge-invariant
phase difference across the junction! is governed by

N@f#[f̈1Gḟ1sinf5I b, ~1!

where the nonlinear operatorN returns the total curren
through the device. In Eq.~1! the current is normalized by
I c , whereas time is expressed in units of the inverse of
plasma frequencyvp

215(F0C/2pI c)
1/2. In addition, G

5bc
21/25(F0/2pI cR

2C)1/2 is the damping, withbc the Mc-
Cumber parameter. Also,F0 is the quantum of magnetic
flux. The instantaneous voltage across the junction is gi
by the Josephson voltage-phase relation:

V~ t !5Gḟ, ~2!

where the voltage is normalized byI cR. Thus, a single junc-
tion is analogous to a damped-driven mechanical pendul
and its voltage corresponds to the rotation frequency of
pendulum.35–37
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10 896 57MAURICIO BARAHONA AND SHINYA WATANABE
When several junctions are interconnected to form a n
work, like the one depicted in Fig. 1, the current distributi
must fulfill Kirchhoff’s current law. This results in coupling
among the junctions. It is convenient to decompose e
branch current into an external and a deviation current:

I b5I ext1I dev. ~3!

The external currentI ext is chosensuch that it satisfies cur
rent conservation at all nodes,includingexternal sources an
sinks. In general, it can be spatially nonuniform or time d
pendent. However, as the steady bias currentI dc is injected
~extracted! at the nodes along the bottom~top! edges, our
choice38 for I ext is the stationary uniform vertical flow, in
which I ext5I dc on every vertical branch of the circuit~for all
t), andI ext50 on every horizontal bond.

The deviation from the external flowI dev must be diver-
gence free since current sources and sinks have already
incorporated intoI ext. Therefore, there exists a stream fun
tion ~or mesh current! c at each cell whose discrete cu
determinesI dev in the x andy directions:

I dev
x ~ i , j !5c~ i , j !2c~ i , j 21!, ~4!

I dev
y ~ i , j !52@c~ i , j !2c~ i 21,j !#. ~5!

~In the rest of this paper we will not write time dependenc
explicitly when they are obvious, such as here.!

In order to ensure that these relations hold also at
edges of the array, we define artificialboundary cellswhich
have either the horizontal indexi 50 or Nx11, or the verti-
cal indexj 50 orNy11. This yields the boundary condition
of the problem:

c~ i , j !50 if i 50, Nx11 or if j 50, Ny11. ~6!

This condition is equivalent to ‘‘grounding’’ the value ofc
outside the array.

Combining Eqs.~1!–~5!, we obtain the first two sets o
governing equations

N@fx~ i , j !#5c~ i , j !2c~ i , j 21!, ~7!

N@fy~ i , j !#5I dc2@c~ i , j !2c~ i 21,j !#, ~8!

whereN was defined in Eq.~1!.
The other source of intrinsic coupling between the jun

tions is due to a macroscopic quantum constraint: the
quantization condition around each cell. Given that the c
ners of each cell are superconducting islands described
well-defined phases, the phase change around cell (i , j )
yields the third and final set of equations of the system

@fy~ i 11,j !2fy~ i , j !#2@fx~ i , j 11!2fx~ i , j !#

12p
F~ i , j !

F0
52pn~ i , j ! ~9!

for i 51, . . . ,Nx and j 51, . . . ,Ny, whereF( i , j ) is the total
magnetic field penetrating the cell. The winding numb
n( i , j ) are a set of integers that arise because the is
phases are only defined up to multiples of 2p. Then( i , j ) are
fixed by the initial condition and remain constant as long
the array is kept superconducting. However, without loss
t-
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generality, alln( i , j ) can be set to zero. Suppose they are
zero; then we can redefine the junction phases as

fx~ i , j !→fx~ i , j !,

fy~ i , j !22p(
k51

i 21

n~k, j !→fy~ i , j !, ~10!

such that Eq.~9! is unchanged except, now,all n( i , j )[0.
Crucially, both currents and voltages are invariant under
redefinition of the phases since adding integer multiples
2p to fy changes neither sinfy nor ḟy. This means that the
dynamics and measurements remainidentical for any com-
bination of integersn( i , j ), and we do not need to be con
cerned with their initial values. Similarly, if the magnet
field were controllable independently on each cell, adding
integer number of flux quantaF0 into any cell would not
change the measuredI -V characteristics, at least within thi
model. This is simply the array analog of the two-junctio
superconducting quantum interference device, whose de
dence on the penetrating field is alsoF0 periodic. Because of
this periodicity in the magnetic field, the topological vorte
must be defined differently in 2D arrays and in continuo
superconductors, as we will discuss at the end of this sec

The total magnetic field in Eq.~9! can be decompose
into two parts:

F~ i , j !5Fext1F ind~ i , j !. ~11!

The first term is produced by the external field applied p
pendicularly to the plane of the array, which we assume to
constant and uniform. It is usually parametrized as a dim
sionless frustrationf normalized to the flux quantum:

f 5Fext/F0 , ~12!

such that, in terms off , the period of the external field is
unity. The second term, the induced field, can be writ
generally as the sum of all the contributions from the bran
currents

F ind~ i , j !5(
n

(
k

Ln,k
b I k

b, ~13!

wherek runs through all the branches of the circuit, whilen
corresponds to the four edges of cell (i , j ). The branch in-
ductancesLn,k

b are purely geometric constants determin
from the circuit.4,31

B. Matrix-vector notation

The above equations can be cast into a compact ma
vector notation.31 For a Nx3Ny array, all branch variables
~e.g., currentsI b, voltagesV, and phasesf) can be written
as vectors of dimension equal to the number of branches,
(Nx11)Ny1Nx(Ny11). Thus, for instance, the vectorf
consists of all the phasesfx and fy. On the other hand
variables defined at cells~e.g., the mesh currentc and the
induced fluxF ind) form vectors of dimensionNxNy. These
two groups of vectors are connected via a branch-to-cell c
nectivity matrix39 M which takes a directed sum as we loo
around a cell:
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Mf~ i , j !5@fy~ i 11,j !2fy~ i , j !#2@fx~ i , j 11!2fx~ i , j !#.
~14!

More mathematically, this operator takes the discrete cur
f around every cell (i , j ). Conversely, the discrete curl o
the cell variables is obtained by applying the transposed c
to-branch matrixMT.

Using this notation, the total flux~11! can be written as

F5F0f 1MLbI b, ~15!

whereLb is the branch inductance matrix, andf is a constant
vector.

Moreover, Eqs.~4!,~5! can now be written simply as

I dev5MTc, ~16!

and Eqs.~7!,~8! become

N@f#5I ext1MTc, ~17!

whereN is operated component wise and the vectorI ext has
components that are zero on the horizontal edges andI dc on
the vertical edges, as defined by our choice ofstationary
uniform vertical flow.

Finally, we can use Eqs.~14! and ~15! to recast the flux
quantization condition~9! as

Mf12p f 1
1

l'

~Lmc1MLbI ext!50, ~18!

where components ofLb are normalized tom0p, p is the
lattice constant,l'5F0/2pI cm0p is the dimensionless pen
etration depth, themeshinductance matrix is defined as

Lm5MLbMT, ~19!

and we have setn( i , j )[0.
To summarize, the governing equations~17! and ~18!

form a closed differential-algebraic system forf andc, with
parametersf , G, I dc , l' , and the coefficient matrixLb. This
form of the system is compact and intuitive. It can be seen
a coupled-oscillator system in which the ‘‘oscillators’’f are
driven by the ‘‘coupling field’’c in Eq. ~17!. In return, the
oscillators collectively feed back onto the field in Eq.~18!.
This picture suggests the following integration steps:32,18

first, givenf at some timet, solve Eq.~18! for Lmc; then,
invert the matrixLm, together with the boundary condition
~6!, to determine the fieldc. This gives us the ‘‘drive’’ on
the right-hand side of Eq.~17!, which is used to update th
oscillatorsf in time.

We conclude the general formulation by pointing out th
Eqs. ~17!, ~18! possess two simple symmetries.29 If we
find a solution @f( i , j ,t),c( i , j ,t)# for f and I dc , then
@2f( i , j ,t),2c( i , j ,t)# is a solution of the system for2 f
and 2I dc, the other parameters being the same. Simila
@2f(2 i ,2 j ,t),c(2 i ,2 j ,t)# is also a solution forf and
2I dc ~sinceM is changed to2M due to the reversal of the
spatial coordinates!. Therefore, we only have to study th
quadrantf >0 andI dc>0. Together with the unit periodicity
in f , the frustration can be further restricted to 0< f ,1/2
without loss of generality. Thus, in the rest of this article,
‘‘large f ’’ and ‘‘small f ’’ we mean frustration values clos
to 1/2 and 0, respectively.
f

ll-

s

t

,

C. No-inductance approximation

Computing thefull equations~17!,~18! quickly becomes a
heavy task as the system size increases. In previous num
cal studies, these computational limitations have been
cumvented either by using acceleration schemes4,31 when the
inductance effects are of interestper se, or by ‘‘truncating’’
the matrix Lm ~i.e., neglecting some of its components!.
Three truncations4,31,32,18 are often used: no-, self-, an
nearest-neighbor inductances. Self-inductance neglects
intercell magnetic coupling by keeping only the diagon
components ofLm ~which then becomes trivially invertible!.
Nearest-neighbor inductance includes, in addition, magn
coupling between neighboring cells. An important remark
that not only the mesh inductanceLm but also the vector
MLbI ext must be provided in order to complete the syste
and the choice ofI ext may affect the results whenLb is
truncated.4,18 ~In contrast, the choice ofI ext is unrestricted if
the full inductance matrix is used.! Truncating the system in
a physically consistent manner is a subtle issue, and,
simplicity, we shall assume no inductance in this article.

In contrast to what one might guess from its name,
no-inductance approximation doesnot eliminate the intercell
coupling. Counterintuitively, it leads to an even longer-ran
coupling than the self- and nearest-neighbor truncations.
no-inductance approximation setsLb50, thusLm50. The
flux quantization condition~18! is then just

Mf12p f 50. ~20!

The same equation can also be obtained in the limitl'5`
for any Lb, which allows the no-inductance limit to be ap
proached from the inductive system continuously. It is i
portant to note that the condition~20! is now aconstrainton
f, which must be satisfied atall times. The discrepancie
betweenMf and22p f cannot be filled bylocally adjusting
the induced field, as when the inductive terms were pres
This leads to a global coupling of the junctions over t
whole domain. To see the coupling mechanism provided
Eq. ~20!, operate the loop sumM on Eq. ~17!. From the
left-hand side of Eq.~17! we obtain

MN~f!~ i , j !5M f̈1GM ḟ1M @sinf#

but the first two terms vanish, since Eq.~20! must hold at all
times. From the right-hand side of Eq.~17! we obtain

M ~ I ext1MTc!5MI ext1MMTc5MI ext2Dc,

where we have introduced the discrete Laplacian

Dc~ i , j ![@c~ i , j 11!1c~ i , j 21!1c~ i 11,j !1c~ i 21,j !#

24c~ i , j !. ~21!

For the stationary uniform flowI ext, the term MI ext50.
Thus, we arrive at a discrete Poisson equation

Dc52M @sinf#, ~22!

in which the distribution of the mesh current is dependent
all the junctions in the array.

Equations~17! and ~22! constitute the governing equa
tions for the no-inductance case, and can be integrate
before. Provided that the initial condition satisfies the co
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straint~20! and its time derivativeM ḟ50, Eq.~20! is satis-
fied for all t. An immediate advantage of the no-inductan
approximation is that the sweep of the parameter spac
greatly simplified since the number of parameters has b
reduced to three:f , G, andI dc.

D. Vorticities in 2D arrays

Before closing this section, we consider now the conc
of vorticity in these arrays. As for incompressible plan
fluid flows, we can define a vorticity by taking the curl~by
applying M ) of the ‘‘velocity’’ field which, in our case,
corresponds39 to the branch currentI b. This current vorticity

V5MI b5M ~ I ext1MTc!5MI ext2Dc ~23!

measures how currents whirl, and can take any real val
~For our stationary uniform vertical flowMI ext vanishes.!

In contrast, the notion of atopological vortex~or charge!
is commonly used in Josephson arrays in analogy to cont
ous superconductors. In type-II superconductors, the vort
would correspond to the integer winding numbersn( i , j ) in
the flux quantization condition~9!. But, as we showed above
the n( i , j ) are dynamically irrelevant in the arrays. Ther
fore, an alternative, less physical definition for thetopologi-
cal vorticity has been used:2,4,32,18

z5
1

2p
M ~f̂2f!. ~24!

Here, f̂ denotes restriction of the components of the ph
vectorf within @2p,p). The value ofz at each cell takes
only integer values~typically 0 or 61) and jumps discon-
tinuously as the system evolves in time. In effect, this d
nition detects when one of the four junctions in a cell rota
and crossesf5p ~mod 2p), sinceM f̂ changes discontinu
ously by 2p at that instant. This is the 2D analog of markin
the location of a 1D kink at the point wheref5p ~mod 2p)
regardless of whether the kink really has a localized struc
or not. This particlelike picture is frequently useful but, b
neglecting spatial distributions, there is a potential loss
information about the true dynamical state of the system.
the other hand, the current vorticityV would reveal more
accurately how localized vortices are. However, for the
states treated here, our simulations show that the topolog
vorticity z moves together with a peak of the current vort
ity V ~Sec. IV B!. Thus, we use both definitions interchang
ably at our convenience.

III. ANALYSIS

In this section we present a perturbative analysis of
governing equations~17!,~20!. Although the analysis is mad
systematically so that it is possible to proceed to higher
ders, we show that most of the fundamental features of
row-switched states can be explained by the leading orde
the expansion.

Before writing down the RS solutions, it is useful to thin
of the array withuncoupledjunctions. This limiting case
corresponds to imposingc50 in Eq.~17!, thus reducing the
array to a collection of uncoupled pendula, independen
responding to a constant drive. The junctions on the horiz
is
en
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tal branches~7!, whose drive is zero, converge asympto
cally to fx* 50 due to the damping. On the other hand, t
uncoupled vertical junctions~8!, driven byI dc, have a differ-
ent dynamical behavior. For small dampingG, they can con-
verge asymptotically to one of two distinct stable states36

the superconducting~static! state, which exists only when
I dc,1, in which the drive is balanced by the sinusoidal no
linearity, ~i.e., fy* 5arcsinIdc); or the Ohmic~whirling! so-
lution, where the first time derivative balances the drive, a
f increases at a nearly uniform ratev5I dc /G ~i.e., the pen-
dulum ‘‘whirls’’ !. The two attractors may coexist for th
same drive, and hysteresis may occur.

When the junctions are coupled, the simple dynamics
the independent junctions is altered, and complex spa
temporal solutions, which do not have an analog in the
coupled array, may emerge. Nevertheless, in the case o
RS solutions the two states of the driven single junct
mentioned above~static and whirling! are still valuable
‘‘building blocks’’ for the analysis of the whole system. Sp
cifically, the RS states are characterized by alternating
gions in which the vertical junctions are either stationaryQ
regions! or whirling (S regions!. There are, however, som
significant differences with the uncoupled case. For instan
the time-averaged current distribution in the coupled ar
deviates from the uniform flow. Hence, the phases of
stationary junctions can have other values than 0
arcsinIdc. In addition, the rotations of the vertical whirlin
junctions induce ac oscillations on the stationary junctio
and phase locking among the whirling junctions. Our ana
sis in this section is capable of explaining most of the
effects.

We note that our analysis is restricted to solutions with
~static! vortices trapped in any of theQ regions. The ‘‘no-
vortex’’ state is expected to be most relevant to determ
the parameter regime in which RS states appear. Simila
the vertical junctions in theS regions are assumed to b
whirling at almost constant frequency. More nonlinear ro
tions are certainly possible as we briefly discuss in Sec.
but are neglected.

A. Perturbative analysis

In previous perturbative analyses of junctions and arra
it has been customary to treatI dc as a large parameter.7,40

However, partially RS states can exist only whenI dc is suf-
ficiently small, as we will show below. Therefore, we use t
rotation frequency of the pendulumv5I dc /G as the large
parameter in our perturbation. That is, we will consider t
high-frequency limit35 v@1, which can be satisfied for an
finite I dc if the dampingG is small enough.

Hence, we assume that the variables in the RS states
be expanded in powers ofv21. The phases of the horizonta
junctions are then approximated by

fx~ i , j ,t !5f0
x̄~ i , j !1 (

p52

`

v2pfp
x~ i , j ,t!, ~25!

while the mesh current is given by

c~ i , j ,t !5c 0̄~ i , j !1c 0̃~ i , j ,t!1 (
p51

`

v2pcp~ i , j ,t!,

~26!
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where we have introduced the normalized time

t5vt5~ I dc /G!t.

The notation (• )̄ expresses time-independent~dc! quantities,
while (• )̃ are for the time-dependent~ac! parts whose time
average is zero. Note that the correction ofO(v21) in Eq.
~25! turns out to be zero, so we neglect that term from
start.

The form for the vertical junctions must be different in th
switched and the quiescent rows. In the switched rows,
the junctions are whirling and stationary: their phases gr
to the lowest order, constantly in time

fy~ i , j ,t !5t1f0
ȳ~ i , j !1 (

p52

`

v2pfp
y~ i , j ,t!, j PS.

~27!

Meanwhile, in the quiescent rows the junctions are librat
around fixed values, and thus, the leading order is indep
dent of time:

fy~ i , j ,t !5f0
ȳ~ i , j !1 (

p52

`

v2pfp
y~ i , j ,t!, j PQ. ~28!

We imposec 0̃ and the higher-order terms to be periodic
time. In general, the period has to be modulated and, t
expanded inv21 ~strained coordinate!. However, since in
the following we will focus on the leading order system, w
set the period to be exactly 2p in t for simplicity.

The perturbative calculation proceeds in the usual way
substituting Eqs.~25!–~28! into Eqs. ~17!,~20!; Taylor ex-
panding the sine in Eq.~1!; and equating terms of the sam
order inv. In principle, this procedure can be carried out
higher orders if secular terms are eliminated by satisfy
solvability conditions when they arise.

Balancing the leading-order terms, we obtain two sets
equations since the time-independent~dc! and time-
dependent~ac! terms must cancel separately. First, the
terms yield the following equations for both types of row

sinf0
x̄~ i , j !5c 0̄~ i , j !2c 0̄~ i , j 21!, ~29!

f0
x̄~ i , j 11!2f0

x̄~ i , j !52p f 1f0
ȳ~ i 11,j !2f0

ȳ~ i , j !,
~30!

and one more equation which depends on the type of
~switched or quiescent!:

05c 0̄~ i , j !2c 0̄~ i 21,j !, j PS, ~31!

I dc2sinf0
ȳ~ i , j !5c 0̄~ i , j !2c 0̄~ i 21,j !, j PQ. ~32!

These equations constitute the full dc system.
Similarly, from the ac terms we obtain for both rows

f2
x9~ i , j ,t!5c 0̃~ i , j ,t!2c 0̃~ i , j 21,t!, ~33!

f2
x~ i , j 11,t!2f2

x~ i , j ,t!5f2
y~ i 11,j ,t!2f2

y~ i , j ,t!,
~34!
e

ll
,

g
n-

s,

y

g

f

c

w

where 9 denotes differentiation twice with respect tot.
Moreover, for each type of row we obtain a different equ
tion:

f2
y9~ i , j ,t!52sin„t1f0

ȳ~ i , j !…2c 0̃~ i , j ,t!

1c 0̃~ i 21,j ,t!, j PS ~35!

and

f2
y9~ i , j ,t!52c 0̃~ i , j ,t!1c 0̃~ i 21,j ,t!, j PQ, ~36!

which completes the full ac system.
These systems of equations are to be solved with bou

ary conditions

c 0̄5c 0̃50 ~37!

at the boundary cells.
A simple but important observation can be made at t

point. Using Eqs.~31! and~37! at i 50 andNx11 ~i.e., at the
right and left edges!, it follows that

c 0̄~ i , j !50 ; i , if j PS. ~38!

Therefore, the leading-order dc mesh currentvanishes in a
switched row,43 just as it does in the top and bottom boun
ary cells at j 50 andNy11. In other words, the switched
row is equivalent to having another boundary row, whi
splits the array into two. Thus, to the leading order, a p
tially row-switched array with many switched rows can
described as a collection of disjoint quiescent regio
coupled only weakly through the ac component. This use
picture is exploited later.

The solution of the leading-order systems is otherw
nontrivial since the dc equations~29!–~32! constitute a non-
linear algebraic system, and the dc solution is in turn nee
to solve the ac system~33!–~36!. Thus, in general, they hav
to be solved numerically—although we show below that u
ful approximations can be obtained under certain assu
tions.

Once the leading-order solutions are found, the calcu
tion could be carried out to higher orders. The next-ord
correction leads to a particularly simple set of equations:

f3
x9~ i , j !1Gf2

x8~ i , j !5c1~ i , j !2c1~ i , j 21!, ~39!

f3
y9~ i , j !1Gf2

y8~ i , j !52c1~ i , j !1c1~ i 21,j !, ~40!

f3
x~ i , j 11!2f3

x~ i , j !5f3
y~ i 11,j !2f3

y~ i , j !, ~41!

for all t and regardless of whether the rowj is switched or
quiescent. Terms from the sinusoidal nonlinearity do n
come into play at this order, but further expansions wo
certainly involve more complications.

It is important to note, however, that the salient featu
of the solutions observed in the numerics can be explai
from the leading-order equations. Therefore, we restrict
analysis to the dc and ac equations in the following sectio
On the other hand, we will also point out a remaining pro
lem which is likely to be resolved only by considering th
higher-order corrections.
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B. Analysis of the dc equations

The dc equations~29!–~32! constitute a nonlinear alge
braic system which must be solved numerically in gene
However, to gain insight into the system, we will now obta
approximate solutions to the system when there is a la
asymmetry between its two dimensions. We will then co
back to the full system and discuss its solutions.

1. Large aspect-ratio approximation

Consider the case when all quiescent regions in the a
are longer horizontally than vertically. This happens,
course, when the array itself satisfiesNx@Ny. More impor-
tantly, arrays whose dimensions do not fulfill this conditi
are also broken into smaller, laterally long, almost disjo
quiescent regions after several row-switching events. Th
this ‘‘large aspect-ratio’’ approximation is important to cha
acterize the RS states which appear in the course of the
switching process. Remember we also assume that non
the Q regions contains static vortices, which could
trapped for largeNy and f , and for smallI dc. In Sec. V we
will give an estimate of the values off andNy for which we
expect this assumption to be valid.

In such a situation we expect a nearly ‘‘uniform’’ solutio
in the bulk of the array with some edge corrections near
right and left boundaries. Hence, far from the boundaries,
assume the vertical junctions in the quiescent rows to
comeindependentof i ,

f0
ȳ~ i , j !5f0

ȳ~ j ! for j PQ.

On the other hand, we assume a whirling solution41 for the
switched rows in which waves with well-defined wave nu
bersk( j ) propagate:

f0
ȳ~ i , j !'2k~ j !i 1d~ j ! for j PS. ~42!

Note that the wave numberk( j ) and the phase constantd( j )
may differ from one switched row to another. The other

variablesf0
x̄, andc 0̄ are also assumed to bei independent.

Thus, the dc equations reduce to

sinf0
x̄~ j !5c 0̄~ j !2c 0̄~ j 21!, ~43!

f0
x̄~ j 11!2f0

x̄~ j !52p f 2k~ j ! for j PS, ~44!

f0
x̄~ j 11!2f0

x̄~ j !52p f for j PQ, ~45!

c 0̄~ j !50 for j PS, ~46!

f0
ȳ~ j !5arcsinI dc for j PQ. ~47!

This simplified set of equations is still nonlinear but so
able. We begin by analyzing all the quiescent regions in
array~if any!, delimited by switched regions or by the phys
cal boundaries. Consider a quiescent region spanning f
row j 1 to j 2 (> j 1). Such a region containsn5 j 22 j 112
rows of horizontal junctions including the top and botto
borders, andn21 quiescent rows of vertical junctions. W
emphasize that these vertical phases are all given by
~47!, thus,I dc,1 is necessary for the existence of partia
l.
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RS states, whereQ rows are present. From Eq.~43! the
horizontal phases must satisfy a telescope sum

(
j 5 j 1

j 211

sinf0
x̄~ j !5c 0̄~ j 211!2c 0̄~ j 121!50, ~48!

where we have used the fact that both rowsj 211 and j 1
21 must be either switched or in the boundary cells, a
thusc 0̄50 from Eq.~46! or Eq. ~37!. Now, Eq.~45! can be
solved with Eq.~48! to obtain:42

f0
x̄~ j 1 j 121!52p f S j 2

n11

2 D ~49!

with j 51, . . . ,n. This gives the time-averaged phases of t
horizontal junctions in the bulk of theQ region. Then, from
Eq. ~43!, the mesh current in the same region can be co
puted as

c 0̄~ j 1 j 121!5 (
l 51

j

sinf0
x̄~ l !5

sin~p f j !

sin~p f !
sin@p f ~ j 2n!#

~50!

for j 51, . . . ,n21. This procedure allows us to solve fo
eachQ region in the array independently.

The remaining variables are easy to find. Recall thatc 0̄
vanishes everywhere in theS region. The rest of the horizon

tal junctionsf0
x̄ lie either between twoS rows, or between an

S row and a boundary cell. In either case, it follows from E
~43! that

f0
x̄~ j !50, inside anS region.

Finally, the wave numbersk( j ) for the switched rows (j
PS) can be calculated from Eq.~44!. One notices thatk( j )
can change from a row to another, depending on the adja

horizontal junctionsf0
x̄. On the other hand, if there is anS

region with three or more rows,k( j )52p f for all the rows
except for the two rows at the top and bottom borders of

region; this is becausef0
x̄50 inside the region. In this sense

k052p f is the ‘‘natural’’ wave number forS rows.
This concludes the solution of the simplified equatio

~43!–~47!. We now exemplify this procedure with four R
states of an array withNy57 rows, as depicted in Fig. 2. In
Sec. IV we will compare the predictions with our numeric

Pattern 1:S5$1, . . . ,7%. This is the totally row-switched
state in which there is noQ region. Thus, the horizonta
phases are

f0
x̄5~0,0,0,0,0,0,0,0!.

@The j th component of the vector isf0
x̄( j ). Note this j runs

through 1, . . . ,8 for theseven-row array.# In addition,c 0̄( j )
50, andk( j )52p f 5k0 for all rows j 51, . . . ,7.

Pattern 2:S5$2,4,6%, ~and so, Q5$1,3,5,7%). In this
symmetric pattern there are fourQ regions, each consisting
of only one row, and three one-rowS regions. By solving
eachQ region independently, we find

f0
x̄5p f ~21,1,21,1,21,1,21,1!.
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Then, for theS rows j 52,4,6, we havec 0̄( j )52sin(pf)
and k( j )54p f . That is, the threeS rows have an identica
wave number but are different from the naturalk0.

Pattern 3:S5$4%. In this case the two symmetricQ re-
gions, rows 1–3 and 5–7, are separated by the centralS row.
We obtain

f0
x̄5p f ~23,21,1,3,23,21,1,3!.

The wave number of theS row is k(4)58p f .
Pattern 4:S5$2,3,4,7%. In this highly asymmetric switch-

ing pattern there are twoQ regions. We obtain

f0
x̄5p f ~21,1,0,0,22,0,2,0!.

The S rows have the following wave numbers:k(2)53p f ,
k(3)52p f , andk(4)5k(7)54p f . Note that the rows 2–4
are contiguous but all have different wave numbers. The
3 is surrounded by otherS rows, hence has the natural wav
number. Meanwhile, the rows 2 and 4, which are contigu
to Q regions have different wave numbers.

A similar bulk approximation can be obtained for th
other limit of the aspect ratio. We present thissmall aspect-
ratio case in the Appendix.

One might wonder what has happened to the phase
stantsd( j ) of the switched rows~42!. Indeed, thed( j ) have
disappeared in the simplified system~43!–~47!, making them
arbitrary. However, simulations show that the switched ro
are weakly coupled, so that thed ’s drift to some particular
values~if f Þ0). This phase locking has been noticed in t
completely switched state and left unexplained.6,8,10 As we
show in the numerics of Sec. IV, it is also a feature of t
partially RS states. The indeterminancy ofd in our analysis
is not merely due to the assumption of the whirling soluti
~42!. Rather, it is already inherent in the dc equations~29!–

~32! for which the addition of a constant to all thef0
ȳ( i )

within any switched row leaves the system unchanged. S
the drift occurs in a much slower time scale than the ba
oscillation frequencies,44 we conjecture that thed( j ) could
be determined from solvability~or secularity! conditions that
might arise from higher orders of the expansion. That w
the case in one-dimensional series arrays40 where a similar
slow phase drift and eventual locking was explained in t
manner. However, it is beyond the scope of this pape
develop a similar calculation for the 2D array, and, in t
following, we will use the values ofd( j ) obtained from the
numerical simulations.

2. Solving the full dc equations

We now consider how to solve the full dc system beyo
the bulk approximation—a problem which requires, in ge
eral, numerical solution. It is important, however, to note t
the decoupling of the equations introduced by the switc
rows is still present so that the problem reduces to calcu
ing static solutions of smaller arrays.

The important point to recall is given by Eq.~38!: the
mesh current is still zero in allS rows. This breaks the arra
into disjoint Q regions, as far as the leading-order dc par
concerned. Mathematically, this means that Eqs.~29!, ~30!,
w

s

n-

ce
ic

s

t
o

d
-
t
d
t-

s

and~32! are closed within eachQ region, and can be solve
independently. This system is identical to the supercond
ing ~static! equations for an isolated 2D array of the sam
size as theQ region. When this subproblem of finding th
static solutions for the independentQ regions is solved, the

remaining unknowns,f0
ȳ in theS regions, can be determine

from Eq. ~30!. This two-step procedure is completely anal
gous to the one used in the large aspect-ratio approxima

except thatf0
ȳ in the Q rows now depends oni , and, thus,

f0
ȳ( i , j ) in the S rows cannot have the form given in Eq

~42!.
How do we obtain the static configurations? Since aQ

region can take any size in thej direction ~up to Ny), we
need, in short, a general calculation scheme of static st
for an arbitrary rectangular array. An analytical formula
not known even for the no-vortex solutions~one of the many
possible superconducting states! we are primarily concerned
with. Thus, they must be found numerically.45,46 A rare ex-
ception is theladder array, of size Nx31, for which an
accurate analytical approximation has been obtained.47 It
shows that the full static solution differs from the bulk a
proximation in the existence of skin layers near the left a
right edges. Crucially, resolving the phases in the skin lay
is central to the existence and stability of the static soluti
The ladder case is special but important since it is the m
persistent in the parameter space amongQ regions of a given
width.22,46 In Sec. V we show how the stability of the R
patterns is connected with the stability of the static state

C. Analysis of the ac equations

We now study the ac system~33!–~36!. We only need to
note that this is alinear system which is forced by the sinu

soidal drive sin(t1f0
ȳ). Therefore, if the dc solution is

known, the ac system is simple to analyze.
Assuming that the homogeneous part decays, the solu

locks to the forcing and the time dependence can be facto
out as

F f2
x

f2
y

c 0̃

G ~ i , j ,t!5F A

B

C
G ~ i , j !exp~tA21!1c.c., ~51!

where c.c. denotes complex conjugate. Then, the spat
dependent complex amplitudes must satisfy

2A~ i , j !5C~ i , j !2C~ i , j 21!, ~52!

2B~ i , j !52C~ i , j !1C~ i 21,j !1 f ~ i , j !, ~53!

A~ i , j 11!2A~ i , j !5B~ i 11,j !2B~ i , j ! ~54!

with

f ~ i , j !5H A21

2
exp@f0

ȳ~ i , j !A21# if j PS

0 if j PQ.

~55!

Eliminating A and B from the equations, we obtain
discrete Poisson equation forC:
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DC52m ~56!

with the source term

m~ i , j !5 f ~ i , j !2 f ~ i 11,j ! ~57!

and, from Eq.~37!, boundary conditions

C50 in the boundary cells. ~58!

In the rectangular domain this problem can be solved
the double discrete Fourier-sine series

C~ i , j !5 (
m51

Nx

(
n51

Ny

Ĉm,nsinS mip

Nx11
D sinS n jp

Ny11
D ~59!

with

Ĉm,n5
1

am,n
2 (

i 51

Nx

(
j 51

Ny

m~ i , j !sinS imp

Nx11
D sinS jnp

Ny11
D ,

~60!

where

am,n
2 5~Nx11!~Ny11!

3H sin2S mp

2~Nx11!
D 1sin2S np

2~Ny11!
D J . ~61!

Finally, A and B are determined from Eqs.~52! and ~53!.
This completes the analysis of the leading-order equatio

IV. NUMERICS

A. Finding RS states in simulations

To test the validity of the analysis developed in the p
vious section we now compare its predictions with numeri
results. The full governing equations~17! and ~20!, together
with the boundary conditions~6!, are integrated using th
standard fourth- and fifth-order Runge-Kutta integrator w
adaptive time step. Ours is an elementary nonoptimized
sion of the previous mesh-formulated code32,18 which en-
ables us to switch between no-inductance and simple ind
tance models. The results presented here do not inc
inductances nor the effects of temperature and disorder.

Since most of the analysis has assumed the large as
ratio approximation, we study an array withNx531 and
Ny57, with small dampingG50.2 and a moderate extern
field f 50.1. We use as initial conditions the predicted lar

aspect-ratio dc approximationsf0
x,ȳ ~and the corresponding

first-time derivatives!. They are expected to be close enou
to the true RS states to facilitate convergence, but we le
the ac part to be adjusted by the system. We choose a v
for I dc between 0 and 1, and monitor whether the ensu
dynamical state is indeed the attempted RS pattern.

The system, of course, does not always converge to
row-switched state we have targeted; the chosen initial c
dition may be out of the basin of attraction of the target sta
or the state may not exist, or it may be unstable for
chosen parameters. The outcome from using ‘‘wrong’’ p
rameters is, as far as we have tested, as follows: IfI dc is too
large, then vortices start to enter in some of the rows we h
a
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initially set quiescent; ifI dc is too small, then the rows we
have set switched cannot maintain the whirling motion, a
exhibit retrapping, become quasiperiodic, or show hig
nonlinear oscillations. In those cases, we then adjustI dc until
we find the clean periodic RS solutions which we aimed

Not only must we tuneI dc , but the damping parameterG
must be small enough in order to find clean RS states. IfG is
too large, it is difficult to find any partial RS states at all. F
intermediate values, such asG50.4, some RS patterns ar
observed, but some others cannot be found. For the un
damped caseG50.2 studied here, it becomes easy to find
appropriate range ofI dc in which the system converges t
the expected RS pattern. This dependence on the dampi
in qualitative agreement with experimental findings.17 It is
also consistent with our assumption of the high-frequen
limit since a smallerG for a givenI dc corresponds to a large
v.

Generally, patterns with large quiescent regions are m
difficult to obtain; for example, the RS stateS5$1% ~with
oneQ region of six rows! has a smaller interval of suitabl
I dc than the symmetric pattern 3:S5$4% ~with two Q re-
gions of 3 rows!, even though both states have only oneS
row. These observations and the above parameter de
dences will be discussed in more detail in Sec. V.

Before presenting detailed comparisons between nume
and analysis for patterns 1–4, we first illustrate converge
in Fig. 3. There we show the time evolution of two variabl
in the array for pattern 3, usingI dc50.5. Since the initial
condition~taken as the bulk approximation! is not a solution
of the full system, there is a short transient (t,50) until the
system settles onto a periodic attractor. Recall that only r
4 is switched in this pattern. Figure 3~a! shows the phase
fx(16,4) of a horizontal junction adjacent to the switch
row and in the middle of the row, where the large aspe
ratio ~bulk! approximation is expected to be valid. The a
proximated average value is 3p f '0.94, as predicted in Sec
III. Similarly, the mesh current in the central cellc(16,4),
shown in Fig. 3~b!, is c50 on average with some oscilla
tions, as expected in any switched row. Not only the aver
values but the ac amplitudes are also well estimated from
ac leading-order equations, as demonstrated in Fig. 3.

FIG. 3. Time evolution in the central~switched! row of pattern
3: ~a! horizontal phasefx(16,4,t) and ~b! mesh currentc(16,4,t).
After a short transient, the solution converges onto a periodic
tractor with dc values and ac amplitudes~shown together as the
bands delimited by the dotted lines! well predicted by the analytica
formulas in Sec. III.
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B. Vortex motion

We illustrate now the two vorticities defined in Sec. II.
Fig. 4 we show the current vorticityV and the topological
vorticity z both at the central cell~15,4! of pattern 3 after
convergence. They display similar periodic behavior thou
V is continuous whereasz switches discontinuously betwee
0 and 1.z becomes unity when a charge enters the c
which occurs in this case whenfy(16,4), the left junction,
crossesp ~modulo 2p). Therefore,z becomes unity when
cosfy(16,4)521, as shown in the figure. Similarly, whe
the right junctionfy(17,4) ~not shown! turns and crossesp,
the chargez is reset to zero.

As a complement to the time evolution of the vorticities
one cell, we also show snapshots of their spatial distributi
for all patterns 1–4 in Figs. 2 and 5. In Fig. 5 each cell
shaded according to the value of the current vorticityV( i , j ):
dark regions indicate positive largeV, while bright parts
correspond to negativeV. The same snapshots, but showi
the topological chargesz, are given in Fig. 2. Even thoughV
represents the spatial structure more clearly, we observe
a charge in a cell corresponds to a peak ofV, and that the
charges propagate through the array on top of the underl
wave.

Thus, we can usez to visualize the wavelength and th
propagation speed in each row. In all patterns 1–4,
charges move across the array at a nearly constant spee
seen in the space-time plots ofz in Fig. 6. They propagate
only through theS rows, and are apparently in phase in
rows for patterns 1 and 2. However, in pattern 4 theS rows
are not in phase, and the propagation velocities vary fr
row to row. Thus, the simplistic picture where vortices ca
all the flux and move with the same speed in all theS rows
within a pattern32 leads to estimated speeds in disagreem
with our simulations. This further proves that the underlyi
assumption that the topological vortices are particlelike
jects which concentrate all the flux is not accurate. Inste
the RS solutions are not localized states and the flux is
tially distributed, as suggested by previous work2,10and dem-
onstrated in our analysis. Therefore, in these states, the t
logical vortices merely mark where the rotating junctio
crossp ~mod 2p) ~see Sec. II D!, and they travel at the
phase velocities of the underlying~nonlocalized! waves. Our

FIG. 4. Time evolution of the vorticities in the middle of th
array of pattern 3. The solid curve depicts the current vortic
V(16,4,t), while the topological vorticityz(16,4,t) switches dis-
continuously between 0~no vortex! and 1~one vortex in the cell!.
This discontinuous ‘‘tagging’’ of the position of the vortex is clar
fied by the dotted curve, which corresponds to cosfy(16,4,t). In-
spection of that magnitude indicates that every time it becomes21
~i.e., the phase is equal top) one topological vortex enters the ce
~andz is increased by one!.
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analysis correctly estimates the spatial wave numbers~thus,
the propagation speeds! as shown below.

C. Spatial structures after convergence

We now present a quantitative comparison of the analy
of Sec. III to numerical simulations. The analytical pred
tions correspond to the large aspect-ratio~bulk! approxima-
tion both for the dc and the ac components. For the nume
we simulate a 3137 array, and the system is allowed
converge to periodic solutions for patterns 1–4 usingG
50.2, f 50.1, andI dc50.6 ~except for pattern 3, in which
I dc50.5 had to be used!.

We first check the predicted spatial wave numbersk( j ) in
theS rows just discussed above. In Fig. 7 we show a ‘‘sna
shot’’ of the fy in the S rows ~2,3,4,7! of the nontrivial
pattern 4. To ease the display and comparison of the num
cal results, we have juxtaposed the rows one after the ot
Within each row, the spatial dependence is clearly line
thus justifying the whirling mode assumption~42!. The pre-
dicted wave numbersk253p f , k352p f , and k45k7
54p f ~dashed lines! are almost indistinguishable from th
numerics~solid lines! except for small deviations close to th
edges.

Recall that in our analysis of the dc equations the int
row phase differencesd( j ) are predicted to be arbitrary in
Eq. ~42!. Hence, only theslopeof the spatial dependence
known and the dashed lines are adjusted to match at
center of each row. Conversely, this is a way to determ
the d( j ) from the numerical simulations. For the four pa
terns, we obtain:

FIG. 5. Snapshots of patterns 1–4 showing spatial distributi
of the current vorticityV as density plots. Dark regions correspon
to large positiveV. Compare them with Fig. 2 where the sam
spatial patterns are shown in terms of the topological chargez. We
observe that the topological vortices are generally located on p
of V, and propagate locked to the underlying wave.
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10 904 57MAURICIO BARAHONA AND SHINYA WATANABE
Pattern 1:d~1!5d~7!50, d(2)5d(6)50.05,
d(3)5d(4)5d(5)50.1.

Pattern 2:d(2)5d(4)5d(6)50.
Pattern 3:d(4)50.
Pattern 4:d~2!521.8, d(3)524.7, d(4)50.2,

d(7)50.

Note that in each case oned( j ) is set to zero and taken a
the reference, which is equivalent to choosing the origin ot.
In the following, we will use these numerical values ofd
when needed~most importantly, for the analytical values o
the ac components!.

Next, we compare the predicted dc values with the
merical mean values after convergence. As we showe
Fig. 3~a!, each horizontal junctionfx librates around some
dc value after convergence. These average values are pl
~solid lines! and compared to the large aspect-ratio appro
mation ~dotted lines! in Fig. 8. The prediction is uniform
within each row because edge effects were neglecte
consequently, it works well everywhere except close to
right and left ends. Similarly, the dc values of the vertic
junctions in theQ rows ~not shown! are all predicted to be
fy5arcsinIdc in the bulk approximation, and the agreeme
is very good except for the edge corrections.

In Fig. 9 we show the ac amplitudes of the vertical jun
tions, i.e., theuB( i , j )u calculated in Sec. III C, converted int

FIG. 6. Space-time plots of the propagation of topological v
tices for patterns 1–4. The vertical~space! axis is the cell index: the
cell (i , j ) is indexed one dimensionally byi 1Ny( j 21) by juxta-
posing row after row. Within each of the symmetric patterns~1–3!,
the vortices in the switched rows have the same wavelength an
in phase. However, in the asymmetric pattern 4, the spatial w
numbers differ from row to row.
-
in

ted
i-

—
e
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t

-

voltages. As observed, symmetric patterns 1–3 have ra
constant amplitudes throughout the middle of each row,
the asymmetric pattern 4 shows spatial fluctuations. Our
timates, shown as dotted lines, reproduce the spatial struc
fairly well. It is quite remarkable that our approximatio
roughly captures the behavior at the right and left bounda

even though we have used the bulk approximationf0
ȳ @to-

gether with the numericald( j )# to solve the ac system.
Since the mesh current is determined from the phase c

figurationsfx,y, it also compares well with the large aspec
ratio approximation. Thus, we do not display the quantitat
comparison ofc, and instead present more descriptive 2
contour plots of thenumericalc on the 3137 array geom-
etry. The contour curves of the dc component ofc are shown
in Fig. 10. If the 2D array were continuous, the induc
currents would flow~on average! along these curves. Sinc
the array is discrete, the flow is restricted to the branches,
the level curves still describe roughly the way the curre
circulate. Furthermore, the dc values in theS rows are nearly
zero, as expected. In theQ regions, currents circulate in th
clockwise direction (c 0̄,0) on average. This would induc
a magnetic field through theQ regions in the opposite direc
tion to the external fieldf . Although it is interesting to ask
whether the induced field cancels the external one to prod
a Meissner-like region, that question only makes sense w
inductances are included. Note also that all contour plots
almost left-right symmetric, but show a slight asymmet
This is presumably due to the presence of edges and
preferred direction (x̂) of propagation of the waves acros
the S rows. Such details are not captured by the bulk a
proximation and the full solution of the dc equations b
comes necessary.

Finally, the amplitudes of the ac oscillations ofc are
shown in another set of contour plots in Fig. 11. The o
served nodal structures~typical in linear forced systems in
bounded domain! show the spatial distribution of the mode
locked to the driving dc solution. The magnitude of these
amplitudes is comparable to the dc values in Fig. 10, e
though the oscillating components of the phasesf are much

-

re
e

FIG. 7. A snapshot of the vertical phasesfy in the switched
rows S5$2,3,4,7% of pattern 4 in aNx531 by Ny57 array. Each
solid line connects the numerical phases of the 32 junctions in e
switched row. The dashed lines~almost overlapping with the solid
ones! are the analytical approximation in Sec. III which predict t
observed spatial wave number very well. The horizontal axis
notes the ‘‘vertical edge index,’’ which numbers the vertical jun
tions consecutively asi 1(Nx11)( j 21) for i 51, . . . ,Nx11 and
j 51, . . . ,Ny. This enables us to display the 2D array in a single a
by juxtaposing one row after the other. As a guide to the e
vertical dotted lines are added to separate the rows.
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57 10 905ROW-SWITCHED STATES IN TWO-DIMENSIONAL . . .
smaller, ofO(v22), than their dc values. This is consiste
with our analysis which assumes that the mesh current ha
and ac components both ofO(1).

V. PARAMETER REGION FOR RS STATES

In this section we determine where in the parameter sp
we expect RS solutions. This is a difficult task, partly b
cause the parameter space is large. Even after negle
induced fields~i.e., l'5`) we are left with three param
eters:f , G, andI dc. In addition, there can be multiple attra
tors coexisting for a given parameter set. Recall, for
ample, how in the previous section patterns 1, 2, and 4 w
obtained using an identical parameter set, and pattern 3
used a similarI dc value. A thorough determination of th
parameter regime would then require a rigorous study of
bifurcations of the branches of all the attractors — an exp
ration which exceeds the scope of this article, and is perh
too detailed to justify the necessary effort. Here, we tak
more heuristic approach, and make several assumption
estimate the current interval@ I min,I max# in which a given RS
state is an attractor, as a function off and G. We base our
assumptions on the results of previous sections, and we d
onstrate their validity by additional calculations in the fo
lowing.

A. Upper current limit

We first estimate the upper currentI max at which a given
RS state ceases to be an attractor. Ourfirst assumptionstates

FIG. 8. The dc values offx for patterns 1–4, showing the
spatial distribution of the average horizontal phases. The horizo
axis is the ‘‘horizontal edge index,’’ defined asi 1Nx( j 21) for
fx( i , j ). There areNy1158 horizontal edges so thatj runs from 1
to 8. For eachj , theNx531 phases in the same row are connect
The dotted lines are from the large aspect-ratio approxima
which accurately estimates the numerical results in the bulk of
array. The dc values are predicted to be multiples ofp f . The ap-
proximation neglects the effects of the left and right edges, a
thus, inevitably misses the skin layers at both lateral bounda
Vertical dashed lines mark the separation betweenj ’s.
dc
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that this upper limit is reached when vortices enter any of
Q regions from the edge. The entrance of flux might produ
further switching of rows~resulting in another RS stat
where the originalQ region has been subdivided!, or a more
complicated state where the flux remains static or mo
through the originalQ region in a highly nonlinear motion
In either case, the original RS state is no longer maintain
As discussed in Sec. III, eachQ region is decoupled up to
the dc leading order and is equivalent to an isolated su
conducting array of the same dimensions. If, as we assu
no vortex has been trapped beforehand in theQ regions,
arrays with more rows depin at smaller values ofI dc, as can
be shown numerically.46 Therefore, oursecond assumptionis
that, asI dc is raised in an RS state, a vortex first enters
largestof the remainingQ regions, causing further breaku
of the array.

Thus, if the depinning current for the no-vortex superco
ducting state of any number of rows is known, these t
assumptions enable us to estimateI max for any given pattern.
For example, pattern 3 (S5$4%) has twoQ regions of the
same size~three rows!. We expect then that this state is n
sustainable beyond the depinning current of a 3133 array.
At zero temperature and without disorder, the likely scena
is that flux enters the center row of each of the two regio
so that a new RS state, pattern 2 (S5$2,4,6%), ensues. This
state has now fourQ regions, each consisting of one row
The upperI dc value for this state should coincide with th
depinning current of the 3131 ‘‘ladder’’ array. Beyond this
value all rows switch and pattern 1 is obtained. We ha
indeed observed such a sequence of row-switching ev
when we gradually increaseI dc from zero, using a clean
initial condition:f5ḟ50 everywhere. Similarly, the larges
Q region in pattern 4 has 2 rows. Therefore,I dc should co-
incide with the depinning current of a superconducting n
vortex 3132 array. In Table I we summarize the excelle

al

.
n
e

d,
s.

FIG. 9. Dimensionless ac voltage amplitudesḟy for patterns
1–4, plotted against the vertical edge index, defined in Fig. 7.
each row itsNx11532 points are connected. The large aspect-ra
approximation, shown as dashed curves, can describe the sp
distribution fairly well.
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10 906 57MAURICIO BARAHONA AND SHINYA WATANABE
quantitative agreement between the numerically obser
I max values of several RS patterns, and the depinning c
rents of superconducting arrays with the same dimension
their largestQ region.

We have also tested our assumptions with four additio
patterns, all with only one switched row:S5$4% ~the sym-
metric pattern 3!, S5$3%, S5$2%, and S5$1% ~the most
asymmetric pattern!. This illustrates the dependence of th
upperI max not on the number of switched rows, as above,
on theirlocation. For givenf andG, I max becomes smaller a
the switched row is shifted from the middle of the array
the bottom because the largestQ region increases its siz
from 3133 to 3136. Excellent agreement is again obtain
between our criterion and the numerical observations~Table
I!.

We now make thethird assumptionthat enables us to
obtain analytical estimates ofI max in some cases. We pro

FIG. 10. Level curves of the dc mesh currentc for patterns 1–4,
indicating how the induced circulating currents flow. The total c
rent flow is the superposition of the induced flow and the injec
uniform current flow. Contour levels at20.1,20.3, . . . ,21.1 are
drawn on the 2D grid of theNx531 by Ny57 array. Pattern 1
shows little deviation from the uniform current flow on averag
thusc50 and no curves appear. In the other patterns, the dc va
of c in the switched rows are zero, while the values are negativ
the quiescent rows. Therefore, currents circulate in the clockw
direction in each quiescent region ‘‘along’’ the level curves show
Strictly, the currents are restricted to the grid, but the level cur
provide an intuitive description of the flow. Note that the bound
condition c50 is imposed at a half cell outside of the array bo
ders; this explains why some of the contour curves intersect
array edges.
d
r-
as

al

t

pose that, as the drive increases, just before the entrance
vortex into aQ region, a junction barely holds itself at
critical angle

fcrit56p/2. ~62!

When it is forced to turn beyond that value, depinning tak
place, just as it would if the junction were uncoupled. Rec
that the single uncoupled junction under an increasing d
becomes unstable through a saddle-node bifurcation atI dc
51, with f5p/2 as the bifurcation angle. Although the cr
terion for global depinning is different in a coupled arra
this simple heuristic criterion has been used to predict
depinning current in ladder arrays with remarkab
accuracy.47

Take, for instance, an array at zero temperature with sm
Ny in a ground state with no pretrapped vortices. Then,
first junction to crossfcrit56p/2 is, for f .0 and I dc.0,
the vertical junction which sits in the center row at the le
edge. Thus, the flux would penetrate the array through
junction and destroy the RS state. This is readily dedu
from the circulating current shown in Sec. IV which rein
forces the drive near the left boundary. Such a current is
to the presence of the left and right boundaries, which
large aspect-ratio approximation neglected. A full analysis
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d

,
es
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e
.
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e

FIG. 11. Level curves of the ac amplitudes of the mesh curr
c for patterns 1~top! to 4 ~bottom!, on the 2D grid of 3137 cells.
Contour levels at 0.1, 0.2, . . .,1.5 are shown. The magnitudes a
generally large in the switched rows, but even quiescent rows h
some oscillations and, thus, are not purely superconducting.
leading-order analysis in Sec. III C predicts that these ac osc
tions obey the discrete Poisson equation with forcing originat
from the dc components. The figure shows nodal structures typ
in solutions to such a problem.
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TABLE I. Stability intervals@ I min,I max# ~two middle columns! for eight RS patterns~two of them iden-
tical! in the 3137 array usingf 50.05 andG50.2. The setS denotes the switched row numbers, and patte
from Fig. 2 are labeled. The intervals are calculated numerically by gradually changingI dc and following the
corresponding branch of the RS state until instabilities appear. For example, pattern 2 is found in the
@0.335, 0.945#, for this set of parameters (f 50.05,G50.2). The upper limitI max can be predicted accuratel
by the depinning currentI dep of the largestQ region of each pattern~with dimensionsNx3Ny, shown in
parentheses!. The lower limit I min is harder to estimate, but the retrapping currentI ret of a single junction
serves as a rough estimate: forG50.2, the value isI ret50.252, which is smaller than the observe
I min50.305–0.335. The first four rows show patterns 1–4 from Fig. 2. The next four patterns all have a
S row, but its location is different. Among these four, pattern 3 has the widest stability interval becau
largestQ region (3133) has the smallest number of rows.

S ~Fig. 2! I min I max I dep (Nx3Ny)

$1, . . . ,7% ~1! 0.335
$2,4,6% ~2! 0.335 0.945 0.947 (3131)
$4% ~3! 0.315 0.815 0.825 (3133)
$2,3,4,7% ~4! 0.328 0.912 0.912 (3132)

$1% 0.305 0.625 0.622 (3136)
$2% 0.305 0.685 0.681 (3135)
$3% 0.315 0.776 0.778 (3134)
$4% ~3! 0.315 0.815 0.825 (3133)
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the skin layers would be needed for a general analytical
diction, but there are two tractable limiting cases of intere

The first case is a ‘‘small aspect-ratio’’ superconducti
region, i.e., with many more rows than columns (Ny@Nx).
As discussed in the Appendix, a bulk approximation can th
be used, which approximates accurately the phases nea
left and right edges — because, in this case, the skin la
are located near the top and bottom boundaries. Should
a region be present in a RS state as aQ region, it would be
easily broken even with a small value ofI dc. Since the cen-
tral leftmost vertical junction has the largest angle~A4!, it
crosses the critical angle~62! at a critical current

I SAR
max5

1

2~Nx11!
H 11

sin@p f ~2Nx11!#

sin~p f ! J . ~63!

From Eq. ~63!, the region remains stationary whenI dc

,I SAR
max and f ,1/(2Nx). If f .1/(2Nx), a vortex enters the

Ny@Nx region for anyI dc.0. We have tested these concl
sions numerically with good agreement. Moreover, note t
other physical arguments37 predict that the edge barrier fo
the penetration of flux in this limit would be roughly give
by f c;1/(pNx). The condition~63! results from the insta-
bility of a static state, and it does not depend onG, the
damping coefficient.

The second case is the ‘‘ladder array,’’ withNx columns
and a single row.48 Its superconducting states, includin
states with trapped vortices, and their bifurcations have b
studied comprehensively.47 One of the results of that work i
the curve of the depinning current as a function off , shown
as a solid line in Figs. 12~a! and 12~b!. This monotonically
decreasing curve is again independent ofG, and becomes
insensitive toNx, as soon asNx is greater than about 5. Fo
f up to about 0.46, the depinning is caused by the disapp
ance of the no-vortex solution. This part of the curve is w
e-
t.
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approximated by the solution of the following implicit non
linear equation47 which comes from imposing Eq.~62! to the
leftmost junction:

arcsin~12I LAD
max !1

r 21

2r
arccos~ I LAD

max !5p f ~64!

with r 5a1Aa221 anda511A12I LAD
max 2/cospf. After a

crossover atf ;0.46, the static checkerboard pattern b
comes more robust, and this formula ceases to be valid.
will not discuss RS states in this high range off . If our
assumptions are correct, this critical curve should predict
I max of pattern 2. In addition to the single comparison pr
sented in Table I for this pattern, we test it forG50.2 and
0.4 and several values off in Fig. 12. As shown there, the
numericalI max values of pattern 2 from simulations are pr
dicted very accurately by the analysis of the depinning po
of the ladder.

Up to now, we have assumed that the magnetic flux p
etrates theQ regions from the left edge of the array. How
ever, the flux can also enter the array from the top or bott
boundaries of aQ region in certain situations. Consider aQ
region with a large aspect ratio and no trapped vortices,
when the number of rowsNy is large. In this case, the bulk
approximation obtained in Sec. III B 1 can still be use
From Eq.~49! the maximum angle for the horizontal junc
tions is fx5Nyp f attained at the top and bottom edges
the region. It is clear that this value becomes larger than
critical angle~62! when f .1/(2Ny). Thus, for a fixedNy

while f is increased, the flux would enter theQ region
roughly above that value of the frustration. The entrance
flux in this manner puts a limit on the applicability of ou
analysis. The assumedno-vortex Q region is expected to
exist only when the number of rows is smaller than ab
1/(2f ). Thus, our analysis does not apply for the initi
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10 908 57MAURICIO BARAHONA AND SHINYA WATANABE
stages of the row-switching cascade in large arrays, w
there are stillQ regions with many rows. However, even
such arrays, later steps of the cascade~when theQ regions
have been subdivided! can be described by assuming n
vortex Q regions. In addition, our preliminary simulation
indicate that keeping a vortex trapped in aQ region becomes

FIG. 12. ~a! Stability region for pattern 2 withG50.4. For
f 50.05, 0.1, 0.2, we sweepI dc to determine numerically the stabi
ity interval @ I min,I max# denoted by the vertical arrows with end
points atI min (s) and I max (d). The solid line is our estimate fo
I max( f ), given by the depinning currentI dep of a ladder array. The
dashed line is an estimate forI min, given by the retrapping curren
I ret of the single junction atG50.4. Therefore, the shaded section
the estimated region of theI dc-f plane where pattern 2 exists, fo
G50.4. Note that the region does not extend beyond a criticaf
5 f RS(0.4). ~b! Same as~a! but for G50.2. Although the upper
estimateI dep is unchanged, the lower estimateI ret decreases withG.
Consequently, pattern 2 is expected to be observed in a large
rameter region for smallerG, as shown by the five intervals~ar-
rows! obtained numerically. The region does not extend forf larger
than f RS(0.2). ~c! Phase diagram for the existence of RS states
the f -G parameter plane. The curvef 5 f RS(G) separates the region
in which RS states may or may not appear. ForG>G* '1.2, I ret

51, thus, no RS states are expected for anyf . This diagram ex-
plains the previous~qualitative! observation that RS states occ
most easily when junctions are underdamped and the applied m
netic field is small.
n

more difficult both in the presence ofI dc ~which tends to
expel the fluxoids from theQ regions!, and of self-fields
~which tend to shield theQ regions from the entrance o
vortices!.

B. Lower current limit

As shown in experiments and simulations, RS states
pear only when the junctions are underdamped. However
the critical currents calculated until now areindependentof
G. We claim that the explanation of theG dependence of the
RS states requires an estimate of the lower limitI min. Unlike
the upper limit, in which the superconducting solution of aQ
region ceases to exist, our numerical observations sug
that the lower limit is caused by an instability mechanism
anS region. As the bias current is decreased from the val
in which a clean periodic RS state is observed,S regions
start to have trouble in maintaining fast whirling oscillation
Typically, the system begins to show amplitude modulatio
in a slow time scale, becomes highly nonlinear, or gets
trapped altogether.

The variety of possible scenarios makes an accurate
mate much harder than forI max. In order to make progress
we have to rely on a rather rough estimate, based on
dynamics of a single junction. Recall that the vertical jun
tions in anS row are in the resistive~whirling! state. For a
single underdamped junction, its inertia is enough to ma
tain a whirling solution until very close to the retrappin
currentI ret, when it jumps back to the stationary state. On
near that value does a strong nonlinearity come into p
Ignoring the interjunction coupling, we use this current
our estimate for the lower limitI min of an RS state. Becaus
of collective effects, the state may not be immediately
trapped into a stationary state, or, on the contrary, be
trapped earlier. However, we expect that, asI dc is lowered
toward theI ret value, some nonlinear effects start to becom
apparent, so that the simple periodic RS state is altered.

The estimate ofI ret is standard.36 For the underdamped
case,~i.e., G,G* '1.2), the retrapping is produced throug
a homoclinic bifurcation atI ret,1, and theI -V of the single
junction is hysteretic. For allG.G* , I ret51, and there is no
hysteresis. In general,I ret is calculated numerically, but an
asymptotic expression,I ret;4G/p can be used asG→0.

From the definition ofI ret, our estimate forI min is thus
independent off , Nx, Ny, and the particular RS pattern, bu
depends on the dampingG. The estimates forG50.2 and 0.4
are shown as dashed lines in Figs. 12~a! and 12~b!, respec-
tively. The comparison with the numerical values ofI min ~the
point when the RS states lose their whirling character! is not
so good, as expected. However, our estimate seems to s
as a reasonable first guess.

C. f -G parameter region for RS states

In the usual experimental setup, theI -V characteristic of
an array is measured by sweeping the dc current und
constant applied magnetic field at a fixed temperature~which
controls the penetration depthl' and dampingG). For some
combinations of the experimental variables~magnetic field
and temperature! and, thus, of the underlying parametersf ,
G, andl' , the I -V shows RS steps. For others, it does n
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We will now summarize the preceding sections and comb
their results to estimate the (G, f ) parameter region, in the
limit l'5`, in which RS states appear.

First, in Sec. V A we showed two limiting cases in whic
I max can be obtained analytically, i.e., whenNy51 ~ladder!
and whenNy@Nx. Numerical simulations22,47,46 show that
I max changes monotonically between these two limits, asNy

is varied. ~This result is also expected from physic
grounds: for fixedNx, the magnetic flux penetrates the arr
more easily asNy is increased.! An obvious consequence o
this is that the ladder array has the largest parameter dom
for the no-vortex superconducting state. Therefore, recal
our link between depinning and row-switching, RS sta
whoseQ regions are all ladders, e.g., pattern 2, are thou
to be the most stable in the same sense. In other words, w
an isolated ladder of lengthNx cannot maintain superconduc
tivity, the 2D array of sizeNx3Ny cannot show row-
switched behavior. Consequently, the solid curve in Fi
12~a! and 12~b! not only gives the upper limitI max for pattern
2, but also establishes the criticalI dc, for each f , above
which no RS states can be observed.

Second, we concluded in Sec. V B that theI min of all RS
states with dampingG can be estimated by the retrappin
current of a single junction with the sameG. These are the
dashed straight lines in Figs. 12~a!,12~b!.

Hence, the RS states can only exist in the region c
tained between these upper and lower limits, shown as
shaded area in Fig. 12~a!. Those limits intersect at a valu
f RS(G) beyond which no RS state is possible.@See Figs.
12~a! and 12~b! for the procedure.# For junctions of moderate
to large damping (G.G* '1.2), the dashed line is above th
curve, meaning that RS states are impossible for anyf . On
the other hand, for highly underdamped arrays (G,0.2), the
line always remains below the curve; hence, RS states
possible for anyf ~although the region off near 1/2 would
need more careful consideration!. Between these two ex
tremes of damping, the line intersects the curve at the crit
value f RS(G), which constitutes a phase boundary in thef –G
plane. In other words, the parameter plane is divided i
two regions~RS and no-RS! by the curvef RS(G) in Fig.
12~c!. This is in qualitative agreement with previous obs
vations, and awaits more systematic experimental testing

VI. SUMMARY AND OPEN PROBLEMS

In this article we have used a weakly nonlinear pertur
tive analysis to study the row-switching phenomenon and
approximate the RS solutions. For the bulk of the array,
have obtained analytical expressions for the phase and
rent variables. In addition, we have estimated the param
regime for their existence. For this, the consideration of
lateral edges has played an important role. The predic
spatial current distributions and the parameter regime co
serve as a guide for more systematic experimental studie
the rest of this section we briefly state open problems
possible future directions.

The leading-order solutions show good agreement w
the numerics, but leave one phase per row undetermi
This isd( j ) in the large aspect-ratio approximation~42! and
such an arbitrary phase is still present in the unapproxima
leading-order dc equations, as discussed in Sec. III. H
e

in
g
s
ht
en

.

-
he

re

al

o

-

-
o
e
ur-
er
e
d

ld
In
d

h
d.

ed
-

ever, the full numerics show that there is a slow drift towar
a specific set ofd( j ) for each pattern. Several authors7,8,10

have studied this interrow phase locking in pattern 1, bu
satisfying answer has yet to be developed. The zero-fi
limit ( f 50) is an exception in that exact neutral stability a
a family of periodic solutions can be found,6,33 implying that
there is no interrow locking. On the other hand, a slow d
starts to occur asf is perturbed away from zero.44 We con-
jecture that the arbitrary phases should be constrained
solvability condition in the higher-order expansions of o
analysis, which is automatically satisfied whenf 50. Finding
that condition, however, is likely to be an elaborate task.

Our analysis is based on such simplifications as zero t
perature, no disorder, and no self-fields. Clearly, the effec
relaxing these assumptions should be also investigated. T
mal noise, self-fields, and inhomogeneities alter the swit
ing sequence in simulations of the row-switchin
cascade.22,32,18This might explain the irregularity of the row
switching order observed experimentally by Trı´as18 and
Lachenmannet al.20 On the other hand, the directed use
disorder~e.g., by removing some of the edges in the arra!
might prove a valuable strategy to enhance the locking pr
erty of the arrays.49 Including inductances would also chang
the current distributions.4,31,32 Previous work,32,18 and our
own preliminary calculations including self-inductance
show that RS states persist at least for small inductances.
expansion could be extended to include inductances and
proceed to describe the modified solutions. However, qu
tatively new phenomena can also arise. For example,
known18,19,26that, if any inductance is included in the mode
a coherent state~dynamical checkerboard pattern! emerges
near f 51/2 when the RS states cease to exist.

In this article, we have only considered ‘‘clean’’ R
states, formed by whirling and no-vortex superconduct
regions. Thus, we have assumed that theQ rows do not
contain any static vortices. It is generally expected that
depinning of aQ region would become easier when it co
tains a pretrapped vortex. Therefore, the existence of st
with static vortices probably doesnot affect the critical curve
in Fig. 12~c!. However, the question of how the depinning
a static 2D array depends on various parameters (G, f , Nx,
and Ny) is not fully understood, except in the case of t
ladder,47 and requires further scrutiny. Similarly, theS rows
in the RS states were assumed to be in the whirling~normal
resistive! state. Our simulations sometimes show ‘‘gener
ized’’ RS states which contain one or more rows that
neither switched nor quiescent, but ‘‘active.’’ The stat
could be born, for instance, whenI dc is increased so tha
vortices start to enter aQ region but not strongly enough t
switch it. Junctions in the active rows undergo highly no
linear oscillations, and propagating vortices are localiz
These states create additional steps in theI -V characteristics
between two RS steps, and are detectable. Thus, they sh
be considered for a comprehensive treatment of row swi
ing.

Apart from investigating the RS states, we have int
duced in this article a systematic approach to the analysi
the dynamics of 2D Josephson arrays. Unlike 1D arra
which have already led to a great amount of insight in
important phenomena~such as soliton propagation and inte
action in the parallel-connected arrays,41,50 or synchroniza-
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10 910 57MAURICIO BARAHONA AND SHINYA WATANABE
tion, clustering, and magnetlike phase transitions in
series-connected arrays16,40!, 2D arrays have been muc
harder to analyze. This is partly due to their network eq
tions being more complicated, and also to their having
wider variety of solutions. As our weakly nonlinear analys
shows, the difficulty regarding the formulation is reduced
the compact mesh formalism introduced in previous num
cal studies.27,29,4,31,32,18We feel that the transparent form o
the mesh equations has the potential to provide analy
information in the strongly nonlinear regime.

Of these strongly nonlinear solutions, two are of partic
lar interest. First, coherent states, such as pattern 1 in Fi
might be suitable for oscillator applications, iff is kept small
so that the whole array operates nearly in phase. Howe
for the completely row-switched state to be useful, ov
damped junctions, which rotate less smoothly and, thus,
duce larger ac amplitudes, should be employed.6 The exten-
sion of our analysis for this case~concerning only pattern 1!
appears to be straightforward. However, we can alre
point out a complication due to the spatial distribution of t
ac amplitudes. Recall how thef ẏ amplitudes in pattern 1
~Fig. 9! decay from the boundaries into the interior of t
array. This effect is more clearly illustrated in Fig. 13 whe
the ac amplitudes are computed for pattern 1 in a larger a
(Nx563 andNy531), the other parameters being identic
The amplitudes decay quickly, and nearly vanish inside
array. Consequently, the total ac voltage does not incre
significantly even when more junctions are interconnecte

Finally, flux flow37,32,18is also a highly nonlinear but dis
ordered regime in which localized vortices propagate ‘‘d
fusively.’’ Theoretical studies so far have been based on p
nomenological pictures of vortices and their interactions.3 A
more formal treatment of these solutions and a detailed
diction of, for instance, the flux-flow resistance is strong
awaited both from the theoretical and experimental points
view.
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APPENDIX: SMALL ASPECT-RATIO APPROXIMATION

Following the large aspect-ratio approximation presen
in Sec. III B 1, we calculate now a bulk approximation to t
dc equations~29!–~32! in a Q region with a small aspec
ratio, i.e., when its vertical sizeNy is much larger thanNx.
Far from the top and bottom boundaries, the solution is
pected to be independent ofj ~assuming there are no trappe
vortices!. Then, the dc equations~29!,~30! simplify to

sinf0
x̄~ i !50, thus f0

x̄~ i !50, ~A1!

f0
ȳ~ i 11!2f0

ȳ~ i !522p f . ~A2!

From Eq.~32! and the boundary conditions~37! we can con-
struct the following telescope sum which must be satisfie

(
i 51

Nx11

sinf0
ȳ~ i !5~Nx11!I dc . ~A3!

From these two equations~A2!,~A3! we can then solve for
the vertical phases in the bulk of theQ region:

f0
ȳ~ i !52p f S Nx

2
112 i D1a, ~A4!

where

a5arcsinH ~Nx11!sin~p f !

sin@~Nx11!p f #
I dcJ .

Compare this with the large aspect-ratio case~47! in which

f0
ȳ5arcsinIdc is independent ofi in the bulk of aQ region.

In contrast, in the present small aspect-ratio case, the e
nal field f is absorbed now by thevertical junctions in order
to ensure the flux quantization restriction~30!. Note also that
consideration of the top and bottom edges is crucial to in
duce matching across the switched regions or to the a
boundaries, but is neglected here. Without the correc
from the edges, phase relations across theS rows are not
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well defined. However, the small aspect-ratio approximat
is still significant because it provides a clue to an import
question: what is the lower bound for aQ region to remain
unbroken? Thus, we use this calculation when we discuss
n
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existence and stability of RS patterns in Sec. V. In this c
text, the small aspect-ratio approximation is the limiting ca
for which aQ region is most easily broken by raising eith
f or I dc.
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