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ABSTRACT

Team decision making under stress involving multiple con-
texts is an extremely challenging issue faced by various real
world application domains. This research is targeted at cou-
pling cognitive agent technology and human-centered team-
work to address the informational challenges associated with
Command and Control (C2) teams in contemporary military
operations. Two sets of experiments, each with various set-
tings of context switching frequencies and tasking complex-
ities, were conducted. To ensure that the human subjects
were familiar with the C2 context, they were selected from
US Army ROTC (Reserve Officer Training Corps) students.
Experiments on C2 teams that involve human subjects only
were conducted first. We observed the decision making be-
havior of human subjects and incorporated expert behaviors
into R-CAST—an agent architecture built upon a naturalis-
tic decision making model that captures how domain experts
make decisions based on experiences and situational similar-
ity recognition. We then conducted another set of experi-
ments with R-CAST agents as teammates and decision aids
for human subjects. The results show that RPD-enabled
agents can significantly improve the tasking capacity of C2
teams in multi-context decision making under stress. It also
suggests that higher demand situations require more com-
petent teammates.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms

Design, Experimentation, Human Factors
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1. INTRODUCTION
Team decision making involving multiple contexts is an

extremely challenging issue faced by various real world ap-
plication domains. Command and Control (C2) in complex
urban terrain is one of such domains, where C2 teams have
to frequently confront the so called three-block challenge
[5]—conducting humanitarian, peacemaking, and combat
missions in close proximity (i.e., involving three contexts
that overlap in time). Multi-context team decision making
is challenging because it requires effective team collabora-
tions in rapidly gathering dynamic information from multi-
ple sources (collateral space), in proactively sharing relevant
information for establishing global situation awareness, in
managing and reasoning across multiple decision spaces for
different contexts (areas of interest), and in choosing opti-
mal corridors for movement.

In the Multi-Agent Systems field (MAS), there has been
an increasing interest in empowering agents with naturalis-
tic decision making models to better support human-agent
collaboration in making decisions under time stress [4, 12,
13, 14, 16]. One of such models is Klein’s Recognition-
Primed Decision framework (RPD) [8]. The RPD model
claims that in complex situations human experts usually
make decisions based on the recognition of similarities be-
tween the current decision situation and previous decision
experiences [9]. Cognitive studies have shown that over 95%
of human decisions conform to the RPD model in various
time-stressed situations [9]. Norling, Sonenberg, and Ron-
nquist [12] have examined the integration of RPD model into
BDI agent framework. Fan, Sun, McNeese, and Yen [4] have
implemented an RPD-enabled cognitive agent architecture
(R-CAST) and evaluated the performance gains when hu-
man decision makers were assisted by R-CAST agents, op-
erating under stress in a real-time simulation environment.

However, multi-context decision making, especially from
the human-centered teamwork perspective, has attracted lit-
tle attention from the MAS field. Norling et al.’s work [12]
only explored ways of using reinforcement learning to en-



hance situational recognition. While Fan et al.’s attempt [4]
centered on human-agent collaboration in the decision mak-
ing process, they only investigated the impact of an adap-
tive decision making mechanism, with the issue of multi-
context decision making left open. Although RPD-enabled
agents were employed to start to address the issue of multi-
ple contexts [5], we still need experimental studies for fully
understanding the nature of multi-context decision making,
which is critical to further developing agent technologies for
enhancing the performance of human-centered teamwork.

In this paper, we investigate how and to what extent R-
CAST agents, as teammates and decision aids, might help in
human decision making under stress and multiple contexts.
This research is conducted within the C2 domain and is tar-
geted at coupling cognitive agent technology and human-
centered teamwork to address the informational challenges
associated with multi-context team decision makings. The
remainder of this paper is organized as follows. Background
on human-centered teamwork and the R-CAST agent ar-
chitecture are given in Section 2. The problem domain,
simulation environment, and scenario designs are described
in Section 3. Experiments on human-only C2 teams and
human-agent C2 teams are presented in detail in Section 4
and Section 5, respectively. Section 6 presents conclusions.

2. BACKGROUND

2.1 Human-centered teamwork
Multi-agent teamwork [3] is concerned with joint com-

mitments and joint responsibility. In particular, human-
centered teamwork, where human and software agents in-
teract as peers, is about establishing situation awareness
collaboratively, developing shared mental models as situa-
tion evolves, adapting to mixed-initiative activities, etc. It
is claimed that agents, if they could collaborate with human
peers effectively, can allow humans to pay attention to more
important activities [1], and make better decisions using in-
formation at a greater accuracy and finer granularity[11].

Bradshaw et al. developed KAoS, a collection of agent
services in the form of adjustable policies, which allow the
renegotiation of roles and tasks among humans and agents
when new opportunities arise or when breakdowns occur [1].
MokSAF is a computer-based simulation system developed
to evaluate how humans can interact and obtain assistance
from agents within a team environment [11].

Our research reported here differs from the above efforts
in that we attempt to deepen the understanding of human-
centered teamwork by examining multi-context decision mak-
ing in time-stressed situations. In particular, we try to un-
cover the potential impacts of RPD-enabled (or experience-
guided) cognitive agents, when acting as human’s team-
mates and decision aids, on the performance of C2 teams.

2.2 The R-CAST Agent Architecture
The R-CAST agent architecture [4] is built on top of the

concept of shared mental models [2], the theory of proactive
information delivery [6], and Klein’s Recognition-Primed De-
cision (RPD) Model [8]. The R-CAST agent architecture
has implemented a “collaborative-RPD” decision process,
which supports close human-agent collaborations in rele-
vant information sharing, decision progress monitoring, and
expectancy-based decision adaptation.

The major components of R-CAST are shown in Figure
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Figure 1: Major components of R-CAST.

1, where the “RPD-based Decision Making” module uses
domain knowledge, past experiences, and the current sit-
uation awareness to produce a new or adapt an existing
decision. The fulfillment of a decision can involve inter-
agent and intra-agent activities, which are coordinated by
the “Teamwork manager” and “Taskwork manager”, respec-
tively. Any unexpected conditions resulting either from sit-
uational changes or from action failures will trigger another
round of decision making. Also, any behavior (plan) adap-
tations that have been tested as workable will be used to
adapt the relevant experiences.

R-CAST is a configurable architecture. Many of the com-
ponents can be replaced (e.g., use JESS as the knowledge
base) to serve the purposes of various studies. If the default
R-CAST configuration is kept, using R-CAST to develop a
multi-agent system involves two major steps: (1) elicit do-
main knowledge and implement a domain adapter for the
problem to be studied, and (2) elicit and represent domain
expertise about decision making in terms of experiences (cf.
Section 5.1.1 for an example and refer to [4] for detail).

Two important features that are relevant to this study
are the “expectancy-based adaptive decision making” and
“situation-guided switching of decision spaces.”

First, R-CAST agents adapt their decisions by detecting
and responding to situations that are anomalies to the orig-
inal expectancy (i.e., what is observed/informed conflicts
with what was expected). Anomalous situations can hap-
pen frequently in a dynamic environment. For example,
suppose under the current situation it is expected that two
crowds, G1 and G2, should be active in two isolated regions.
Anomaly occurs if G1 and G2 start to move closer and closer.

Experiences in an experience base are organized hierar-
chically: experiences at a higher level are refined by those
at a lower level (with more relevant cues and expectancies
considered). The RPD-based decision making is a process
of finding an experience that worked in a previous situation
that is closest to the current situation according to certain
similarity metrics. This is an iterative and adaptive process
in R-CAST. Start with the most abstract experience in the
current decision space, as more and more situational infor-
mation becomes available, agent’s recognition of the past
experience closest to the current situation becomes more
and more concrete (at the lowest possible level of the hierar-
chy). During the process, the agent simultaneously monitors
the expectancies associated with the recognized experience.
The recognition is enforced as new events are emerging as
expected. It is challenged when some expectancy becomes



false as the situation evolves; in such a case, the agent has
to backtrack along the experience hierarchy to seek a better
recognition. In the study reported here, this feature is used
such that an R-CAST agent (S2) can determine what infor-
mation the other teammates (S3/S4 agents) need, and then
proactively provide the information.

Second, R-CAST allows the specification of multiple ex-
perience bases, and the management of multiple decision
spaces at run time. The nature of a situation determines
what the current working-context is, and situational changes
can cause the switch of one context to another. Conse-
quently, an agent working in one decision space can switch
into another decision space, and return to a previous space
when the current context switched back. This feature al-
lows us to implement agents that can dynamically switch
between humanitarian, peacemaking, and combat contexts.

3. SETTING STAGES FOR EXPERIMENTS
In this section we describe the problem domain, scenario

design, and the simulation engine used in the experiments.

3.1 Problem Domain
The problem domain involves C2 teams reacting to po-

tential threats that emerge unexpectedly in a metropolis. It
imposes challenging information demands associated with
the command and control of urban operations, including
humanitarian, peacekeeping, and combat operations.

In the environment, of special interest are main supply
routes (MSRs) and three kinds of key buildings (religious
buildings, schools, and hospitals). A C2 team consists of
S2 (intelligence cell), S3 (operations cell), and S4 (logistics
cell); they, as a team, need to work collaboratively to han-
dle incoming threats. Their roles have been simplified and
defined as follows: S2 is responsible for processing incoming
reports, called Spot reports, collecting relevant information
from other sources, and alerting S3 and/or S4 of threats ap-
propriately. S3 needs to process alerts from S2 and decide on
the courses of action (COA) to handle threats, given vary-
ing timing constraints and limited resources. Two types of
friendly units are under S3’s charge: squad units and EOD
(Explosive Ordnance Disposal) teams. S4 needs to process
alerts from S2 and minimize damages to MSRs.

Potential threats come from three types of targets: Crowds,
Insurgents, and IEDs (Improvised Explosive Device). A
crowd represents a group of people that may contain key
friends or foes. A crowd can be of medium (M) or large
(L) size, and the group size of a crowd can change over
time. A crowd can move around and it may get merged
with another crowd. Table 1 shows under various situations
the credit value (the points a C2 team can get if a target
is handled successfully) of a crowd, the resources required
to handle a crowd, and what action should be taken on a
crowd, where ‘U’ refers to “squad unit”, and the value of a
crowd has additional 10 points when the crowd is near an
MSR. For example, the second entry says that to disperse a
medium size crowd with a foe needs two squad units, and 40
points can be credited if the crowd is dispersed successfully.

Another type of movable targets is insurgents, each is as-
sociated with a threat level that can be L(low), M(medium),
or H(high). As shown in Table 1, how many squad units are
required to capture an insurgent depends on its threat level.
IEDs are motionless targets. An IED, if exploded, can cause
damage to the nearby buildings and MSRs. One squad unit

Table 1: Requirements on handling targets
Targets Value Res. req. Action

M w/o foe 20 1U monitor
Crowd M w/ foe 40 (+10)* 2U disperse

L w/o foe 40 (+10)* 2U disperse
L w/ foe 50 (+10)* 3U disperse

Insurgent (3 threat 50+50n (n+1)U capture
levels: L, M, H) n=1,2,3 for L,M,H
IED 60 (80)* 1U + 1E remove
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Figure 2: Environment settings of the experiments.

and one EOD team (E) are required to remove an IED. If
successful, 60 points can be credited if the IED is close to
buildings only or MSRs only, 80 points if it is close to both.

3.2 Simulation Engine
Figure 2 depicts the general settings of the experimental

deployment, where each C2 cell (S2, S3, S4) has equipment
with a map display and a human user interface (HUI). Hu-
man operators can monitor the current situation through
the map displays, and interact with other peers through
their HUIs.

The development of situations is controlled by the Simula-
tion Engine module. Spot reports about situational changes
are dynamically generated and fed to the S2 suite following
certain controllable patterns (e.g., every n seconds; inter-
leaving reports of different target types in fixed order or
randomly). The S2 suite recognizes potential threats and
decides whether and when to alert the S3 and S4 suites.
Thus, although each suite has a map display, the S3 and S4
suites may only have partial views of the current situation.

The Simulation Engine module has three components:
scenario generator, tasking simulator, and performance eval-
uator. At every cycle, the scenario generator creates a Spot
report for each active target based on the script of its dy-
namics. Here is an example script of a crowd:

( (crowd C121 40.04 -82.96 0.8 10)

(report_key A12 friend 7) (successor C112)

(m 40.04 -84.995 1.0) (m 42.05 -82.975 0.5)

(s 27 20) (s 39 90))

This defines a crowd named C121, that appears at location
(40.04, -82.96) 10 seconds after the system starts, and can
move at full speed of 0.8 u/s. A friend named A12 shows
up 7 seconds later. The crowd moves to (40.04, -84.995) at



Table 2: Scenario settings
Active targets Macro context switching frequency
(3 types in total) L: 15 sec. M: 10 sec. H: 5 sec.
TC = 2 (× 3) Scenario 1 Scenario 4 Scenario 7
TC = 3 (× 3) Scenario 2 Scenario 5 Scenario 8
TC = 4 (× 3) Scenario 3 Scenario 6 Scenario 9

its full speed, then moves to (42.05, -82.975) at 0.5 times of
its full speed. The crowd size changes to 27 after 20 seconds
and to 39 after 90 seconds. The disappearance of this crowd
will trigger another target named C112 to show up.

Whether a generated Spot report is sent to S2 suite de-
pends on the communication pattern set before each run,
which is flexible, so that it allows, for example, the setting
where reports about crowds being sent every other cycle.

The tasking simulator manages the tasks issued by the S3
suite by monitoring the engagement (e.g., taskload) of each
squad/EOD unit, tracking the progress of each ongoing task,
and reporting to scenario generator about any situational
changes effected by the completion of a task.

The performance evaluator records the number of targets
successfully handled; whether the S3 suite paid attention to
the nearby buildings when issuing tasks; how many times
all the resources are engaged after issuing a task; how many
times S3 canceled a task that was no longer correct relative
to the current situation; how many times resources were
wasted on non-threatening targets (i.e., small crowds, IEDs
far away from key buildings or MSRs); and how many times
resources were re-allocated to another target that could offer
a better chance to succeed.

3.3 Scenario Design
To study multi-context decision making, we first clarify

what “context-switching” means in the problem domain.
Humanitarian context refers to activities related to IEDs;
peacekeeping context refers to activities related to crowds;
and combat context refers to activities related to insurgents.
It is a macro context-switching when Spot reports from two
consecutive cycles are about different types of targets.

When the S2 (or S3) suite gets Spot reports (or alerts)
about multiple targets simultaneously, even though they are
of the same type, human operators have to switch their at-
tention back and forth to handle the targets. We refer to
this as micro context-switching. Because task difficulty cor-
relates with time demands [17], varying the number of active
targets (i.e., controlling micro context-switching) changes
how much time a human operator can take on each target,
thus varying task complexity.

We thus designed 9 scenarios as listed in Table 2, each
with a different combination of context-switching frequen-
cies and task complexities. For example, Scenario 5 switches
context every 10 seconds, and has 3 active targets for each
type (9 active targets in total). The scenarios also differ
in settings of initial locations (targets, MSRs, key buildings,
IEDs), itineraries and velocities of movable targets, sizing of
crowds, threat levels of insurgents, targets’ appearance time,
etc. These are specified as scripts to the Scenario Engine.

Each target has a lifespan, which depends on whether a
movable target moves to the end of its pre-specified itinerary,
whether it comes to the expiration time of a motionless tar-
get, or whether the target has been successfully handled by

the S3 suite, whichever comes first.
Other settings common to the 9 scenarios include: (a)

each scenario lasts 10 minutes; (b) under the control of the
S3 suite are 10 friendly units (1 EOD team and 9 squad
units); they all move at the same speeds; (c) crowds with
size between 10 and 35 are of M size, crowds with more
than 35 people are of L size; (d) the Scenario Engine is
set such that Spot reports of different target types are sent
interleavingly in a random pattern.

4. EXPERIMENTS ON HUMAN C2 TEAMS
The aim of the experiments on Human C2 teams is two-

fold. First, we want to gain a better understanding of how
cognitive limitations affect C2 team performance and how
to minimize such impact. Second, we need to gather experi-
ences for RPD-agents to use in experiments on human-agent
C2 teams. We thus chose US Army ROTC (Reserve Offi-
cer Training Corps) students as the human subjects. At the
current stage, we only used a dummy agent simulating the
S4 suite, focusing mainly on S2 and S3 suites.

4.1 Team Organization

4.1.1 S2 Human

The left screenshot in Figure 3 is the S2 human user in-
terface, the design of which was largely influenced by the
domain experts we consulted. Displayed on the left are in-
coming Spot reports and the details. The upper-left area
shows the current macro context. In the experiments, S2
human subjects were asked to do communication actions by
following the current macro context as far as they could.

Shown in the list on the upper-right pane are fused in-
formation about targets, which are categorized into tar-
get type, name, status, crowd size, persons associated with
crowds, nearby buildings, and whether S3/S4 suites have
been alerted once. Except for a target’s location informa-
tion, which will be sent automatically to S3/S4 suites once
they are aware of the target, S2 human has to update S3/S4
suites’ knowledge about the situational changes in a timely
manner. S2 humans can perform four kinds of communi-
cation actions. After selecting an active target from the
target list, an S2 human can (a) press the button “MIDB
Query” (MIDB stands for Military Integrated DataBase).
Depending on the type of the selected target, from MIDB
S2 humans can gather threat level information for an insur-
gent, recognize whether a key person is a friend or foe, and
update information about buildings nearby an active target;
(b) press the button “Alert to S3” to refresh S3 suite’s view
of the selected target; (c) press the button “Alert to S4” to
alert S4 when the selected target is moving close to a MSR;
and (c) press the button “Cancel Alert to S4”, if the selected
target is moving away from MSRs. The bottom portion of
the interface shows S2’s communication behaviors.

4.1.2 S3 Human

Figure 4 shows a screenshot of the S3 user interface used in
human-agent C2 experiments. The interface used in human-
only experiments is the same except that (1) there is no cue
for resource requirements (i.e., the “Expected Units” column
is blank), and (2) there is no color coding for target priorities
(cf. Section 5.1.2 for improvements and the reasons).

Shown on the left are context indicator (S3’s context switch-
ing depends on S2’s situated decision making on information



   

Figure 3: Left: S2 human user interface; Right: Map Display (one for S2, one for S3).

 

Figure 4: S3 human user interface.

sharing), a list of alerts from the S2 suite, and the S3 suite’s
current performance. The upper-right list shows target in-
formation, similar to S2 human interface. Allocatable re-
sources and their taskloads, command area, and task list
are displayed on the bottom-right. S3 subjects can issue 4
types of operations: monitor/disperse a crowd, capture an
insurgent, and remove an IED. S3 subjects also need to pay
special attention to the effects of their operations; here we
simply require S3 subjects to check the type of buildings
nearby the selected target, if applicable, when they issue a
task. S3 subjects were asked to follow the target values and
resource requirements listed in Table 1 when issuing tasks.

The S3 suite’s main task is to decide which target to han-
dle first, and how to allocate resources appropriately to mul-
tiple active targets, which is a constraint-satisfaction prob-
lem. In the multi-tasking environment, S3 subjects need
to consider (a) resource constraints–balancing requirements
(resource type, amount) among multiple targets; (b) util-
ity constraints–maximizing the total values of targets suc-
cessfully handled; (c) spacial constraints–others being equal,

considered first resources closest to a target; and (d) timing
constraints–earlier tasking has a better chance to succeed,
due to the uncertain nature of a target’s lifespan.

4.2 Result Analysis
We recruited 10 C2 teams (20 human subjects): 8 teams

composed of ROTC students, and 2 teams composed of
ROTC officers. Each team was tested using the 9 scenarios
described in Table 2. The average performance in terms of
the total value of targets handled successfully is plotted us-
ing a dotted line in Fig. 5(a). It clearly indicates that there
is a tasking capacity (limit); the human teams approached
the limit roughly in the medium context-switching settings.

This conforms to cognitive studies [17, 10] in general, be-
cause both S2 and S3 subjects are limited by their cogni-
tive capacities. While monitoring the situation development
from the Map Display, at the same time S2 subjects need
to process Spot reports under time stress, to recognize/
gather missing information, and to constantly make deci-
sions on when to share information with whom about what.
Similarly, S3 subjects, while being limited by resources and
multi-tasking capacity, need to constantly monitor the sta-
tus of active targets, to decide when and how to handle which
target (prioritization, resource (re-)allocation), and to judge
whether to cancel an ongoing task if situation changes.

In addition to gaining expert experiences that can be ap-
plied to the human-agent studies, critical issues were also
revealed from the experiments. For instance, in low-stressed
situations some S2 subjects tended to frequently query MIDB
much more than necessary, while in high-stressed situations,
some S2 subjects simply ignored the spacial information
from the Map Display when they should. It was also ob-
served that some S2 subjects had difficulties in switching
to the new context, tending to process targets belonging to
the last context until completion. Similarly, in high-stressed
situations, having no time to check the Map Display, some
S3 subjects tended to allocate resources in bundles (e.g.,
U1-U4), rather than those closest to the target.

Such human “errors” rest on their fundamental cognitive
capacities. The performance cannot be improved by simply
providing a better human user interface without employing



appropriate technologies to appropriately support or match
human cognitive capacities and capabilities.

5. HUMAN-AGENT C2 TEAMS
In this set of experiments, we (1) used an R-CAST agent

(S2 agent) to play the role of S2 suite, and (2) used another
R-CAST (S3 agent) to act as S3 human operators’ decision
aid. The purpose is to investigate whether and to what
extent cognitive agents, being empowered with expert expe-
riences, could help in improving C2 teams’ performance.

5.1 Team Organization

5.1.1 S2 Agent

An S2 agent, playing the role of the S2, acted as the S3’s
teammate. The S2 agent uses a knowledge base to track the
current world state (including targets, S3/S4’s information
needs, status of their information awareness). Whenever
receiving a Spot report, the S2 agent will update the current
state of the target under concern, query relevant information
from the MIDB, then check whether the target’s state has
changed significantly (i.e., the change can affect the S3/S4’s
decisions and decision adaptations). If so, send alerts to
whoever affected.

Most importantly, expertise about the S2’s operations has
to be encoded as experiences in the form acceptable to R-
CAST agents. Since the problem domain involves three con-
texts, the S2 agent also needs to maintain three experience
bases. The following is an example experience format used
by an R-CAST agent:

(Experience e26

(Cue (Close_enough ?crowd1 ?crowd2))

(Expectancy (Move_closer ?crowd1 ?crowd2))

(Anomaly (Move_away ?crowd1 ?crowd2))

(Goal (peacekeeping yes))

(Action (Alert_converged_threat)))

It says that experience “e26” applies to the cases where
two crowds are coming close enough, and it is expected
that they are moving closer; if this is the case, the action
“Alert converged threat” is triggered; if it turned out that
the crowds moved away, the action would be terminated.

5.1.2 S3 Agent and S3 Human

For the S3 suite, an S3 agent acted as the S3 human’s
decision aid. To offer highly acceptable aids for decisions
and decision adaptations, we incorporated a recommenda-
tion model into the S3 agent based on the observations dur-
ing and confirmations after the experiments on human-only
C2 teams. Such an approach of employing heuristics from
human experts to further help them is significant in practice.

The recommendation model has four components. First,
the S3 agent can recommend target priorities to the S3 hu-
man. Based on the advice collected from the S3 subjects
in the human-only C2 experiments, the S3 agent was imple-
mented such that it can use colors to show target priorities:
red for targets with a high priority, yellow for targets with
a medium priority, and green for targets with a low prior-
ity. However, there may exist multiple targets with a high
priority at the same time. Also, due to the uncertainty of
targets’ lifespans and the current locations of targets and
friendly units, the best target selection may not be the one
with the highest priority. Thus, which target to handle first

still depends on the S3 human’s decision, which can largely
impact how the situation evolves and the team performance
in the long run. Second, the S3 agent can remind the S3
human about the current resource requirements of each ac-
tive target (i.e., how many more units are needed). Third,
the S3 agent can automate the selection of operation types
and the “effects of operation”. This releases the S3 human’s
attention for other activities.

Lastly, based on the following heuristic model, the S3
agent can recommend resources to the currently selected
target to support S3 human’s resource allocation behavior.

We use 1, 2, · · · , n to denote resource types; Ro
i to denote

the set of resources of type i; Ri to denote the set of free
resources of type i; and R′

i to denote the set of re-assignable
resources of type i. Re-assignable resources are those that
have already engaged in a task but can be preempted by
another task. The current domain has 2 resource types:
squads and EOD.

Each target places a resource requirement (cf. Table 1).
The resource requirement of target t is denoted by rt =
(r1(t), r2(t), · · · , rn(t)), where ri(t) is the number of needs
on resources of type i. For example, rc121 = (2, 0).

Given a target t, if ri(t) > |Ri|, we need to find re-
assignable resources engaged in the on-going tasks. The
on-going tasks can be ordered ascendingly by priorities up
to tasks with priorities no more than the task being consid-
ered. Let target(T ) be the target of task T , R(T ) be the
set of resources engaged in T . The priority of a task T with
respect to a target t, is determined by its TValue:

TValue(t, T ) =
TargetValue(t)
∑

ri∈rt
wi · ri

×
TargetRemainT ime(t)

max{distance(t, γ)|γ ∈ R(T )}

where wi is the weight of resources of type i, representing
the cost of using a resource with type i, and the second
factor on the right represents the chance of success when
using resources engaged in T to handle target t. Here,
TargetRemainTime(t) represents the estimated value of how
long t will remain before being removed from the simulation.

Resources engaged in task T will be considered re-assignable
for t if TValue(t, T ) > δ ∗ TValue(target(T ), T ),
where a relatively good value for the adjustable variable δ

can be obtained by running pre-experiments.
Let (T1, T2, · · · , Tk) be a list of tasks determined in the

above way relative to target t, and (yT1

i , y
T2

i , · · · , y
Tk
i ) be a

list, where y
Tj

i is the set of resources of type i from task Tj .
Then, resources of type i re-assignable for t is R′

i(t) =
{

y
T1

i (ri(t) − |Ri|) ≤ |yT1

i |
⋃

j:1..m
y

Tj

i |
⋃

j:1..m−1
y

Tj

i | < (ri(t) − |Ri|) ≤ |
⋃

j:1..m
y

Tj

i |

Next, given the set Ri(t) of resources of type i available for
target t, resources closest to the target t ought to be selected
first. Let D = (D1, D2, · · · , Dx), where {Di : (1 ≤ i ≤ x)} is
the partition of Ri(t) by the distance of resources to target
t, and Di in D are ordered by distance ascendingly. That
is, resources in Di have the same distance to t and they are
closer to t than those in Di+1. Then, closest(Ri(t), x) =
{

select(D1, x) x ≤ |D1|

select(
⋃

j:1..m
Dj , x) |

⋃

j:1..m−1
Dj | < x ≤ |

⋃

j:1..m
Dj |

which returns x number of resources closest to t, where
select(A, z) returns any one of A’s subset of size z. Here, it
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Figure 5: (a) Average performance (in net value); (b) Normalized performance by task complexity, (c)
Performance distribution of human C2 teams, (d) Performance distribution of human-agent C2 teams.

doesn’t matter whether to consider resources in
⋃

j:1..m−1
Dj

first, because at least one will come from Dm, which domi-
nates the time it takes for the resources to reach t’s location
(we assume all the resources move at the same speed).

Now, given a target t and its resource requirement rt =
(r1(t), r2(t), · · · , rn(t)), S3 agent follows the criteria below
to allocate resources for target t. For each resource type i,
(1) if ri(t) ≤ |Ri|, return closest(Ri, ri(t)); (2) if |Ri| <

ri(t) ≤ |Ri ∪ R′

i(t)|, return Ri ∪ closest(R′

i(t), ri(t) − |Ri|).
Actually, in cases where ri(t) > |Ri∪R′

i(t)|, two tasks can
be issued separately to meet the resource requirement of t:
one task employs resources in Ri ∪R′

i(t), then issue another
task later when more resources become available. However,
this might mess things up and human subjects may easily
forget to return to finish those partially committed opera-
tions. We thus left this open: human subjects could choose
to split tasks if they could manage their attention.

In experiments, S3 humans could, if they want, override
the above four kinds of recommendations from the S3 agent.

5.2 Result Analysis
We recruited ROTC students to form 10 human-agent C2

teams, and each team was tested using the same 9 scenarios.
The average performance in terms of total value of targets
handled successfully is plotted in Figure 5(a). It suggests
that the C2 teams, even assisted by cognitive agents, still
have a tasking capacity (limit). However, it also clearly
indicates that, compared with human-only C2 teams, the
tasking capacity of human-agent C2 teams have been sig-
nificantly improved (all results discussed were ‘significant’
at the p < .05 level). This suggests that cognitive agents
can play a critical role in alleviating the impact of human’s
cognitive capacity on the performance of decision makings
involving multiple contexts.

5.3 Performance Comparisons & Discussion
In order to gain a better understanding of the performance

difference, we plotted the normalized performance catego-
rized by task complexities (amount of concurrent tasks, cf.
Table 2) in Figure 5(b). It shows that the performance of
both human C2 teams (dotted lines with filled markers) and
human-agent C2 teams (lines with hollow markers) were af-
fected considerably by task complexity. In addition, human-
agent C2 teams performed much better when the perfor-
mance at the same level of task complexity is compared.

Going deeper, we plotted the performance of individual
teams in Figure 5(c)-(d). It shows that human-agent C2
teams’ performances are relatively stable, while human C2

Table 3: Decision making behaviors in detail
Tasks FullUses Reassigns W. use W. att.

HA 32.52 3.84 11.65 0.207 0.336
HH 23.73 3.07 4.97 0.443 0.556

W. use: incorrect resource use; W. att.: incorrect attention

teams differed enormously. This may demonstrate that cog-
nitive agents could augment human cognitive capacity and
improve the overall C2 performance. Additionally, in both
cases, the performance deviation became larger as context
switching frequency increased. This may suggest that more
stressed situations require more competent C2 operators.

The experiment logs also allowed us to further identify
what had contributed to the performance difference. Table
3 gives some descriptive statistics.

With the help of R-CAST agents, S3 subjects could is-
sue more tasks (32.52 vs. 23.73), could use the limited re-
sources more effectively (the number of times where all the
resources were engaged: 3.84 vs. 3.07), and were apt to real-
locate resources (11.65 vs. 4.97). Such improvement can be
attributed to the balance of workload between the humans
and agents such that the limits of human cognitive capacity
were accommodated. In particular, the impact of S2 sub-
jects’ cognitive capacity was eliminated (S2 agent took the
role); the impact of S3 subjects’ multi-tasking capacity and
mental efforts in resource allocation was alleviated.

With respect to the metric of “closer-resource-used-first”,
S3 subjects in human C2 teams (HH teams) made more in-
correct judgments than S3 subjects in human-agent teams
(HA teams): 0.443 vs. 0.207. S3 agent’s recommendation
could be wrong because its world model can be outdated:
it only gets updated information periodically from the Sim-
ulation Engine. Also, S3 subjects missed most of the at-
tention requirements on the selection of “Effects of Opera-
tions”, while it was a big change when S3 agent helped S3
subjects: 0.556 vs. 0.336. Again, S3 agents might judge the
situation incorrectly due to its outdated world state. Using
agents, other kinds of human errors (e.g., wasting resources
on non-threatening targets, issuing wrong operations to tar-
gets) were significantly diminished or avoided under high-
stressed situations.

The results are encouraging. Although the sample space
is restricted, the selected human subjects can be taken as
representatives of domain experts—they have been trained
to do similar operations. It may be argued that ROTC
students typically are near the bottom of the expertise hier-



archy. Referring to the subjects as experts might be prob-
lematic, because the working memory load for a task differs
greatly for experts vs. non-experts. However, as far as this
particular experiment is concerned, ROTC students can be
taken as domain experts. This was confirmed by our exper-
iment which showed that the performance of the 2 ROTC
officer teams were not the best among the 10 teams.

6. CONCLUSION
Multi-context real-time decision making is an extremely

challenging problem faced by various real-world application
domains. We have started to address this challenge asso-
ciated with C2 teams operating in complex urban terrain,
using the R-CAST cognitive agent architecture as human
operators’ teammates and decision aids. This paper, fo-
cused on the coupling of cognitive agent technology and
human-centered teamwork, reported our experimental stud-
ies about the impact of RPD-enabled agents on C2 teams’
performance in multi-context decision making under stress.

The experiments represent an important step forward in
uncovering the nature of real-world problems, because the
environment simulated the real domain and the human sub-
jects were recruited from Army ROTC students. The results
demonstrated that C2 team performance, while still lim-
ited by the human cognitive capacity, could be largely im-
proved when they were assisted by cognitive agents capable
of proactive information gathering/sharing and experience-
based decision making.

Intelligence analysts need tools and techniques to help
protect themselves from avoidable errors [15, 7]. Our exper-
iments demonstrated that RPD-enabled agents can serve as
one such tool to achieve reduced cognitive load, enhanced
situation awareness, and positive human-agent collabora-
tion. However, in real-world applications where information
availability and credibility is concerned, it is expected that
C2 teams with both the S2 and the S3 assisted by an R-
CAST agent could outperform either of the two team struc-
tures considered in this paper, because S2 human’s ability to
reason about imperfect information can be fully exploited.
This is worthwhile to consider in future studies.
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