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RPGR-Associated Retinal Degeneration in Human
X-Linked RP and a Murine Model
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PURPOSE.We investigated the retinal disease due to mutations in
the retinitis pigmentosa GTPase regulator (RPGR) gene in
human patients and in an Rpgr conditional knockout (cko)
mouse model.

METHODS. XLRP patients with RPGR-ORF15 mutations (n¼ 35,
ages at first visit 5–72 years) had clinical examinations, and rod
and cone perimetry. Rpgr-cko mice, in which the proximal
promoter and first exon were deleted ubiquitously, were back-
crossed onto a BALB/c background, and studied with optical
coherence tomography and electroretinography (ERG). Retinal
histopathology was performed on a subset.

RESULTS. Different patterns of rod and cone dysfunction were
present in patients. Frequently, there were midperipheral
losses with residual rod and cone function in central and
peripheral retina. Longitudinal data indicated that central rod
loss preceded peripheral rod losses. Central cone-only vision
with no peripheral function was a late stage. Less commonly,
patients had central rod and cone dysfunction, but preserved,
albeit abnormal, midperipheral rod and cone vision. Rpgr-cko
mice had progressive retinal degeneration detectable in the
first months of life. ERGs indicated relatively equal rod and
cone disease. At late stages, there was greater inferior versus
superior retinal degeneration.

CONCLUSIONS. RPGR mutations lead to progressive loss of rod
and cone vision, but show different patterns of residual
photoreceptor disease expression. Knowledge of the patterns
should guide treatment strategies. Rpgr-cko mice had onset of
degeneration at relatively young ages and progressive photo-
receptor disease. The natural history in this model will permit
preclinical proof-of-concept studies to be designed and such
studies should advance progress toward human therapy.
(Invest Ophthalmol Vis Sci. 2012;53:5594–5608) DOI:
10.1167/iovs.12-10070

X -linked retinitis pigmentosa (XLRP) is one of the more
severe and common forms of retinal degeneration.1,2 The

retinitis pigmentosa GTPase regulator gene (RPGR), accounts
for the majority of XLRP.3,4 Many studies have described the
phenotypes in RPGR-XLRP, but only one to date has examined
the disease course with serial data.5 Rates of change were
estimated for cone-based assays of vision, such as visual acuity,
Goldmann kinetic visual field area, and cone flicker full-field
electroretinograms (ERGs). A recent study seeking to identify
modifier loci among RPGR-XLRP patients also collected
longitudinal data with functional parameters, but only cone-
based flicker ERGs were used to illustrate and grade the
phenotypes.6

Ocular gene therapy has become feasible as a treatment
strategy for inherited retinal degenerations, following reports
of safety and efficacy in clinical trials of the autosomal
recessive retinal degeneration known as Leber congenital
amaurosis, specifically the form caused by mutations in the
RPE65 gene.7,8 Although there are many hurdles to surmount
before treatment of RPGR-XLRP can be initiated,9 the disease is
a worthy target because it is a relatively common form of
retinitis pigmentosa (RP), and identifiable in the clinic through
pedigree analysis and heterozygote detection.1,10 A major step
toward treatment was taken recently with proof-of-concept
studies in two canine models of RPGR-associated retinal
degenerations.11 At this stage of planning for RPGR-XLRP
therapy it should be determined what the effects of the disease
are, not only on cones, but also on rod-mediated vision. We
studied the regional retinal variation of rod as well as cone
function in RPGR-XLRP patients, and determined how this
function changed over years to decades in a cohort of patients.

Another key component for developing therapy relates to
availability of disease models that are characterized fully for
proof-of-concept studies. Two well-characterized canine mod-
els and a number of murine models exist for RPGR-XLRP.12–16

The Rpgr-associated diseases in mice that would be amenable
to gene augmentation, rather than more complex strategies
that assume a dominant negative mechanism, are rather slow
and would extend the duration of experiments testing
therapies. A novel Rpgr conditional knockout (cko) mouse
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model on a nonpigmented background was genetically
engineered, and the results of our analyses of function and
structure are compared to those of other models studied to
date.

MATERIALS AND METHODS

Human Subjects

The study included 35 patients with XLRP due to RPGR mutations (see

Table). Institutional review board approval and informed consent were

obtained, and the procedures adhered to the tenets of the Declaration

of Helsinki.

Visual Function

Patients underwent a complete eye examination, ERG, visual acuity,

and Goldmann kinetic visual fields using previously reported meth-

ods.10,17 Annual rates of change of visual acuity and kinetic visual field

extent were calculated separately for each patient by linear regression

using longitudinal data. To estimate these rates of change, we used

criteria for data censoring similar to those in a previous study of RPGR-

XLRP.5 The annual rate of change for the group was obtained by

averaging the individual rates.

Static computerized perimetry was performed with 1.78-diameter,

200 ms-duration stimuli under dark-adapted (500, 650 nm stimuli) and

light-adapted (600 nm) conditions. A full-field test of 72 loci on a 128

grid and profiles across the fovea (extending 608 at 28 intervals) were

used. Photoreceptor mediation was determined by the sensitivity

difference between detection of 500 and 650 nm stimuli.18,19 Rod and

cone sensitivity loss at each test locus was calculated by comparison

with normal mean sensitivity at that location under 500 nm, dark-

adapted, and 600 nm, light-adapted conditions, respectively. Loci were

considered to have no measurable rod sensitivity if loss was >30 dB.

Cone-mediated function from dark-adapted perimetry was compared to

normal results measured during the cone plateau of dark adaptation.

Techniques, methods of data analysis, and normal results for perimetry

have been described.18,19

Animals

All experiments were performed in compliance with the ARVO

Statement for the Use of Animals in Ophthalmic and Vision Research,

and the United Kingdom Animals (Scientific Procedures) Act 1986.

Animals were born and maintained in controlled ambient illumination

on a 12-hour light/12-hour dark cycle (ambient illumination, <3 lux).

Access to food and water was ad libitum. Procedures were conducted

with approval from the Institutional Animal Care and Use Committee of

the University of Pennsylvania.

Generation of Floxed Rpgr Mice

A mouse genomic library (a partial Sau3A digest of 129 strain genomic

DNA cloned into the BamHI site of the k2000 vector) was screened

with human RPGR probes by Southern blotting. A 7kb XbaI fragment

was sub-cloned into primer binding site with a modified polylinker and

confirmed to contain exons 1 to 4 by Southern blotting with the

respective mouse Rpgr exons. A loxP site was introduced into the

BglII-AvrII fragment 5 0 of exon 1 by site-directed mutagenesis

(confirmed by sequencing) and sub-cloned back into the 6.5kb

genomic clone. A BsaBI site in intron 1 was converted to a SalI site

by the use of an oligonucleotide adapter. The genomic clone was

linearized with SalI, and an XbaI floxed HSV thymidine kinase-Pgk

neomycin resistance cassette, taken from the plasmid 1125 (a gift from

Andrew Smith, University of Edinburgh), with SalI adaptors, was

inserted to generate the targeting vector pBMR6XLLNTL. The

orientation was confirmed by PCR.

The targeting vector was linearized with NotI and electroporated

into a male 129 embryonic stem (ES) cell line. Following selection of

targeted cells by the addition of G418 to the media, correctly targeted

clones were confirmed by Southern blotting using a 507 base pair (bp)

probe outside the targeting construct, including part of intron 4, exon

5 and part of intron 5 (PCR primers MusInt4F2 50 CAGGAGA-

TATGTGCTGTTTAG 30 to MusInt5R 50 CAGCGAATGCCTGAATATGC

30). Targeted clones gave a BglII band of ~4.2 kb compared to a ~7.5

kb wild-type (WT) band.

The HSV thymidine kinase-Pgk neomycin cassette was floxed out

by transfecting the targeted clones with pMC-Cre and selecting

ganciclovir-resistant clones. To differentiate between the loss of exon

1 and the selection cassette (type I deletion), or loss of the selection

cassette only (type II deletion), DNA from the ganciclovir-resistant

clones was screened by PCR and sequencing for the presence or

absence of the two loxP sites, the neomycin cassette, and intron 1

sequence (30 loxP site primers ExF6 50 ATTCTGGGAGCCTTAAATTC 30

to Mus50UT-R1 50 CAAATGTCATTTGCAATCCTAGG 30 [403 bp]; 50

loxP site primers MusInt1-F3 50 GCTGTCCATCGAGTGTCAGC 30 to

MusEx2R 50 CTGTAACAATAGCAGTATGTTC 30 [425 bp]; neomycin

primers NeoF 50 GCGATGCCTGCTTGCCGA 30 to NeoR 50 GAAGGC-

GATAGAAGGCGA 3 0 [272 bp]; intron 1 primers MusInt1-F4 5 0

TTTGGGAATAAATAAATTCCCTTTG 30 to MusInt1-R4 50 TTTAAAA-

GACTTCACGACAGTCAGTC 30[322 bp]).

Two targeted ES cell clones (E8 and G6) with type II deletions were

injected into C57 Bl/6 blastocysts according to standard methods. Line

E8 produced one male chimera and line G6 produced two female

chimeras, one of which resulted in germline transmission of the floxed

Rpgr gene.

Homozygous mutant female mice were mated with WT BALB/c

male mice purchased from Charles River Laboratories (Wilmington,

MA). Male and female heterozygous non-affected offspring then were

mated to produce homozygous mutant male and female mice.

Genotyping was performed (Transnetyx, Cordova, TN) on DNA

isolated from tail snips using a fully automated qPCR-based system

targeting the undisrupted WT allele at the 50 LoxP insertion site by

amplifying the following target sequence: CAGGAATGGCATT-

ATTCAACTTGCATGATTGTAATAACATTTATTACGACCATTTATTCAAT-

AAGGATCTAATGTGTGCATCGAGTATATTTGTTTTGTTC as well as

targeting the endogenous – LoxP junction site after Cre recombination

in the Rpgr gene by amplifying this target sequence: AATGGCATTATT-

CAACTTGCATGATTGTAATAACATTTATTACGACAATAACTTCGTATAG-

CATACATTATACGAAGTTATTCTAGAGTCGACTCGTTCTAGTCCATCT-

TATCTTGTCATTGTATATATTTACGTCATATCACTCAAGGAATAGCAC.

Floxed Rpgr mice were crossed with transgenic mice ubiquitously

expressing Cre under the control of the chicken b actin (CAG)

promoter20 to generate the Rpgr-cko mice used in our study.

Genotyping for Conditional Loss of Rpgr Exon 1

Genotyping was performed by PCR on DNA isolated from tail biopsies.

Floxed mice retaining exon 1 gave a 437 bp amplicon for the PCR ExF6

to Mus5 0UT-R1, and mice that had undergone a Cre-induced

recombination and were deleted for exon 1 and the flanking

sequences, gave a 764 bp amplicon for the PCR ExF6 to MusEx2R.21

Optical Coherence Tomography (OCT)

Retinal imaging was conducted as described.22 Retinal cross-sectional

images of control and Rpgr-cko mice were acquired with a 3.2 lm

resolution SD-OCT system (Bioptigen, Inc., Durham, NC). Animals

were anesthetized by intraperitoneal injection (ketamine HCl, 65 mg/

kg and xylazine, 5 mg/kg) and pupils dilated topically (tropicamide, 1%

and phenylephrine, 2.5%). Corneas were lubricated frequently during

the imaging session (Systane Ultra ophthalmic lubricant; Alcon Ltd.,

Fort Worth, TX). The optic nerve head (ONH) was centered within a

1.6 3 1.6-mm field of view under fast fundus mode, using 200 raster

scans of 200 longitudinal reflectivity profiles (LRPs) each. High-
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TABLE. Clinical and Molecular Characteristics of the RPGR Patients

Patient Family

Age at Initial

Visit (y) Nucleotide Change Eye

Visual

Acuity* Refraction†

ERG Amplitude (% of Normal Mean)‡

Rod B-Wave Cone Flicker

P1 F1 7 ORF15þ652_653delAG RE 20/60 �1.50 11 15§

LE 20/40 �0.50

P2 F1 10 ORF15þ652_653delAG RE 20/25 �6.00 22 37§

LE 20/20 �5.75

P3 F1 19 ORF15þ652_653delAG RE 20/32 plano 19 26

LE 20/100 �0.50

P4 F1 25 ORF15þ652_653delAG RE 20/20 �3.00 34 26

LE 20/20 �2.50

P5 F1 20 ORF15þ652_653delAG RE 20/20 �3.00 65 26§

LE 20/25 �2.00

P6 F1 25 ORF15þ652_653delAG RE 20/60 þ1.00 ND 10§

LE 20/40 plano

P7 F2 11 ORF15þ689_692delAGAG RE 20/50 �7.50 ND 13

LE 20/30 �4.50

P8 F2 23 ORF15þ689_692delAGAG RE 20/70 �3.25 10 20

LE 20/60 �3.00

P9 F3 7 ORF15þ963G>T RE 20/25 þ1.50 NP NP

LE 20/30 þ1.50

P10 F3 18 ORF15þ963G>T RE 20/25 þ0.50 10 27

LE 20/25 þ0.50

P11 F3 56 ORF15þ963G>T RE 20/1250 �1.00 ND ND

LE 20/400 �1.00

P12 F3 56 ORF15þ963G>T RE 20/400 �2.00 38 10

LE 20/1000 �5.00

P13 F4 30 ORF15þ507G>T RE 20/30 �0.50 ND 5

LE 20/30 �0.50

P14 F4 33 ORF15þ507G>T RE 20/40 �6.50 ND 2§

LE 20/40 �5.25

P15 F4 49 ORF15þ507G>T RE HM þ0.50 ND ND

LE HM �7.00

P16 F5 5 ORF15þ483_484delGA RE 20/25 �3.25 24 26

LE 20/25 �3.25

P17 F5 14 ORF15þ483_484delGA RE 20/40 �4.25 ND 13

LE 20/50 �4.75

P18 F6 9 ORF15þ352_460dup RE 20/30 �0.50 ND 6.5

LE 20/30 plano

P19 F7 11 ORF15þ474G>T RE 20/40 þ3.50 ND ND

LE 20/32 þ4.00

P20 F8 12 ORF15þ861G>T RE 20/32 �4.00 ND 1

LE 20/32 �3.50

P21 F9 15 ORF15þ652_653delAG RE 20/40 �1.50 8 6

LE 20/30 �2.25

P22 F10 16 ORF15þ809delA RE 20/80 �15.00 NP NP

LE 20/30 �11.25

P23 F11 16 ORF15þ631delA RE 20/200 �11.50 ND ND

LE 20/200 �11.00

P24 F12 20 ORF15þ689_692delAGAG RE 20/50 �1.50 ND ND

LE 20/60 �2.00

P25 F12 32 ORF15þ689_692delAGAG RE 20/400 �7.00 ND ND

LE 20/400 �6.00

P26 F12 43 ORF15þ689_692delAGAG RE 20/400 �2.00 ND 5

LE HM �3.75

P27 F13 21 ORF15þ543_546delGGAG RE 20/25 �4.70 ND ND

LE 20/25 �4.50

P28 F14 20 ORF15þ504_507delGGAG RE 20/80 �5.50 ND 3§

LE 20/60 �5.00

P29 F15 22 ORF15þ483_484delGA RE 20/40 �2.50 ND 2

LE 20/25 �2.00

P30 F16 23 ORF15þ990G>T RE 20/25 �4.00 11 6

LE 20/25 �4.25

P31 F17 35 ORF15þ1192_1211del20 bp RE 20/125 �7.25 ND ND

LE 20/200 �7.00
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resolution scans (40 parallel raster scans of 1000 LRP each repeated

four times) were acquired along the horizontal (nasal-temporal) and

vertical (dorsal-ventral) axes. The eyes then were repositioned by

placing the ONH at top or bottom center of the view. High-resolution

scans were repeated at these locations for a maximum coverage of 3.2

mm. Each LRP had 1024 samples representing 1160 lm of retinal

depth along the z-axis.

Post-acquisition processing of OCT data was performed with

commercial software (InVivoVue Clinic software; Bioptigen, Inc.) and

custom programs (MATLAB 6.5; MathWorks, Natick, MA). Four

repetitions of the high-resolution scans were averaged using the

manufacturer’s software. Vertical scans with ONH at the center, and

those superior and inferior to the center of the ONH were merged by

custom programs. The LRPs of the merged OCT images were aligned by

manually straightening the Bruch’s membrane (BM) and choriocapil-

laris (ChC) reflection,23,24 which was defined as the second hyper-

reflective band from the sclerad side. The outer nuclear layer (ONL),

the hyporeflective layer sclerad to the outer plexiform layer (OPL),

corresponds to the signal trough delimited by the signal peaks defining

the OPL and outer limiting membrane (OLM). ONL thickness was

determined in a semiautomated fashion using the samples having

maximum slope on both sides of the signal trough.25 The thickness of

the group of structures we termed ‘‘OSþ’’ (outer segmentþ), which is

the distance between the trough sclerad to the OLM and the trough

vitread to BM/ChC peak, based on the LRP.

Electroretinography

Full field ERGs in mice were recorded as described previously26 using a

custom-built ganzfeld, a computer-based system (EPIC-XL; LKC Tech-

nologies, Gaithersburg, MD), and specially-made contact lens electrodes

(Hansen Ophthalmics, Iowa City, IA). Mice were anesthetized and pupils

dilated as for OCT studies (see above). ERG stimuli included increasing

intensities of blue light flashes (�4.2 to �0.4 log scot-cd.s.m�2, 0.3–0.5

log unit steps) in the dark-adapted state (>12 hours). After a two-minute

wait, ERG photoresponses were evoked with 2.2 and 3.6 log scot-

cd.s.m�2 flashes. White flashes of 0.4 log cd.s.m�2 on a 25 cd.m�2 white

background were used to elicit cone function.

Leading edges (4–10 ms, depending on the response) of ERG

photoresponses were fit with a physiologically-based model of rod

phototransduction activation,26–29 as they are thought to represent the

retina-wide sum of light-induced dark-current shut-off in mouse rod

photoreceptor outer segments.30 The maximum amplitude and

sensitivity parameters were derived by minimizing the average root-

mean-squared error with a simplex algorithm while holding the

remaining parameters constant (ssc ¼ 0.85 ms; sOS ¼ 0.5 ms; d ¼ 1.1

ms)27; the fastest photoresponse was assumed to have a saturated

amplitude. B-wave amplitudes for white flashes of 0.4 log cd.s.m�2 on a

25-cd.m�2 white background were used to assess cone function. Age-

related rates of decline between these rod and cone ERG metrics were

compared by multiple linear regression.31

In a subset of the mice (n¼8 eyes for Rpgr-cko; n¼4 eyes for WT),

S-opsin- and M-opsin-mediated cone functions were compared using a

pair of responses to ultraviolet (UV) and green stimuli presented in the

light-adapted state (40 cd.m�2 white background) as described

previously.22,32,33 In short, green flashes were produced by an LED

source (510 nm peak, 0.87 log cd.s.m�2, 4 ms duration) and UV flashes

were obtained from a filtered xenon source (360 nm peak). The

intensity of the UV flash was chosen to produce responses matched in

waveform to those elicited with the green flash in the WT mice. Both

stimuli were presented in a ganzfeld (Espion; Diagnosys LLC, Littleton,

MA; Hoya U-360 filter; Edmund Optics, Barrington, NJ) lined with

aluminum foil.34

Histology

Eyes were fixed immediately after enucleation in 2.5% glutaraldehyde,

2% paraformaldehyde in PBS at room temperature for at least 24 hours,

dehydrated with graded ethanol, and embedded in paraffin. Complete

sectioning of whole eyes was performed through the vertical meridian

from nasal to temporal. Sections (5 lm thickness) were collected at

regular intervals from ~24 sites per eye, stained with hematoxylin and

eosin, and photographed (Nikon Eclipse Ti-E inverted microscope;

Nikon Instruments Inc., Melville, NY). Images from the superior and

inferior sides of the ONH were montaged digitally (Adobe Photoshop

6.0; Adobe Systems, San Jose, CA) and straightened (ImageJ, available in

the public domain at http://rsb.info.nih.gov/ij/). ONL thickness was

estimated by outlining the boundaries of the OPL (sclerad side) and

OLM, and measuring their distance at regular intervals of approxi-

mately 0.2 mm (Engauge digitizer, ver. 4.1; available in the public

domain at http://digitizer.sourceforge.net/). Images from a calibration

target (Graticules, Ltd., Tonbridge, Kent, UK) were used to scale the

measurements.

RESULTS

Clinical Characteristics of the RPGR-XLRP Patients

The 35 patients (ages 5–72 years at first visit) with RPGR-
ORF15 mutations were from 21 unrelated families (see Table).
Origins of the patients were European/British in 12 families.
The remaining patients were of Ashkenazi Jewish (4 families),
Hispanic (3), African-American (1) or Iranian (1) ethnicity.
ERGs were recorded in 31 of the patients (see Table). At the

TABLE. Continued

Patient Family

Age at Initial

Visit (y) Nucleotide Change Eye

Visual

Acuity* Refraction†

ERG Amplitude (% of Normal Mean)‡

Rod B-Wave Cone Flicker

P32 F18 34 ORF15þ689_692delAGAG RE 20/30 �0.75 ND 5§

LE 20/30 �0.25

P33 F19 39 ORF15þ652_653delAG RE 20/32 �7.25 NP NP

LE 20/32 �7.50

P34 F20 49 ORF15þ504_507delGGAG RE 20/200 �3.50 ND ND

LE 20/400 �2.50

P35 F21 72 ORF15þ652_653delAG RE LP NP NP NP

LE LP NP

ND, nondetectable; HM, hand motion; NP, not performed.
* Best corrected visual acuity.
† Expressed as spherical equivalents.
‡ ERG result is from eye with best-recorded waveform or average of both eyes if good recordings. Expressed as a percent of normal mean

amplitude (rod¼ 292 lV; cone flicker ¼ 172 lV); 2SD below normal equals 67% for rod b-wave and 60% for cone flicker (Aleman et al.17).
§ ERG recorded 1 to 4 years (P1, P2, P5, P6/F1; P14/F4; P28/F14; P32/F18) after first visit.
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FIGURE 1. Visual acuity and kinetic perimetry results in RPGR-XLRP. (A) Visual acuity as a function of age in the entire cohort of 35 patients.
Longitudinal data are shown as symbols connected by lines. (B) Subset of patients with longitudinal data and follow-up intervals from 3 to 28 years.
To compare acuity changes in these patients, data were arranged as time after estimated onset of decline in acuity. Diagonal gray dashed line
through the data: average of individual slopes. (C) Kinetic visual field extent (as % of normal mean) for the V-4e target as a function of age in the
entire cohort; longitudinal data shown as symbols connected by lines. (D) Subset of patients with longitudinal data (follow-up intervals from 3–28
years) with data arranged as time after onset of decline of field extent. Diagonal dashed line: depicts the average of individual decline rates.
Examples of kinetic visual field maps (to V- and I-4e targets) are shown at different ages for 8 of the patients (2 or 3 fields per patient are boxed
together in the columns surrounding the graph). Patient number and ages are given, and each patient series is connected by lines to the data on the
graph. Isopters for the I-4e target are interior to the V-4e isopters. Gray areas: absolute scotomas. All fields are depicted as right eyes.
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earliest visit, 15 patients had no detectable rod and cone
waveforms, or no detectable rod or cone ERG and �5 lV of
signal from the other stimulus (ages 11–56, average, 28). The
remaining patients were considered in three ERG categories:
11 patients had more rod than cone dysfunction (ages 9–43,
average 21), 3 had more cone than rod dysfunction (ages 20–
56, average 34), and 4 had relatively equal rod and cone
dysfunction (ages 7–33, average 14). Interestingly, of the 6
family members in F1, 3 had rod > cone dysfunction, 2 had
cone > rod dysfunction and one had almost equal dysfunction,
thus supporting other such observations.35

Visual acuities in this cohort of patients, as measured on the
first visit, ranged from 20/20 to light perception (LP; see Table,
Fig. 1A). Cross-sectional data analyzed across ages showed a
decline with increasing age, as demonstrated previously.5,36,37

Longitudinal data were available in 18 patients and the follow-
up intervals ranged from 3 to 28 years (average 13 years, Fig.
1B). The average of individual slopes indicated a decline in
acuity of 8.2% per year. For comparison with previously
reported data on visual acuity in RPGR-XLRP,5 the decline in
our study is equivalent to 0.079 lnMAR per year.

Kinetic field extent was quantified for the V-4e target10 and
expressed as a percent of normal mean (Figs. 1C, 1D). Cross-
sectional data analyses indicated a loss of visual field extent
with patient age (Fig. 1C) as noted previously.5,36,37 To
determine the progression of visual field loss in patients,
longitudinal data were available in 13 patients with follow-up
intervals from 3 to 28 years (average 11 years, Fig. 1D). We
assumed a model wherein the disease progresses exponentially
after its onset.38–42 The average of individual slopes indicated a
decline in visual field extent of 9% per year For comparison
with previously reported kinetic visual field data, this decline is
equivalent to 0.094 ln(Extent %) per year.5,43 Examples of
serial kinetic fields are shown to illustrate patterns of loss that
underlie the calculated extents. For example, there can be full
fields to this target (e.g., P18, age 20; P19, age 11), presence of
absolute midperipheral scotomas (e.g., P6, age 27; P18, age
29), and a near complete or complete annular midperipheral
scotoma that increases in dimension with age (e.g., P3 ages 19–
23; P28 ages 20–25). Annular midperipheral scotoma can
increase in dimension with age (e.g., P14 ages 33–46; P31 ages
35–41) and the latest stage of disease could be only a retained
small central island without detectable peripheral islands, as in
P19 and P14, or only temporal peripheral islands without a
detectable central island, as in P28 (each with longitudinal data
showing earlier patterns).

Rod Function in the Central Retina of RPGR-XLRP
can be Normal or Absent

Summaries of the phenotype of XLRP, in general, and RPGR-
XLRP, in particular, usually describe severe night vision
abnormalities in the first decade of life.1,44 Rod function in
RPGR-XLRP traditionally has been quantified with full-field
ERGs or dark-adapted thresholds at one or more loci.36,37,45–47

To understand the level of rod (and cone) dysfunction in our
patients with RPGR-XLRP, we used chromatic perimetry to
assess function across the visual field in the dark- and light-
adapted states. The first hypothesis we tested was whether
there was a simple relationship of amount of central rod-
mediated vision with age. Data from 8 patients, 4 of whom have
longitudinal measurements, are shown and grouped by age
(Figs. 2A–C). Five patients 10 to 13 years old and all with visual
acuities between 20/25 and 20/60, have dramatic differences in
central rod dysfunction (Fig. 2A). P2, at age 11, has normal
levels of rod function in the central 208 while P1, at age 10,
retains nearly normal rod function temporal to fixation, but has
major loss of rod function nasally. P18 at age 13 has very limited,

but detectable rod function in the central field; P19 (age 13) and
P20 (age 12) are almost entirely cone-mediated across the
region studied (Fig. 2A). Cone sensitivities reach normal levels
at the center, and as with rods there is variability within these
patients of similar age. The differences in cone function are,
however, less pronounced than those observed for rods.
Longitudinal data for P18, 12 years later at age 25, showed
loss of all rod function centrally; both P19 and P20, 11 to 12
years after the visits shown above, show mainly progression of
paracentral cone loss (Fig. 2B, right). In contrast to these cone-
only horizontal profiles at ages 23 to 25, P30 at age 23 has
normal or near normal rod function in the central 208. P28 at
age 23 has reduced, but detectable rod function in the central
field (Fig. 2B). At the end of the third decade of life, P30 has lost
considerable central rod function except in the temporal
central field, a pattern at age 28 that resembles that in P1 at age
10. A decay in cone function is visible after this 5-year interval,
but to a lesser degree than observed for rods. Illustrating further
the spectrum of results, P13 at age 30 has normal rod function
in the central 208 and a rod pattern similar to that of P2 at age 11
and P30 at age 23; this also applies to cones. These 12 examples
indicate a spectrum of rod function loss centrally with no
simple relationship to patient age. Follow-up results document
the progression and loss of this rod function.

Some patterns of central rod and cone dysfunction (Fig.
2D) did not resemble the other patient data. For example, P16
at age 10 had diffuse rod dysfunction (~1.5 log units) with
relatively preserved cone function across the sampled
horizontal meridian. P5, at age 42, part of a large family with
RPGR-XLRP (F1; see Table) that included P1 (Fig. 2A), had
normal rod function except at fixation and a diffuse cone
sensitivity loss (~<1 log unit), but visual acuity of 20/30. P33,
at age 45, had near normal rod function outside of the very
central field and there was cone function in a small central
island (with visual acuity of 20/40) and some greater cone
function detectable further in the periphery. P16 would be
considered as having a clinical phenotype of retinitis
pigmentosa, while P5 and P33 would likely be categorized
as forms of cone-rod dystrophy.48

Two Different Histopathologic Patterns from
Postmortem XLRP Donor Retinas Compared to In
Vivo Measures of Rod and Cone Function Sampled
across the Retina

Two studies of eye donor tissue from XLRP patients (one with a
known RPGR-ORF15 mutation) provide a foundation for
understanding the detailed photoreceptor disease expression
in vivo. One study was of a 24-year-old man with XLRP
(presumed, for this situation, to be caused by an RPGR
mutation).49 There were mainly cones with outer segments
(OS) in the central retina and rods, and cones with OS in the far
periphery. Dark-adapted perimetry in two patients (ages 16
and 28) with XLRP showed the same photoreceptor-mediated
patterns, and indicated that noninvasive characterization with
such methods was feasible and related to underlying histopa-
thology.50 A very different pattern of disease was documented
decades later with the eye donor study of a 69-year-old man
with an RPGR-ORF15 mutation.51 There was some maculop-
athy (visual acuity of 20/60) with perifoveal loss or reduced
photoreceptors with abnormal OS. Remaining retina had loss
of cones, but not rods.

Were these two patterns present in our cohort of RPGR-
XLRP patients? Rod and cone sensitivity losses plotted across
>708 of visual field18,19 were available from 30 of the 35
patients. The first histopathology pattern was present in 7
patients at their first visit (at ages 12–35; median age 23).
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FIGURE 2. Central rod and cone dysfunction in RPGR-XLRP at different ages. Dark-adapted two-color (500 nm, 650 nm) sensitivity profiles across
the horizontal meridian (central 408) in the patients (symbols are for 500 nm stimuli; continuous lines are 650 nm data) compared to normal
(shaded bands, mean 6 2 SD, to 500 nm for rod sensitivity). The photoreceptor mediation at loci with function, based on the sensitivity difference
between the two colors, is given. R, rod-mediated; M, mixed rod- and cone-mediated; C, cone-mediated. Light-adapted (600 nm) sensitivity profiles
are shown for the same patients below the dark-adapted data. Shaded band: represents normal data (mean 6 2 SD). (A) Ages 10 to 13-year-old
patients with different degrees of rod and cone dysfunction. (B) Ages 23 to 25-year-old patients with similar variations in rod and cone dysfunction
as in the younger age group. Note that 3 of the 5 patients in the younger group have serial data (boxed together in columns) in their next decade of
life and show that some of the residual rod function is lost over this interval (P18, P19, and P20). (C) Ages 28 to 30-year-old patients. P13, at age 30
shows normal central rod function and P30, followed longitudinally from age 23 until age 28 (boxed in a column), has a reduction in rod function
over this interval. (D) Other patterns detected in the cohort of RPGR-XLRP patients included: a diffuse rod dysfunction at an early age (P16), normal
rods and only slightly diminished cones (P5), and relatively preserved midperipheral rod and cone sensitivity, but only a small central island of cone-
mediated vision (P33). F, central fixation locus; N, nasal; T, temporal visual field. Hatched areas: indicate position of the physiologic blind spot.
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Examples of this pattern are P20 (age 12), P31 (age 35), and

P13 (age 48, second visit, Fig. 3B). All have preserved central

cones as well as peripheral rod and cone sensitivity, separated

by a midperipheral scotoma. Longitudinal data in two of the

patients, P13 and P31, provided insight into the natural history

of this disease expression. P13 at age 30 (first visit) had

measurable and near normal central rod sensitivity. Eighteen

years afterward, this central rod function was lost and

FIGURE 3. Patterns of rod and cone dysfunction across >708 of visual field in patients with RPGR-XLRP. (A–C) Upper panels: dark-adapted
sensitivity loss to the 500 nm stimulus (filled blue symbols). Lower panels: light-adapted sensitivity loss (orange filled symbols) to the 600 nm
stimulus. Shaded bands: 2 SD limits from normal mean. The data in column B are postulated to be the psychophysical correlates to a
histopathologic pattern reported previously for an XLRP postmortem donor retina.49 P20, P31, and P13 have residual central cones, and abnormal
peripheral rods and cones. Serial data from P13 (at ages 30 and 48; boxed together with arrow between) suggest central rods precede the cone-only
central pattern of column B. Data, such as those in the patients in column A (P3, P23, and P13), are proposed to be the earlier stage of the pattern
in column B. A cone-only central island with no detectable mid- and far-peripheral function (column C) is a more advanced stage than in column B;
this hypothesis is based on the longitudinal data in P31 (at ages 35 and 41; boxed with arrow). (D) Other patterns of rod and cone sensitivity losses
are illustrated by data from P5, P33, and P15. The patient data are likely to represent different severity stages of the cone-rod dystrophy phenotype
of RPGR-XLRP, which also has been documented in postmortem donor retina.51 F, central fixation locus.
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peripheral sensitivities decreased. Other examples of this
pattern are P3 at age 19 and P23 at age 16 (Fig. 3A); a total of
11 patients showed this pattern at first visit (ages 10–30;
median age 16).

P31 at age 41 indicates that disease progression can lead
from the first histopathologic pattern (Fig. 3B) to central cone
function only and no detectable peripheral sensitivity. Further
examples of this more advanced disease stage are P14 at age 46
and P34 at age 49 (Fig. 3C). A total of 4 patients showed this
pattern of a cone-only central island without extracentral
detection of rod or cone stimuli at their first visit (ages 21–56,
median age 41).

The second histopathology pattern is exemplified by P15, at
age 49, who showed some preserved mid- and far-peripheral
rods, but little or no measurable cone function (the ‘‘cone-rod
dystrophy’’ phenotype51). Two other patients may provide a

view of earlier stages of this disease expression. P33, at age 47

years, had measurable, but reduced rod and cone function

across most of the field with many loci retaining rod (and cone)

function in the mid-periphery. P5, at age 42, could represent

very early expression with rod sensitivity loss only near

fixation, and a diffuse, albeit mild, cone dysfunction across

the field (Fig. 3D). It is of interest that P5, at first visit at age 20

years, had rod and cone sensitivities that were within normal
limits by these measures.

Other patterns could not be fit into a sequence involving
the first or second histopathologic patterns. Three patients had
all cone-mediated fields or a diffuse loss of rod function with
near normal cone function across the field (P16–P19, ages 10–
12). Two other young patients had substantial rod and cone
function in the central field, but no detectable peripheral
function (P1 at age 7, and P7 at age 10). All 5 of these patients
eventually could progress to cone central islands only, such as
we hypothesized would be the end stage of the first
histopathologic pattern.

Rpgr-cko Mouse Model of RPGR-XLRP

A conditional Rpgr knockout mouse (Rpgr-cko) was generated;
the targeting construct pBMR6XLLNTL (top) and the WT Rpgr
locus (bottom) are illustrated (Fig. 4A). Three loxP sites were
engineered in to pBMR6XLLNTL, one in the 50 UTR and two
flanking the neomycin-thymidine kinase cassette in intron 1.
The selection cassette was floxed out by transfecting targeted
ES cells with pMC-Cre (bracket labeled ‘‘1’’). The Rpgr locus
was knocked out in floxed mice by crossing them with a
transgenic mouse ubiquitously expressing Cre under the

FIGURE 4. Rpgr-cko mouse: genetic engineering and retinal histopathology at early and late ages. (A) Generation of Rpgr- cko mouse is illustrated
with a cartoon of the targeting construct pBMR6XLLNTL (top) and the WT Rpgr locus (bottom). The Rpgr proximal promoter region and exon 1 are
deleted (bracketed region labeled ‘‘2’’). (B) Dorsal-ventral (superior-inferior) retinal sections in WT mice at two ages (5–6 and 13 months)
compared to similar-aged Rpgr-cko mice. Inferior and superior retinal sections are illustrated for each age. Retinal sections are labeled for inner
nuclear layer (INL) and ONL. (C) ONL thickness as a function of eccentricity along the vertical meridian crossing the ONH in WT (n¼ 2) and Rpgr-
cko (n¼ 2) mice at the later ages (11–13 months). Sup, superior; Inf, inferior retina.
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FIGURE 5. OCT abnormalities in Rpgr-cko mice. (A) Comparison of histologic and OCT sections in WT BALB/c mice illustrates the lamination
patterns that appear with noninvasive optical imaging (4 months old, histologic section; 5 months old, OCT scan). BM/ChC, Bruch’s membrane/
choriocapillaris; ISþOS, inner segments þouter segments. (B) Representative OCT scans (top) across ~2 mm of retina centered at the ONH, to
illustrate ONL thickness changes with age in Rpgr-cko mice. Images from the inferior retina were magnified and overlaid with LRPs to demonstrate
the reflective abnormalities in the outer retinal region in Rgpr-cko mice (b, c) compared with WT (a). OSþ is defined as the distance between the
hyporeflective trough which is sclerad to OLM and the hyporeflective trough which is vitread to BM/ChC peak. (C) Superior-inferior OCT sections
were quantified for ONL thickness in three age groups of Rpgr-cko mice (red symbols) and age-related WT mice (gray symbols). Insets: at lower
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control of the CAG promoter (bracket labeled ‘‘2’’). The Rpgr
gene was deleted for exon 1 and flanking sequences, including
predicted transcription start sites and proximal promoter
region.21 The relevant restriction endonuclease sites and PCR
primers are indicated (Fig. 4A).

Retinal histology was studied at early (5–6 months) and later
(13 months) ages, and compared with histology from WT
BALB/c mice of similar ages (Fig. 4B). Sections from superior
and inferior retina of WT and Rpgr-cko mice suggested some
thinning of the ONL in the mutant at 5 to 6 months of age, but
more pronounced thinning at 13 months. Some altitudinal
differences (inferior ONL thickness less than superior) are
observed in the sections from the 13-month-old mutant.
Measurements of ONL thickness across 4 mm of retina along
the vertical (dorsal-ventral) meridian through the ONH are
plotted for older mice (Fig. 4C). There are differences in ONL
thickness between WT and mutant across most of the sampled
retina and some altitudinal asymmetry with inferior thinner
than superior retina in the mutant only (Fig. 4C).

In Vivo Structure in Rpgr-cko Mice

To gain further understanding of the progress of retinal
degeneration with age, OCT scans were performed in Rpgr-
cko (ages 2–15 months) and compared to those of BALB/c WT
mice of similar ages (Fig. 5). The relationship of retinal
histology to OCT reflectivity is illustrated (Fig. 5A). The
vitreoretinal interface is hyperreflective, and there are hypore-
flective zones corresponding to the INL and ONL; hyper-
reflective regions deep in the outer retina have been shown to
represent IS/OS, RPE, BM, and choroid.52,53 Representative
OCT vertical scans across the ONH show retinal lamination in a
WT mouse and in two mutant mice of different ages (Fig. 5B).
Magnified images at 0.5 mm inferior retina show thinned ONL
in the mutants at 5 to 6 (b) and 13 months (c) compared to the
WT sample (a). Also, features of the scan deep to the ONL
show differences between mutant and WT: there is loss of
discrete lamination between the OLM and BM/ChC in the
mutant mice and thinning of this region in older mutants. A
similar OCT feature has been noted previously in patients with
the CEP290-NPHP6 and IQCB1-NPHP5 forms of Leber
congenital amaurosis.33

ONL thickness was measured across the vertical meridian in
38 eyes of Rpgr-cko mice and 22 WT eyes, spanning an age
range from 2 to 15 months (Fig. 5C). The data were divided
into three age groups: 2 to 6, 7 to 10, and 11 to 15 months.
There is considerable variation within each age group, but, in
general, there is progressive reduction in ONL with age in the
mutants. Mean ONL thickness in Rpgr-cko eyes (insets) is
lower in all age groups studied compared to that of the age-
related WT eyes. Certain regional variations in ONL thickness
loss were observed in the mutant data. There was a tendency
for parapapillary loss of ONL with increasing disease; only in
the oldest age group was there an observed difference between
superior and inferior ONL thickness. Our anecdotal observa-
tions of thinned outer retinal structures deep to the ONL in the
mutant mice, presumed to be mainly photoreceptor IS and OS
(Fig. 5B), were supported by measurements of the laminae
(Fig. 5D). There was a linear relationship of photoreceptor
nuclear loss and distal photoreceptor structure (termed OSþ)
loss in Rpgr-cko mice (r2 ¼ 0.89, P < 0.001).

Rod and Cone Function in the Rpgr-Mutant Mice

ERG waveforms are shown for representative WT and Rpgr-cko
mice at two different ages: 5 to 7 and 11 to 13 months (Fig.
6A). At 5 to 7 months of age dark-adapted ERGs in response to
increasing intensities of light stimuli in the Rpgr-cko mouse do
not appear remarkably different from WT at threshold (to the
dimmest lights), but amplitudes are reduced at higher stimulus
intensities. At 11 to 13 months, the mutant shows some
threshold elevation compared to WT, and ERG amplitudes are
reduced further at all intensities. Cone ERGs at both ages (Fig.
6A, lower waveform) are reduced in the mutant compared to
WT and at the older age, there is no detectable cone ERG in the
mutant.

Leading edges of the dark-adapted ERG photo responses are
well fit with a model of rod phototransduction activation (Fig.
6B). Compared to WT recordings, Rpgr-cko mice had ERG
photo responses with reduction of maximum amplitude at
both ages represented and there is greater reduction at the
older age.

Rod and cone ERG data in all WT and Rpgr-cko mice studied
were plotted as a function of age (Fig. 6C). The rod
photoresponse amplitude (P3max) in Rpgr-cko mice declines
with age and can be described with a log-linear function with a
negative slope ðlog10½P3max� ¼ 2:71� 0:0723age ½months�; r2

¼ 0.46). There is little or no reduction of rod amplitude with
age in the WT mice. Cone amplitude in WT mice also is stable
with age whereas the Rpgr-cko mice showed a decline of
function with age that also could be well described with a log-
linear function ðlog10½P280� ¼ 1:70� 0:0593age ½months�; r2

¼ 0.48). The slopes of rod and cone function decline were not
significantly different (P ¼ 0.44).

The histopathologic and some OCT data from Rpgr-cko
mice suggesting inferior more than superior retinal abnormal-
ities led to the comparison of ERGs of short-wavelength-
sensitive (S-) and middle-wavelength-sensitive (M-) cone
function. UV and green flashes in the light-adapted state did
not show significant mismatches in the Rpgr-cko mice
compared to the WT group (UV-green difference [SD]: 3
[6.8] lV in Rpgr-cko, �2 [10.5] lV in WT, P ¼ 0.34). This
suggests that the altitudinal pattern of ONL thickness was not
accompanied by detectable functional differences.

DISCUSSION

Human RPGR-XLRP Phenotype: Interpretable
Differences between Patients

XLRP in general and RPGR-XLRP in particular are acknowl-
edged to be more severe than many forms of RP.5,36,44,47 Visual
acuity and kinetic visual field results from our study concur in
general with those of previous studies that quantified rates of
decline of function in XLRP.5,36,37 The complexity of pheno-
type with differences in rod and cone disease presentation
between patients of different families or even between family
members was found in the current cohort, as in previous
studies.6,35,37,54 Given recent progress toward gene therapy in
RPGR-XLRP with success at treating canine models,11 there is
now a need to reckon with the differences in disease
expression between patients and devise a plan for therapeutic
intervention. We chose to begin by using a framework to divide

right of each plot shows the mean 6 2 SE of the data. In the 2 to 6 months age group, 18 Rpgr-cko and 10 WT eyes were analyzed; in the 7 to 10
months age group, 12 Rpgr-cko and 8 WT eyes were analyzed; and in the 11 to 15 months age group, 8 Rpgr-cko and 4 WT eyes were analyzed. (D)
ONL thickness fraction (locus and age specific) plotted as a function of OSþ thickness fraction. Graph: shows a linear relationship (with 95%
prediction intervals) of photoreceptor nuclear loss and distal photoreceptor structure loss in Rpgr-cko mice (r2 ¼ 0.89, P < 0.001).
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phenotypes that draws from results of the only two postmor-
tem retinal histopathology studies. These studies showed
major differences in regional variation of the disease and very
different effects on rod compared to cone structure and
function.49,51 The phenotype defined by the histopathology
report 30 years ago49 was detectable by two-color dark-adapted
perimetry, a technique used in our study.50 This phenotype,
associated previously with XLRP of unknown genotype, is now
confirmed in our study to be the common pattern in RPGR-

XLRP. The second phenotype was identified in the present
cohort in a few patients using the same psychophysical
method. Our cross-sectional data with some longitudinal
studies indicated that most patients can fit within the
framework of the two histopathologic patterns.

The more common phenotype in our cohort of RPGR-XLRP
patients by rod and cone psychophysics49,50 showed cone-
mediated central islands separated from peripheral rod and
cone islands by a midperipheral scotoma. Using our longitu-

FIGURE 6. Retinal function change with age in Rpgr-cko mice. (A) Dark-adapted ERG luminance-response series (upper set of waveforms) over a
range from�4.2 to�0.4 log scot cd.s.m�2 blue flashes. There are reduced amplitudes to higher intensity stimuli in Rpgr-cko mice compared to WT
waveforms at the ages of 5 to 7 and 11 to 13 months. ERG amplitudes are reduced in the older Rpgr-cko mouse compared to the younger mouse.
Cone ERGs (lower row of waveforms) also show substantial abnormalities in amplitude. All traces start at flash onset. (B) Leading edges of dark-
adapted ERG photoresponses evoked with 2.2 and 3.6 log scot cd.s.m�2 flashes (thin traces) fit as an ensemble with a model of rod
phototransduction activation (thick traces). Representative results are shown for two ages. Note the substantially smaller responses from Rpgr-cko
mice. (C) Top: rod photoreceptor function estimated with the maximum amplitude parameter of ERG photoresponses over the ages from 2 to 15
months in WT (left) and Rpgr-cko (right) mice. Below: Cone ERG amplitude as a function of age. Regression lines (thick gray) describe log-linear
change of the parameters with age; 95% prediction intervals (thin gray lines) encompassing the data are also shown.
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dinal data in patients, we concluded that this phenotype was
preceded by stages with detectable or near normal central rod
function, and succeeded by stages with only residual cone
central islands and no detectable peripheral function. We
propose that this sequence is the main one in RPGR-XLRP and
patients can be categorized by whether they are in one of these
three disease stages. There was no predictable age relationship
to the different stages of central dysfunction. Even in the first
decade of life, there was variation in the amount of detectable
rod function centrally, and such variation was found into the
third and fourth decades (Fig. 2).

Our current data also provided rod and cone psychophysical
evidence to support the occurrence in vivo of the less common
histopathologic pattern51 with relatively preserved midperiph-
eral function and cone sensitivity more impaired than that of
rods. Paracentral losses of function (e.g., P33, age 45; Fig. 2)
appear to isolate small central islands of cone function, which
may be maintained until late in the disease or lost early. Visual
acuity, thus, is not a certain marker for this phenotype although
it has been labeled as a cone-rod dystrophy and, by implication,
would be assumed to affect acuity early.

Developing a Treatment Strategy for RPGR-XLRP

What would be the treatment strategy for the common
phenotype, assuming a subretinal mode of gene therapy
delivery as used in our RPE65-LCA clinical trial and others?7,8

Targeting the central and far peripheral retina with a two-
injection strategy, as we did in later cohorts of our RPE65-LCA
trial,8 would seem worth considering. Attention should be paid
to the degree of rod as well as cone dysfunction in the central
field. Unresponsive peripheral field using chromatic dark-
adapted perimetry should be tested with achromatic dark-
adapted perimetry as a screening procedure for persistent
peripheral islands that have high thresholds. The wider
dynamic range of intensities available with achromatic dark-
adapted perimetry has been useful to detect function in
patients with markedly reduced vision.55 What would be the
expectations with therapy? Early trials primarily would be for
safety, so monitoring central and peripheral islands perimetri-
cally for rod and cone function should detect negative
functional change. Our previous work in forms of RP and
Usher syndrome provides metrics and inter-visit variability for
dark- and light-adapted threshold testing.19 Detecting positive
functional change would depend on a better understanding of
the relationship between residual function and correlative
structure. This was not attempted in our study, but is needed.
OCT analyses of the central retina and the relationship of
photoreceptor structure to photoreceptor-mediated function
will be key to decide the effects of treatment. Given the results
indicating treatment efficacy in canine Rpgr mutants,11

efficacy in the short-term in human RPGR-XLRP may be in
the form of structural change in the OS layer and accompany-
ing increase in rod or cone sensitivity. A comparison of inner
retinal OCT abnormalities56 inside and outside the treated
zone11 also would be worthy outcomes for assaying efficacy.
The knowledge of detectable short-term loss and recovery of
OS structural parameters after subretinal injections provides
useful background information about timing post-treatment of
such measurements.8

Continuing to assume a two-injection strategy for the
second and less common phenotype, placement of a central
subretinal injection would be warranted unless there was
neither photoreceptor structure nor function detectable in a
wide expanse of the macula. An injection in central or
pericentral retina and another in adjacent midperipheral retina,
where there is a tendency for greater preservation of function,
would seem logical to determine safety and efficacy.

Murine Models of XLRP: A Comparison

Several Rpgr mutant rodent models have been investigated to
date. In addition to the pursuit of greater understanding of the
disease mechanism, the models can provide opportunities for
proof-of-concept studies that may advance therapeutic interven-
tions relevant to human RPGR-XLRP. Reported models differ in
genotype and background strain, with phenotypes showing
different degrees and time courses of structural and functional
losses. Available data on the disease expression for several of
these rodent models are summarized (Supplementary Table S1,
http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.
12-10070/-/DCSupplemental). The naturally-occurring rd9
mouse shows a relatively moderate disease phenotype, with
ERGs decreasing to 60 to 70% of normal at 3 to 5 months, 50% at
11 to 16 months, and 35% at 24 months of age.57 A genetically-
engineered Rpgr-null mouse12,14,58 showed moderate degener-
ation, with dysfunction reaching 69 to 75% of normal levels at 6
months of age. ONL loss of approximately 50% was observed at
24months of age. Addition of amutant ORF15 transgene14 to the
Rpgr-nullmouse produced a severe disease phenotype with rod
ERGs decreasing to 10% of normal levels, and 50% of structural
loss 40 days after birth. The faster degeneration rate in thismodel
has been attributed to a gain-of-function mechanism.14 A
different ORF15 transgene was introduced into the Rpgr-null
mouse, resulting in preservation of ONL thickness and partial
recovery of visual function when compared toWTat 14 months
of age.58 The addition of transgenes causing overexpression of
two otherwise normal Rpgr variants (mRDef, Rpgrex1-19 and
mRORF, Rpgr-ORF15) to the Rpgr-nullmouse produced either a
severe degeneration in the first variant (ONL reduction to 22% of
normal by 3–5 months), or the preservation of ONL thickness
with possible rescue of the phenotype for the second (no loss
observed up to age 3–5 months; the mRORF transgene also was
reported not to be deleterious when applied to a WT
background). The faster degeneration in the mRDef model was
postulated to be related to abnormal accumulations of Rpgrex1-19

in the photoreceptor outer segment.16 An exon 4 knockout was
engineered and introduced to mice on either BALB/c (RpgrDEx4

BALB/c) or C57BL/6 (RpgrDEx4 BL/6) backgrounds by another
group,15 resulting in relatively milder degeneration rates. A
difference in phenotype also was found to correlate with the
mouse background strain; the RpgrDEx4 BALB/c showed a
comparatively faster cone degeneration rate by ERG, reaching
~40% of normal levels by 12 months of age, but no detectable
structural loss, whereas the RpgrDEx4 BL/6 showed some
reduction of ONL thickness, reaching a level of~85% of normal
at 12months of age. The exon1conditional knockout on aBALB/
c background presented in our study showed progressive retinal
degeneration and visual function loss, and the data suggest a
faster degeneration rate than the moderate models described
previously. By ~6 months of age, rod and cone ERGs showed a
reduction of ~40% compared to normal levels. ONL thickness
(by SD-OCT) was reduced to 35% of WT at ~13 months. Cone
and rod ERG amplitude reduction as well as structural loss
appear faster than in the reported data for the RpgrDEx4 BALB/c
model and without evidence of cone more than rod dysfunction
(Supplementary Table S1, http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.12-10070/-/DCSupplemental).

Rpgr-cko Mouse on BALB/c Background: Planning
Proof-of-Concept Studies

Recent success in gene augmentation therapy of two natural-
occurring RPGR-XLRP canine models11 and phenotype rescue
in a zebrafish model59 present opportunities for further proof-
of-concept studies, such as the introduction of a normal Rpgr
gene to certain Rpgr mouse mutants. A monocular interven-
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tion intended to halt disease progression in the treated eye
while the disease progressed in the untreated eye would
require an interocular comparison of function or structure at
some time point after the intervention. The minimal waiting
period for treatment effect to be detectable under such designs
depends on the animal model, the rates of change of structural
and functional parameters, and the variability of the measure-
ment paradigm. We have provided data that would enable this
estimate to be made in the Rpgr-cko model. Assuming known
levels of interocular variability in mouse ERG recordings26 and
rates of change (Fig. 6), treatment effect could be detected in
the present model by interocular comparison of ERGs at 4 to 6
months after intervention. Outcomes from therapeutic inter-
vention in rodents could be used to estimate treatment
efficacy, paving the way to early stage therapeutic trials for
human XLRP at different disease stages.
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