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Abstract—Parallelising sequential applications is usually a
very hard job, due to many different ways in which an appli-
cation can be parallelised and a large number of programming
models (each with its own advantages and disadvantages) that
can be used. In this paper, we describe a method to semi-
automatically generate and evaluate different parallelisations of
the same application, allowing programmers to find the best
parallelisation without significant manual reengineering of the
code. We describe a novel, high-level domain-specific language,
Refactoring Pattern Language (RPL), that is used to represent
the parallel structure of an application and to capture its extra-
functional properties (such as service time). We then describe a
set of RPL rewrite rules that can be used to generate alternative,
but semantically equivalent, parallel structures (parallelisations)
of the same application. We also describe the RPL Shell that
can be used to evaluate these parallelisations, in terms of the
desired extra-functional properties. Finally, we describe a set of
C++ refactorings, targeting OpenMP, Intel TBB and FastFlow
parallel programming models, that semi-automatically apply the
desired parallelisation to the application’s source code, therefore
giving a parallel version of the code. We demonstrate how the
RPL and the refactoring rules can be used to derive efficient
parallelisations of two realistic C++ use cases (Image Convolution
and Ant Colony Optimisation).

I. INTRODUCTION

Despite the emergence of multi-core and many-core systems,
parallel programming is still a very laborious task that is
difficult to get right. Most current application designers and
programmers are not experts in writing parallel programs.
Knowing where and when to introduce parallel constructs,
as well as what construct to introduce, can be a daunting
and seemingly ad-hoc process. As a result, parallelism is
often introduced using an abundance of low-level concur-
rency primitives, such as explicit threading mechanisms and
communication, which typically do not scale well and can
lead to deadlock, race conditions etc. Furthermore, software
engineering tasks such as porting to other parallel platforms
and general code maintenance can then require huge efforts
and often rely on good parallel systems expertise.

Parallel patterns attempt to hide away this complexity by
providing parameterised implementations of common types
of parallel operations, such as parallel farm (a.k.a. parallel-
for), pipeline and reduce. While making the task of parallel
programming easier, the programmer still needs to choose the
appropriate pattern structure for his problem and instantiate the
patterns properly; this is a highly complex process. In addition,
there is a wide choice of pattern libraries for C++, with over
10 libraries available at the time of writing. Moreover, each of
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Fig. 1. A process of parallelising C++ applications using RPL and refactoring.

these pattern libraries offers different benefits and limitations,
including different sets of supported skeletons and primitives,
and different complexities of writing parallel code. Porting
sequential C++ code to use one of these libraries and then
porting the parallel code to an alternative pattern library still
requires very significant effort.

In this paper (illustrated in Figure 1) we exploit refactoring
tool-support to offer semi-automatic program transformations
that, i) transform sequential code into its parallel equivalent,
by introducing all of the complex parallel implementation
via skeleton libraries; and, ii) transform a parallel imple-
mentation written in one skeleton library into an alternative
implementation using a different library.We also describe a
new high-level domain-specific language, Refactoring Pattern
Language (RPL), for describing the abstract and high-level
parallel structure of a C++ application, together with a sys-
tem of rewrite rules that operate over the RPL expressions,
allowing transformations between equivalent parallel structures
of the same application. Furthermore, the rewrite system also
provides runtime estimations, guiding the user to choose the
optimal parallel structure. Finally, once an optimal structure
is obtained, the rewrite system returns a refactoring recipe:
a report that shows the steps necessary for the user to



then refactor their application using tool-support in order to
introduce the correct skeletons and nestings to obtain this
optimal configuration. This allows programmers to write, with
minimal effort, performance-portable parallel applications and
to adapt them easily to new architectures by changing between
different parallel structures and implementations. Finally, we
evaluate our approach by parallelising two realistic C++ ap-
plications, Image Convolution and Ant Colony Optimisation,
demonstrating that we can achieve scalable speedups with
small programming effort. To show generality, our approach
is demonstrated on three parallel frameworks — FastFlow [2],
Intel Threading Building Blocks (TBB [23]) and OpenMP [7].

The paper makes the following research contributions:

1) We introduce new and novel refactorings that semi-
automatically (i.e., under user guidance) introduce par-
allelism into the sequential application and also adapt
the existing parallel code to alternative parallel models,
including FastFlow, OpenMP and Intel TBB;

2) We introduce a new (external) domain specific language
(DSL) for describing parallel structure of applications, to-
gether with a system of rewrite rules that allow automatic
generation of alternative parallel structures that capture
the same (sequential) code;

3) We introduce a scripting language for the refactorings
generated by the rewritings from (2);

4) We show how applications can be parallelised “from
scratch” using our DSL and refactoring system; and,

5) We evaluate our parallelisation method on two realistic,
showing how the user can quickly and easily scale his/her
application by switching to an alternative parallel model
using our refactoring system.

II. PATTERNS AND SKELETONS

In our approach, parallelism is described in terms of high-level
parallel patterns, which describe common types of parallel
operations while abstracting over concrete implementation
details. In this paper, we restrict ourselves to three classical
parallel patterns, which we consider to be among the most
useful and most common:

e The map pattern represent computations where the single
function, f, is applied to a set of independent inputs,
Z1,...,Tm, all of which are readily available. The paral-
lelism arises from applying the same function to different
inputs in parallel.

e The farm pattern is similar to map, with the difference
that the inputs to a farm are not readily available, but are
instead obtained from some stream in a sequence.

e The pipeline pattern models a parallel pipeline, where
a sequence of functions, fi, fa,..., fn are applied, in
turn, to a sequence of independent inputs, x1, X2, ..., Tn,
appearing one after the other. The output of f; be-
comes the input to f;11, so that parallelism arises
from executing f;y1(fi(--- fi(zx)---)) in parallel with
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The actual implementation of these parallel patterns is ex-
pressed in terms of algorithmic skeletons [8], parametric
parallel code artifacts (e.g. functions or classes) that are
instantiated with application code and other key information

to give concrete parallel programs. Skeletons abstract away
low-level complexities such as thread creation, communication,
synchronisation, and load balancing.

A. Common Skeleton Libraries

In this paper, we consider three state-of-the-art parallel
skeleton libraries: FastFlow[2], Intel TBB[23] and OpenMP[7].
In addition to showing the generality of our approach, our
choice of the skeleton libraries is motivated by subtle differ-
ences that exist between them, making some of them more
suitable for certain classes of problems than others. FastFlow
supports stream-parallelism and unbounded data streams as
first-class concepts, making it suitable for the cases where
the input is fed continuously to the application (e.g. video-
stream processing). OpenMP supports fewer skeletons out-of-
box compared to FastFlow and Intel TBB, making some of
them (most notably pipeline) harder to implement properly,
but also supports general low-level concepts (tasks and task
synchronisation) that enable implementing a wider class of
parallel applications and skeletons. Finally, Intel TBB supports
a wider class of skeletons out of the box than does OpenMP,
including true stream-parallel patterns such as pipeline and
farm (called parallel for in TBB), but does not provide
constructs to extend or configure the set of provided skeletons.

III. THE REFACTORING PATTERN LANGUAGE (RPL)

The Refactoring Pattern Language (RPL) allows application
programmers to design patterned applications without having
to deal with low-level implementation details. RPL provides a
number of different features, including:

1) efficient and concise representation of the full set of
patterns used to express the parallel structure of appli-
cations, allowing the application programmer to abstract
the parallelism exploitation strategies from the actual code
and to implement these strategies in terms of the available
library mechanisms;

ii) support for pattern rewriting techniques, together with
mechanisms to estimate the non-functional properties ex-
posed by patterns, allowing the application programmer to
experiment with different patterns/pattern compositions at
design time, right before going to the actual coding phase;

RPL has been designed as a high-level DSL, independent of the
underlying programming language or tools used to implement
the parallel applications. It provides the programmers with
the ability to represent pattern expressions. RPL currently
supports a limited set of stream- and data-parallel patterns,
including those discussed in Sec. II, and supports the definition
of pattern expressions via the following (simplified) grammar:

Pat ::= seq | streamGen | streamDrain | pipe(Pat, Pat) |

comp(Pat, Pat) | farm(Pat) | map(Pat) M

The seq pattern represents a sequential code wrapped into
a function that accepts inputs of type Ty and produces
the results of type Toyr. streamGen and streamDrain repre-
sent sequential patterns producing and consuming a stream
of some data type Tsrream. comp represents a sequential
composition of two patterns, where first all outputs for



Rule Name

seq (P) — farm (P) farm_intro
farm (P) — P farm_elim
comp (P1, P2) — pipe (P1, ) pipe_intro
pipe (P, P>) — comp (P1, P») pipe_elim
comp (map (P1), map (F2)) — map (comp (P, P2)) map_prom
map (P) — comp (streamGen,farm (P),streamDrain) data_strm

Fig. 2. Pattern rewriting rules

the first pattern are produced and then sent as an input
to the second pattern. pipe,farm and map represent pipeline,
farm and map patterns, as described in Section II. As
an example, a video processing application applying a set
of filters to video frames may be expressed in RPL as
pipe(streamGen, seq(filt, ), . . ., seq(filt,,), streamDrain).

Each term in a pattern expression can have one or more
attributes (which represent different extra-functional proper-
ties of the pattern) associated with it. We will denote this
by Pat<—attribute. For example, we say that the term has a
parallelism degree of n (denoted by NW(n)) if n units of
work (e.g. operating system threads) are used in parallel for the
execution of that term. We can compute the parallelism degree
of a pattern expression using the following simple rules:

e seq«NW(1);
e parallel degrees of farm and seq patterns are assigned by
a programmer (or programming tool);

e if Patl<~NW(m) and Pat2<NW(n), then comp
(Patl,Pat2)<—NW (max(m, n));
e if Patl<NW(m) and Pat2<NW(n), then pipe

(Pat1,Pat2)<—NW(m + n);

As another example, service time can be used in streaming
applications as a performance measure. The service time of a
stream pattern expression may be computed from the service
times of its sequential components and of the parallelism de-
grees in the different patterns appearing in the expression [1].
Therefore, provided that we have obtained the service times
of the seq nodes (e.g. using profiling), we can automatically
calculate the service time of the whole pattern expression. We
can use this information to compare different parallelisations
and estimate which of them will give the best performance.
We note that RPL focusses purely on specifying and reasoning
about patterns, and, as such, we demonstrate RPL here using
simple models for the sake of conciseness.

We have implemented a prototype of the RPL shell that
provides the main features of the RPL described in this paper.
The shell contains a set of well-known pattern rewriting rules
(see Figure 2) that are used to generate alternative pattern
expressions with the same functional semantics,but possibly
different extra-functional properties. Below is a typical session
the application programmer may run:

1) Represent application parallel structure through RPL.
Suppose the application we want to represent is a simple
pipeline with two stages, where the first stage processes
an item in k time units and the second stage processes
an item in 3k time units. The programmer may represent
the parallel structure of his/her application as follows:

# let stagel = Seq("f");;

# let stage2 = Seq("g");;
# let app = Pipe(stagel, stage2);;
# pp app;;
pipe
seq f
seq g

2) Annotate pattern expressions with attributes. The user can
provide the service times of the seq terms.

# let stagel = Aseq("f",[Ts(4.0)1);;
# let stage2 = Aseqg("g",[Ts(12.0)1);;
# let appl = Apipe (stagel,stage2,[]);
# ppa appl;;
pipe

seq f with Ts(4.000000)

seq g with Ts(12.000000)
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3) Evaluate extra-functional properties of the pattern ex-
pression. The application programmer may then compute
the attributes (in this case, the degree of parallelism and
service time) for the top-level pattern expression, appl:

# servicetime appl;;
- : float = 15.

# pardegree appl;;

- : int = 2

4) Evaluate alternative pattern expressions. The application
programmer, unsatisfied with the extra-functional features
of his/her pattern expression, may apply some rewriting
rules and ask for the properties of the new expression:

# let app2 = rr_pipe_elim(appl);;
# ppa app2;;
comp

seq £ with Ts(4.000000)
seq g with Ts(12.000000

# servicetime app2;;
- : float = 20.
# let app3 = rr_farm_intro app2 10;;
# ppa app3;;
farm with Pd(10) Te(1.000000)
comp

seq £ with Ts(4.000000)

seq g with Ts(12.000000
# servicetime app3;;
- : float = 1.6
It is worth pointing out that a completely different pattern
expression could have been derived that leads to a com-
parable service time, but with different total parallelism
degree (resources needed):

# let farml = rr_farm intro stagel 3;;
# let farm2 = rr_farm intro stage2 8;;

# let appé4 = Apipe(farml, farm2, []);;
# ppa app4;;
pipe

farm with Pd(3) Te(1.000000)
seq £ with Ts(4.000000)

farm with Pd(8) Te(1.000000
seq g with Ts(12.000000

servicetime app4;;

: float = 1.5

pardegree app3;;

: int = 10

pardegree appéd;;

: int = 11

[N IS RS

5) Generating a refactoring recipe Once the programmer is
satisfied with the extra-functional properties of the derived
pattern expression, he/she can generate a refactoring
recipe that contains the steps needed to transform the
actual C++ application into its parallel version with the
desired parallel structure. This recipe can then be used by
the refactoring tool (Section IV) to parallelise the code.
See Section V for example refactoring recipes.

We also have a prototype implementation of a pattern ex-
pression rewriter, that automates the process of generating
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Fig. 3.  Our refactoring tool built into Eclipse, complete with a menu of
refactorings for FastFlow, OpenMP and TBB

alternative parallel structures and optimising extra-functional
properties of interest. Based on the rewrite rules, it gener-
ates, from an initial pattern expression and using breadth-first
search, all equivalent pattern expressions.

# let app_optl = ts_optim appl;;
# ppa app_optl;;
pipe
seq £ with Ts(4.000000)
farm with Pd(3)
seq g with Ts(12.000000)

- : unit = ()
# servicetime app_optl;;
- : float = 4.

The ts_optim rewriter in this case farms out the slower
stages of the pipeline, so that the overall service time is reduced
to the service time of the slowest stage.

IV. REFACTORINGS TO INTRODUCE PARALLEL PATTERNS

Refactoring is the process of changing the structure of a
program, while preserving its functionality [19]. Unlike au-
tomatic program compilation and optimisation, refactoring
emphasises the software development cycle, principally by: i)
improving the design of software; ii) making software easier
to understand; and iii) encouraging code reuse. This leads to
increased productivity and programmability. Our refactoring
tool (Figure 3) is implemented in the Eclipse development
platform, using the CDT plugin for C++ development. This
semi-automatic approach is more general than fully automated
parallelisation techniques, which typically work only for a very
limited set of cases under specific conditions, and are not easily
tractable. Furthermore, unlike e.g. simple loop parallelisation,
refactoring is applicable to a wide range of possible parallel
structures, since parallelism is introduced in a structured way
through algorithmic skeletons.

In this section we discuss new refactoring implementations
which build upon earlier refactorings that introduce FastFlow
skeletons [6]. We have implemented a set of refactorings for
both Intel TBB and OpenMP. Due to space limitations, in this
paper we focus on Intel TBB refactorings, but the OpenMP
refactorings are similar.
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We present two refactorings: introduce map and introduce
pipeline. Each of these has two variants, according to the type
of component involved. A component (or task) is a piece of
code that will be executed in parallel as part of a parallel
pattern. Typically components are computationally intensive
pieces of code, such as expensive functions.

In TBB, components can be defined in two ways: using ei-
ther lambda expressions or function objects (sometimes called
functors in C++). These two approaches provide different
advantages to the user. Lambda expressions (introduced in
C++11 ([24, 11.4])) are anonymous functions which are useful
for simple operations which are only used at a single point in
the program and consist of only two or three statements. If
the application requires the same operation in many places, or
contains more complex code, functors are preferable: these are
classes which overload the function application operator (),
allowing instances of the class to be applied as if they were
functions ([24, 3.4.3]).

for(int i =0 ;i < NIMGS; i++) {
char xname = image_names|i];
image ximg = read_image(name);
output[i] = filter (img);

Fig. 4. Sequential code before refactoring

We will illustrate our refactorings by showing the results
when they are applied to the sequential code in Figure 4.
This represents a loop which iterates over an array of strings
containing names of image files: it reads each image from disk,
applies some function called filter, and stores the result in
the array output.

A. Parallel Maps

Maps using lambda expressions. This refactoring takes a
loop, converts the body into a lambda expression, and applies
TBB’s parallel_for function to execute the iterations
of the loop in parallel. If we apply this refactoring to the
sequential code in Figure 4, the original loop is replaced with
the code shown in Figure 5.

tbb:: parallel_for (tbb:: blocked_range<int>(0, NIMGS),
[&](const tbb::blocked_range<int>& r) {
for (int i =r.begin(); i !=r.end(); ++i) {
charx name = image_names[i];
imagex img = read_image(name);
output[i] = filter (img);

s

Fig. 5. Code after introduction of a TBB lambda map

The result consists of a single expression which applies the
parallel_for construct to two arguments: a TBB object
called a blocked range which represents the range of values
for which parallel execution is to take place, and a C++
lambda expression encapsulating the original sequential code.
The syntax [&] at the start of the lambda expression indicates
that any free variables in the body of the lambda expression
should be captured by reference. It is also possible to use [=]
to indicate capture-by-value, or [] to indicate that no variables
are expected to be captured. When the refactoring is initiated,
the user is presented with a dialogue where the capture method
can be specified, and also the name of the parameter for the




blocked range object (r in Figure 5). The rest of the process
is entirely automatic.

Maps using function objects. As an alternative to the lambda-
based refactoring shown above, the user can choose to intro-
duce a map based on a function object. In this case, a new
class is introduced in the source code immediately before the
function containing the code which is being refactored, and
the original loop is replaced by a single parallel_for
statement. The results for our sample code are shown in
Figures 6 and 7.

class ProcessImage {
char+* image_names;
char=x output;

public:
void operator()(const tbb::blocked_range<int>& r) const {
for (int i =r.begin(); i !=r.end(); ++i) {

charx name = image_names[i];
image* img = read_image(name);
output[i] = filter (img);

}

ProcessImage(charsx* arg_image_names, charsx arg_output) :
image_names(arg_image_names), output(arg_output) {}

b

Fig. 6. C++ function object definition encapsulating sequential code

tbb:: parallel_for (tbb:: blocked_range<int>(0, NIMGS),
ProcessImage(image_names, output));

Fig. 7.
object

Invocation of TBB parallel_for statement to apply function

As with the lambda map refactoring, the user is prompted
for certain parameters (the name of the functor class and the
name of the blocked range, ProcessImage and r in this
case), but the rest of the process is automatic. The definition
of the class ProcessImage is considerably more complex
than the corresponding lambda expression in Figure 5 since the
refactoring has to generate an entire class definition; moreover,
since the class definition is in a different scope from the
original code, the class definition has to include code to capture
free variables from the original scope. In lines 2 and 3 of
Figure 6 fields are defined which will contain pointers to the
arrays image_names and output in the original code: these
are filled in by the constructor on lines 14 and 15, which is
applied in line 2 of Figure 7, at the site of the original code.
Lines 5-12 in the class definition override the function call
operator (), allowing parallel for to apply instances
of ProcessImage like functions. Note that writing class
definitions like this by hand would be quite tedious and error-
prone; our experience is that automatic refactoring makes it
considerably easier to write parallel code.

B. Parallel Pipelines

We also have a refactoring to introduce pipelines using
TBB constructs, again with two variants (lambda-based and
functor-based). These require a for loop in which the body
performs a chain of computations on the elements of an
array, writing the eventual results to a possibly different array.
Conveniently, the sequential code in Figure 4 is of this form, so
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tbb:: filter_t <void, charx> stage_1(tbb::filter::serial_in_order,
Closure_1(image_names));

tbb:: filter_t <charx, imagex> stage_2(tbb::filter::serial, Closure_2());

tbb:: filter_t <image=, void> stage_3(tbb::filter::serial_in_order,
Closure_3(output));

tbb:: parallel_pipeline(16, stage_1 & stage_2 & stage_3);

Fig. 8. Introducing a TBB pipeline

we can use it to demonstrate the refactorings. For the lambda-
based refactoring, the refactored code is quite lengthy (25
lines), and we won’t discuss it in detail here.

Part of the result of the functor-based pipeline refactoring
is shown in Figure 8. This is the code which replaces the
original loop; in addition, three new classes are generated,
one for each statement in the body of the loop. These are
called Closure_1, Closure_2 and Closure_ 3, and their
definitions (omitted to save space) are quite similar to that in
Figure 6.

The refactoring introduces three TBB objects (stage_1,
stage_2 and stage_3) of type filter_t, representing
the three stages of the pipeline. In line 6 these are combined
into a single pipeline using the & operator (overloaded by TBB)
and executed using TBB’s parallel_pipeline function.
The first parameter (16 here) represents the maximum number
of stages of the pipeline which will be run in parallel. This
value (which could be some more complex expression) is
supplied by the user when the refactoring is initiated, as are
the prefixes (Closure and stage) for the class definitions
and stage names.

C. Remark on components

As can be seen from the above examples, the character of
the refactored code is quite different depending on whether
lambda expressions or function objects are used. Lambda
expressions are quite concise and only require modification of
the source code are the original site; however, the refactored
code can be quite hard to read. In contrast, function objects
lead to quite readable code at the expense of introducing large
class definitions into the source code. There is however a
possible advantage in that function objects have the potential to
be re-used at multiple points. In our current TBB refactorings,
component introduction happens automatically during other
refactorings, but in future we may introduce a separate refac-
toring to introduce function objects. Our FastFlow refactorings
already use this technique, so this would make the refactoring
process more uniform; it would also give the user finer control
over the structure of TBB refactorings.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the RPL
(Section III) and the refactoring system (Section IV) for paral-
lelising two realistic C++ use cases — Image Convolution and
Ant Colony Optimisation. For each use case, we go through the
following steps: i) starting from a sequential application, we
abstract the structure into an RPL expression; ii) using the RPL
shell and pattern rewriting rules from Figure 2, we generate
alternative equivalent parallel structures (parallelisations) that
have the same semantics as the original application and we
pick those that have the best (estimated) runtime; iii) we
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titanic xookik power

Arch AMD Intel IBM
Proc Opteron 6176  Xeon x5675  Power8
Cores 24 6 20
Threads 24 12 160
Freq. 2.3 GHz 3.06 GHz 3.69 GHz
L2 Cache 24 x 512 Kb 12 x 256 Kb 20 x 512 Kb
L3 Cache 4 x 6 Mb 2 x 12 Mb 20 x 8 Mb
RAM 32 GB 48 GB 256GB

Fig. 9. Experimental Setup

generate refactoring recipes for parallel structures from the
previous step; iv) for each recipe, we apply the corresponding
refactorings (described in Section IV) to the sequential ap-
plication, resulting in different parallel versions of the code;
and, v) we evaluate the speedups (compared to the original
sequential version) of the parallel versions from the previous
step. To demonstrate the generality of our approach, for each
recipe in step iv) we produce FastFlow, TBB and OpenMP
versions of the original application (using refactorings from
Section IV). Our evaluations of the speedups were conducted
on three different parallel machines, titanic, xookik and power.
Specifications of these machines are given in Figure V.

A. Image Convolution

Image convolution is a technique widely used in image pro-
cessing applications for blurring, smoothing and edge detec-
tion. We consider an instance of the image convolution from
video processing applications, where we are given a list of
images that are first read from a file and then processed by
applying a filter. Applying a filter to an image consists of
computing a scalar product of the filter weights with the input
pixels within a window surrounding each of the output pixels:

out(i,j) =Y Y in(i —n,j —m) x filt(n,m)  (2)

The main hotspot for parallelisation is a for loop that iterates
over the images, reading each one from a file and applying the
filter:

for (int i=0; i<nr_images; i++) {
in_image[i] = read_image(i);
out_image[i] = process_image(in_image[i]);

Using the RPL syntax, we can abstract the structure of this
code as

seq (comp (seq (read_image), seq (process_image))).

In order to parallelise the code, we can convert the comp into
pipe and each of the three seq into farm (using, respectively,
the pipe_intro and farm_intro transformations from Figure 2).
There are, therefore, 15 (2* minus sequential version) different
parallelisations of the above code. We will focus on the three
that have the best estimated performance (via RPL shell):

1) seq (pipe (seq (read_image), map (process_image)))

2) seq (pipe (map (read_image), map (process_image)))
3) map (comp (seq (read_image), seq (process_image)))

Each of these parallelisations yields a different refactoring
recipe. For example, parallelisation 2) leads to the following
refactorings steps:

1) C1 = Apply identify-task to read_image;

2) Cs = Apply identify-task to process_image;
3) P, = Apply introduce-pipeline to comp;

4) Fy, = Apply introduce-farm to Cl;

5) Fy = Apply introduce-farm to C2;

Similar recipes can be derived for other parallelisations. We
can then (semi-automatically) apply these recipes in order
using our refactorings to get different parallelisations of the
application. Figure 10 shows the speedups of different parallel
versions of the application using FastFlow, TBB and OpenMP
on titanic and xookik. In the figure, (m | s) denotes the
parallelisation where the comp is refactored into a pipeline
and its first stage, seq (read_image), is refactored into a map;
(s | m) denotes the similar parallelisation, but where the sec-
ond pipeline stage, seq (process_image), is rewritten into a map
instead of the first; and, m denotes the parallelisation where
the top-level seq is refactored into a map. We can observe
similar results on all three architectures. When smaller number
of threads is used, all parallelisations with all models perform
similarly. For larger number of cores (e.g. 5 on fitanic), (s | m)
parallelisation stops scaling with all models. m and (m | m)
parallelisations continue to scale well, reaching speedups of
about 20, 10 and 32 on titanic, xookik and power, respectively.
From these experiments, we can make three conclusions.
Firstly, we are able to obtain very good speedups using our
approach for this example. Secondly, the performance under
all three libraries (OpenMP, TBB and FastFlow) is similar on
all systems with all parallelisation. Therefore, how well the
solution performs depends mostly on the way in which it is
parallelised. Thirdly, it is crucial to choose the appropriate
parallelisation, since the best parallelisations give significantly
better speedups than others.

B. Ant Colony

Ant Colony Optimisation (ACO) [10] is a metaheuristic used
for solving NP-hard combinatorial optimisation problems. In
this paper, we apply ACO to the Single Machine Total
Weighted Tardiness Problem (SMTWTP) optimisation prob-
lem, where we are given n jobs and each job, 7, is characterised
by its processing time, p; (p in the code below), deadline, d; (d
in the code below), and weight, w; (w in the code below).The
goal is to find the schedule of jobs that minimises the total
weighted rardiness, defined as ) w; - max{0, C; — d;} where
C; is the completion time of the job, . The ACO solution to the
SMTWTP problem consists of a number of iterations, where
in each iteration each ant independently computes a schedule,
and is biased by a pheromone trail (¢ in the code below). The
pheromone trail is stronger along previously successful routes
and is defined by a matrix, 7, where 7[¢, j] is the preference
of assigning job j to the i-th place in the schedule. After all
ants compute their solution, the best solution is chosen as the
“running best”; the pheromone trail is updated accordingly,
and the next iteration is started. The main part of the program
is given below:
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for (j=0; j<num_iter; j++) {
for (i=0; i<num_ants; i++)
cost[i] = solve (i,p,d,w,t);
best_t = pick_best(&best_result);
for (i=0; i<n; i++)
t[i] = update(i, best_t, best_result);

Since pick_best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick_best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick_best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick_best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick_best ; update
2) solve ; pick_best ; map (update)
3) map (solve) ; pick_best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick_best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

Image Convolution speedups on fitanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [5]. In [4], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [3] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [1],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
also capture extra-functional parameters of patterns, such as
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Fig. 11. Ant Colony Optimisation Speedups on titanic, xookik and power. Here, ; is normal function composition, m is parallel map and s is sequential stage.

the service time and parallelism degree. We also demonstrated
how RPL can be used in the design stage of application
development, to experiment with different parallel structures
of the same application to obtain the best parallelisations. We
described a set of refactorings that allow semi-automatic imple-
mentations of the desire parallel structure (described in RPL)
to the sequential application code. To demonstrate generality,
our refactorings target three different pattern/skeleton libraries
— OpenMP, Intel TBB and FastFlow. Finally, we evaluated
how the RPL and refactorings can be used to parallelise two
realistic C++ use cases, Image Convolution and Ant Colony
Optimisation, obtaining very good speedups on three different
architectures - Intel, AMD and Power. As future work, we plan
to extend RPL to support additional patterns, such as Reduce,
Stencil and Divide-and-Conquer. We also plan to evaluate RPL
and our refactorings on larger use-cases. We also plan to
extend the prediction model in the RPL shell to use a more
sophisticated method based on machine learning for estimating
the values of the extra-functional attributes of the patterns.
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