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Abstract

The Reproductive Plan Language 2 (RPL2) is an extensible interpreted language
for writing and using evolutionary computing programs. It supports arbitrary ge-
netic representations, all structured population models described in the literature
together with further hybrids, and runs on parallel or serial hardware while hiding
parallelism from the user. This paper surveys structured population models, ex-
plains and motivates the benefits of generic systems such as RPL2 and describes
the suite of applications that have used it to date.

1 Motivation

As evolutionary computing techniques acquire greater popularity and are shown to
have ever wider application a number of trends have emerged. The emphasis of early
work in genetic algorithms on low cardinality representations is diminishing as problem
complexities increase and people find it more convenient and effective to use more
natural data structures. There is now extensive evidence, both empirical (Davis, 1991;
Michalewicz, 1993) and theoretical (Mason, 1993; Radcliffe, 1994), that the arguments
for the superiority of binary representations (Holland, 1975; Goldberg, 1989, 1990) were
at least overstated, and as the fields of evolution strategies (Baecket al., 1991), genetic
programming (Koza, 1992), evolutionary programming (Fogel, 1993) come together
with genetic algorithms an ever increasing range of representation types are becoming
commonplace.

During the last decade, as interest in evolutionary algorithms has increased, there has
been the simultaneous development and wide-spread adoption of parallel and distributed
computing. The inherent scope for parallelism evident in evolutionary computation
has been widely noted and exploited, most commonly through the use ofstructured
population models in which mating probabilities depend not only on fitness but also on
location. Thus in these structured population models each member of the population
(variously referred to as a chromosome, genome, individual or solution) has a site—
most commonly either a unique coordinate (e.g. Gorges-Schleuter, 1990) or a shared
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island number (e.g. Norman, 1988)—and matings are more common between members
that are close (share an island or have similar coordinates) than between those that are
more distant. Such structured population models, which are described in more detail in
section 2, have proved not only highly amenable to parallel implementation, but also
in many cases computationally superior to more traditionalpanmictic (unstructured)
models (in the sense of requiring fewer evaluations to solve a given problem, Gordon
& Whitley, 1993). Despite this, so close has been the association between parallelism
and structured population models that the termparallel genetic algorithm has tended to
be used for both. It is a minor objective of this paper to encourage the adoption of the
termstructured population model when it is this aspect that is referred to.

The authors of this paper both work for Edinburgh Parallel Computing Centre, which
makes extensive use of evolutionary computing techniques (in particular, genetic al-
gorithms) for both industrial and academic problem solving, and wished to develop a
system to simplify the writing of and experimentation with evolutionary algorithms.
The primary motivations were to support arbitrary representations and genetic operators
along with all population models in the literature and their hybrids, to reduce the amount
of work and coding required to develop each new application of evolutionary comput-
ing, and to provide a system that allowed the efficient exploitation of a wide range of
parallel, distributed and serial systems in a manner largely hidden from the user. RPL2,
the second implementation of theReproductive Plan Language and framework, was
produced in partnership with British Gas plc to satisfy these aims. This paper outlines
the main benefits of exploiting such a system, focusing in particular on the population
models supported by RPL2 (section 2), its support for arbitrary representations (sec-
tion 3), the modes of parallelism it supports (section 4) and the applications for which
it has been used (section 5).

RPL2 takes the form of an interpreted language with some specialised data structures and
functions designed to simplify drastically the task of implementing and experimenting
with evolutionary algorithms. Examplereproductive plans are given in the appendix.
Both parallel and serial implementations of the run-time system exist and will execute
the same plans without modification.

2 Population models

Structured populations fall into two main groups—fine-grained and coarse-grained. In
the fine-grained models, also known variously asdiffusion (Muehlenbeinet al., 1991)
or cellular models (Gordon & Whitley, 1993), it is usual for every individual to have
a unique coordinate in some space, typically a grid of some dimensionality either
with fixed or cyclic boundary conditions. In one dimension lines or rings are most
common, in two dimensions regular lattices or tori and so forth, but more complex
topologies in higher dimensions are certainly possible. Individuals then mate only
within a neighbourhood called ademe and these neighbourhoods overlap by an amount
that depend on their size and shape. Replacement is also local. This model is the natural
one to use on so-called Single-Instruction Multiple-Data (SIMD) parallel computers
(also called array processors or (loosely) data parallel machines) in which a (typically)
large number of (typically) simple processors all execute a single instruction stream
synchronously on different data items, usually configured in a grid (Hillis, 1991).
Despite this, one of the earlier implementations was by Gorges-Schleuter (1989), who
used a transputer array. It need hardly be said that the model is of general applicability
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on serial or general parallel hardware.

The characteristic behaviour of such fine-grained models is that the in-breeding within
demes tends to cause speciation as clusters of related solutions develop, leading to
natural niching behaviour (Davidor, 1991). Over time, strong characteristics developed
in one neighbourhood of the population gradually spread across the grid because of
the overlapping nature of demes, hence the termdiffusion model. As in real diffusive
systems, over time there is of course a tendency for the population to become homogen-
eous, but less quickly than in panmictic models. This population model tends to help
in avoiding premature convergence to local optima. Moreover, if the search is stopped
at a suitable stage the niching behaviour allows a larger degree of coverage of local
optima to be obtained than is typically possible with unstructured populations. Both
this and the alternative coarse-grained models are illustrated in figure 1. Other papers
describing the variants of the diffusion model include Manderick & Spiessens (1989),
Muehlenbein (1989), Spiessens & Manderick (1991), Davidor (1991), Baluja (1993),
Maruyamaet al. (1993) and Davidoret al. (1993).

RPL2 supports fine-grained population models by allowing populations to be declared
as arbitrary-dimensional structures with fixed or cyclic boundaries and provides the
structfor loop construct, which allows (any part of) a reproductive plan to be executed
over such a structured population in an unspecified order, allowing the system to exploit
parallelism if it is available. In the fine-grained model a deme structure must also be
specified. Demes are specified using a special class of user-definable operator (of which
several standard instances are provided), and indicate a pattern of neighbours for each
location in the population structure.

The other principal structured population model is thecoarse-grained model, probably
better known as theisland model. In this several panmictic populations are allowed
to develop in parallel, occasionally exchanging genomes in migration steps that might
occur after some number of generations. In some cases the island to which a genome
migrates is chosen stochastically and asynchronously (e.g. Norman, 1988), in others
deterministically in rotation (e.g. Whitleyet al., 1989) while in still others the islands
themselves have a structure such as a ring and migrations only occur between neigh-
bouring islands (e.g. Cohoonet al., 1987); this last case is sometimes known as the
stepping stone model. The largely independent course of evolution on each island again
encourages niching (orspeciation) while ultimately allowing genetic information to
migrate anywhere in the (structured) population, and again this helps to avoid prema-
ture convergence and to encourage covering if the algorithm is run with suitably low
migration rates.

Coarse grained models are typically only loosely synchronous, and work well even on
distributed systems with very limited communications bandwidths. They are supported
also in RPL2 by special declarations and use of thestructfor loop construct and
migration operators. There is sufficient flexibility included to allow arbitrary hybrid
models also, for example, an array of islands each with fine-grained populations or
a fine-grained model in which each site has an island (which could be viewed as a
generalisation of the stepping stone model). Other papers describing variants of the
island model include Petty & Leuze (1989) Cohoonet al. (1990) and Tanese (1989).

Unstructured (panmictic) populations are also, of course, available using simple vari-
able-length arrays which may be indexed directly or treated as last-in-first-out stacks.
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Figure 1: The picture on the left illustrates a so-calledfine-grained (diffusion or cellu-
lar) population structure. Each solution has a spatial location and interacts only within
some neighbourhood, termed a deme. Clusters of solutions tend to form around differ-
ent optima, which is both inherently useful and helps to avoid premature convergence.
Information slowly diffuses across the grid.
The picture on the right shows the coarse-grainedisland model, in which isolated sub-
populations exist on different processors, each evolving largely independently. Genetic
information is exchanged with low frequency through migration of solutions between
subpopulations. Again this helps track multiple optima and reduces the incidence of
premature convergence.

3 Representation Issues

It was stressed in section 1 earlier that a major design consideration for RPL2 was
that it impose no constraints on the data structures used to represent genomes. This
is achieved by including a generic pointer in thegenome data structure that references
a user-definable data structure together with fields that are (potentially) relevant to all
problems. A distinction is then made betweenrepresentation-independent operators,
whose action depends only on the standard fields of a genome (such as fitness measures),
and representation-dependent operators, which may manipulate the problem-specific
part. Examples of representation-independent operators include selection mechanisms,
replacement strategies, migration and deme collection. All “genetic” operators (most
commonly recombination, mutation and inversion) are representation-dependent, as are
evaluation functions, local optimisers and generators of random solutions This strongly
promotes code re-use as domain-independent operators can form generic libraries. Even
representation-dependent operators may have fairly wide applicability since many dif-
ferent problems may share operators at the genetic level: it is only evaluation functions
that invariably have to be developed freshly for new problem domains.

Some evolutionary algorithms have been developed that employ more than one repres-
entation at a time. A notable example of this is the work of Hillis (1991), evolving
sorting networks with a parasite model, where the evaluation function evolved to change
the test set as the sorting networks improved. Similarly, Husbands & Mill (1991) have
used co-evolution models with different populations optimising different parts of a pro-
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cess plan which are then brought together for arbitration necessitating the use of multiple
representations. There are also cases in which control algorithms are employed to vary
the (often large number of) parameters as an evolutionary algorithm progresses, such as
the work of Davis (1989) adapting operator probabilities on the basis of their observed
performance. RPL2 caters for the simultaneous use of multiple representations in a
single reproductive plan, which greatly simplifies the implementation of such schemes.

4 Parallelism

Evolutionary algorithms that use populations are inherently parallel in the sense that—
depending on the exact reproductive plan used—each chromosome update is largely
independent of the others. There are a number of options for implementation on parallel
computers, several of which have been proposed in the literature and implemented. As
has been emphasised, population structure has tended to be tied closely to the architecture
of a particular target machine to date, but there is no reason, in general, why this need
be so.

Parallelism is supported in RPL2 at a variety of levels. Data decomposition of struc-
tured populations can be achieved transparently, with different regions of the popula-
tion evolving on different processors, possibly partially synchronised by inter-process
communication. Distribution of fine-grained models tends to require more interpro-
cess communication and synchronisation so their efficiency is more sensitive to the
computation-to-communications ratio for the target platform.

Task farming of compute intensive tasks, such as genome evaluation (e.g. Verhoeven
et al., 1992, Starkweatheret al., 1990), is also provided via theforall loop construct,
which indicates a set of operations to be performed on all members of a population stack
in no fixed order. This is particularly relevant to real-world optimisation tasks for which
it is almost invariably the case that the bulk of the time is spent on fitness evaluation.
(For examples of this see section 5, which discusses applications.) User operators
may themselves include parallel code or run on parallel hardware independently of the
framework, giving yet more scope for parallelism.

RPL2 will run the same reproductive plan on serial, distributed or parallel hard-
ware without modification. It uses the Marsaglia pseudo-random number generator
(Marsagliaet al., 1990), which as well as producing numbers with much better statist-
ical distributions should allow identical results to be produced on different processors
provided that they use the same floating point representation.

5 Applications

Applications that have currently been tackled using RPL2 include optimising a gas
pipeline network with British Gas using a variable-cardinality integer representation
(Boyd et al., 1994), the Travelling Sales-rep Problem using a permutation representa-
tion with Random Assorting Recombination (Radcliffe, 1994) and data mining using a
hierarchical genetic algorithm to evolve interesting sets of rules concerning data (Rad-
cliffe & Surry, 1994). Trivial test problems using binary representations have also been
implemented. Applications that used the prototype RPL system include optimising a
retail network for Ford cars using an evaluation function that was a spatial interaction
model running on a Connection Machine with a set representation (George, 1994), stock
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market tracking with a hybrid quadratic programming scheme and a set-based repres-
entation (Shapcott, 1992) and neural network topology optimisation (Dewdney, 1992).

Several libraries of operators and representations are provided with the RPL2 frame-
work. Constructing new operators and representations is a simple matter of writing
standard ANSI C functions with return values and arguments corresponding to RPL2
data types. A preprocessor generates appropriate wrapper code to allow the operators
to be called dynamically at plan run-time. New libraries of operators may optionally in-
clude initialisation and exit routines, start-up parameters, and check-pointing facilities.
A library of representation-independent operators need include nothing further, while
a new representation must define several routines that can be used by the framework
to pack, unpack and free the user-defined component of a genome. The packing and
unpacking routines are necessary to allow genomes to be passed between processors
cleanly but may be null for serial applications.

Customised versions of the framework are built by linking together whatever combin-
ation of operator libraries and representations are desired, allowing locally developed
operators to be tested in the context of existing libraries, maintained in some central
location. RPL2 will be distributed freely in object form by the time of publication.
Inquiries are welcomed by electronic mail atrpl��support�epcc�ed�ac�uk. A wide
range of serial and parallel hardware platforms are supported.
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Appendix: Example RPL2 plans

Panmictic example
� This is a simple panmictic �unstructured� example that illustrates how
� parallelism can be applied to such problems �the forall construct�
� The plan is based on a population�cache model illustrating generational update�

plan�PanmicticExample�

�� Preliminary section � declare the libraries and variables that we use

use StdInst� Binary��	
�� � the Binary repn is parameterised by string length
string sFile�
bool bMaxIsBest�

int iCounter� nGenerations� i� nPopsize�

genome gNew�gChild�gParentA�gParentB�
gstack gsPop� gsCache� gsParents� � population� a �shadow�� and space for parents

� Initialisation section

sFile � �stdout�� � direct output to the terminal
nPopsize � 	��� � population size
nGenerations � ���� � number of generations
bMaxIsBest � TRUE� � maximise the evaluation function

Randomize���� � pseudo�random initialisation

for iCounter � � to nPopsize � create an initial population of nPopsize genomes
gNew � RandomGenome���
Push�gNew�gsPop��

endfor

forall gChild in gsPop � evaluate �in parallel� the initial population
EvalOneCount�gNew�� � trivial evaluation equal to number of �s in string

endforall

for i � � to nGenerations � generational update scheme

Empty�gsCache�� � empty the stack where we�ll build the next gen
Empty�gsParents�� � empty the array of parents

ScaleRanked�gsPop� bMaxIsBest� ���� ����� � scale population on ranking
SelectScaledSUS�gsPop� 	 � nPopsize� gsParents�� � choose all parents at once

for iCounter � � to nPopsize � create new generation of genomes
gParentA � Pop�gsParents��
gParentB � Pop�gsParents��
gChild � CrossNpt�gParentA� gParentB� �� ��
�� � �pt cross� 	�� clone only
Push�gChild�gsCache��

endfor

forall gChild in gsCache � mutate and evaluate the new generation
Mutate�gChild� ������ � bit�wise mutation rate of ��
EvalOneCount�gChild��

endforall

Swap�gsPop� gsCache�� � swap the new generation for the old

StatsPrint�i����gsPop�sFile�� � collect population statistics every �� generations
endfor
endplan
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Hybrid population structure example
� This plan shows a more advanced use of RPL	� Here� the population is a set of islands�
� each of which contain a fine�grained set of genomes� A generational update is performed
� by crossing the best and a random genome at each point to get a new population�

plan�CombinationExample�

�� Preliminary section � declare libraries and the population structure
� declare the population template and the distance metric which defines the deme
� Note ��� means cyclic �toroidal� boundaries for that axis and �� is a no�wrap boundary

use StdInst� Set�	���� � use a 	�� element set representation
structure ��island� �island� ���fine� ���fine� deme Taxicab�	��

�� Declarations section � declare all variables that we use

int iGeneration� nGenerations�
bool bMaxIsBest�

� These declarations correspond to the entire population structure ��x�x��x�� elements�
gstack ��������� gsTmp�
genome ��������� gPop� gMate� gSelf�

� These arrays correspond only to the island axes of the population ��x� elements�
gstack ��������� gsImmigrants�
genome ��������� gBestImmigrant� gEmigrant�

�� Instructions section � the executable code for the plan

nGenerations � ����
bMaxIsBest � FALSE�
Randomize���� � pseudo�random initialisation

structfor ��������� � loop over everything to create the population
gPop � RandomGenome��� � generate a random initial population
Squash�gPop�� � simple evaluation function

endstructfor

for iGeneration � � to nGenerations � loop for a fixed number of generations

structfor ��������� � loop over the island axes

structfor ����� � loop over remaining �fine grained� axes

DemeCollect�gsTmp�gPop�� � collect each genome�s neighbours
gSelf � SelectRawTournament�gsTmp� bMaxIsBest� 	� ���� FALSE��
gMate � SelectRandom�gsTmp��
gPop � rarw�gSelf� gMate� ��� � RAR�� operator
Mutate�gPop� ���	�� � set mutation
Squash�gPop�� � evaluate the new population

endstructfor

� now possibly migrate the best member of each island to a random island
� and replace a random member of an island with the best immigrant

gEmigrant � ReduceRawBest�gPop� bMaxIsBest��
MigrateRandom�gsImmigrants� gEmigrant� �����
gBestImmigrant � SelectRawBest�gsImmigrants� bMaxIsBest��
ProjectRandom�gPop� gBestImmigrant��

endstructfor
endfor
endplan
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