
RQL: A Declarative Query Language for RDF*

Gregory Karvounarakis Sofia Alexaki
Vassilis Christophides Dimitris Plexousakis

Institute of Computer Science
FORTH, Vassilika Vouton

P.O. 1385, Heraklion, Greece

gregkar,alexaki,christop,dp
@ics.forth.gr

Michel Scholl

CEDRIC/CNAM and INRIA
292 Rue St Martin

75141 Paris, Cedex 03, France

scholl@cnam.fr

ABSTRACT
Real-scale Semantic Web applications, such as Knowledge
Portals and E-Marketplaces, require the management of large
volumes of metadata, i.e., information describing the avail-
able Web content and services. Better knowledge about
their meaning, usage, accessibility or quality will consid-
erably facilitate an automated processing of Web resources.
The Resource Description Framework (RDF) enables the
creation and exchange of metadata as normal Web data.
Although voluminous RDF descriptions are already appear-
ing, su�ciently expressive declarative languages for querying
both RDF descriptions and schemas are still missing. In this
paper, we propose a new RDF query language called RQL.
It is a typed functional language (a la OQL) and relies on a
formal model for directed labeled graphs permitting the in-
terpretation of superimposed resource descriptions by means
of one or more RDF schemas. RQL adapts the functionality
of semistructured/XML query languages to the peculiarities
of RDF but, foremost, it enables to uniformly query both
resource descriptions and schemas. We illustrate the RQL
syntax, semantics and typing system by means of a set of
example queries and report on the performance of our per-
sistent RDF Store employed by the RQL interpreter.

Categories and Subject Descriptors
H.2.3 [Information Systems]: Database Management-Query
Languages

General Terms
Management, Languages, Standardization

1. INTRODUCTION
In the next evolution step of the Web, termed the Seman-

tic Web [10], vast amounts of information resources (data,
documents, programs) will be made available along with var-
ious kinds of descriptive information, i.e., metadata. Better
knowledge about the meaning, usage, accessibility or quality
of web resources will considerably facilitate automated pro-
cessing of available Web content/services. The Resource De-
scription Framework (RDF) [39, 12] enables the creation and

�This work was supported in part by the European projects
C-Web (IST-1999-13479) and Mesmuses (IST-2000-26074).

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

exchange of resource metadata as any other Web data. More
precisely, RDF provides i) a Standard Representation Lan-
guage for metadata based on directed labeled graphs in which
nodes are called resources (or literals) and edges are called
properties; ii) a Schema De�nition Language (RDFS) [12],
for creating vocabularies of labels for these graph nodes
(called classes) and edges (called property types); and iii)
an XML syntax for expressing metadata and schemas in a
form that is both humanly readable and machine under-
standable. The most distinctive feature of the model of
RDF is its ability to superimpose several descriptions for
the same Web resources in a variety of application contexts
(e.g., advertisement, recommendation, copyrights, content
rating, push channels, etc.). Yet, declarative languages for
smoothly querying both RDF resource descriptions and re-
lated schemas, are still missing.
This ability is particularly useful for real-scale Semantic

Web applications such as Knowledge Portals and E-Market-
places that require the management of voluminous RDF de-
scription bases. For instance, in Knowledge Portals such as
Open Directory Project (ODP), CNET, XMLTree1, various
information resources such as sites, articles, etc. are ag-
gregated and classi�ed under large hierarchies of thematic
categories or topics. These descriptions are exploited by
push channels aiming at personalizing Portal access (e.g.,
on a speci�c theme), using standards like the RDF Site
Summary [9]. Furthermore, the entire catalog of Portals
can be exported in RDF, as in the case of Open Directory,
comprising around 170M of Subject Topics and 700M of
indexed URIs. Unfortunately, searching Portal catalogs is
still limited to keyword-based retrieval or theme navigation.
The same is true for white (or yellow) pages of emerging
E-Marketplaces, where descriptions involve not only infor-
mation about potential buyers and sellers, but also about
provided/requested Web services (i.e., programs). Stan-
dards like UDDI [22] and ebXML [27] intend to support reg-
istries with service advertisements using keywords for cat-
egorization under geographical (e.g., ISO 19119), industry
(e.g., NAICS) or product (e.g., UNSPSC) classi�cation tax-
onomies. There is an ongoing e�ort to express service de-
scriptions and schemas in RDF (e.g., see the RDF version
of WSDL [55]) and take bene�t from existing RDF support
(e.g., query engines) in service matchmaking (i.e., matching
service o�ers with service requests).

1See www.dmoz.org, home.cnet.com, www.xmltree.com re-
spectively.

It becomes evident that managing voluminous RDF de-
scription bases and schemas with existing low-level APIs
and �le-based implementations [50] does not ensure fast de-
ployment and easy maintenance of real-scale Semantic Web
applications. Still, we want to bene�t from database tech-
nology in order to support declarative access and logical and
physical RDF data independence. In this way, Semantic Web
applications have to specify in a high-level language only
which resources need to be accessed, leaving the task of de-
termining how to e�ciently store or access their descriptions
to the underlying RDF database engine.
Motivated by the above issues, we propose a new query

language for RDF descriptions and schemas. Our language,
called RQL, relies on a formal graph model that captures
the RDF modeling primitives (i.e., labels on both graph
nodes and edges, taxonomies of labels) and permits the
interpretation of superimposed resource descriptions. In
this context, RQL adapts the functionality of semistruc-
tured or XML query languages [1] to the peculiarities of
RDF but also extends this functionality in order to uni-
formly query both RDF descriptions and schemas. Thus,
users are able to query resources described according to their
preferred schema, while discovering, in the sequel, how the
same resources are also described using another classi�cation
schema. To illustrate our claims, we are using as a running
example a cultural community Web Portal (see Section 2).
Then, we make the following contributions:

� In Section 3, we introduce a formal data model and
type system for description bases created according
to the RDF Model & Syntax and Schema speci�ca-
tions [39, 12]. In order to support superimposed RDF
descriptions, the main modeling challenge is to repre-
sent properties as self-existent individuals, as well as to
introduce a graph instantiation mechanism permitting
multiple classi�cation of resources.

� In Section 4, we propose RQL, the �rst declarative
language for querying RDF description bases. RQL
is a typed language following a functional approach (a
la OQL [15]). Its functionality is illustrated by means
of numerous useful RDF queries. The novelty of RQL
lies in its ability to smoothly combine schema and data
querying while exploiting all RDF modeling features.

� In Section 5, we describe our persistent RDF Store
(RSSDB) for loading resource descriptions in an object-
relational DBMS by exploiting the available RDF schema
knowledge. In particular, we illustrate the performance
of RSSDB for storing and querying voluminous RDF
descriptions, such as the ODP catalog. For this pur-
pose, we rely on a benchmark of RDF query templates
depicting the core RQL functionality.

Finally, in Section 6 we summarize our contribution and
draw directions for further research.

2. MOTIVATING EXAMPLE
In this section, we brie
y recall the main modeling primi-

tives proposed in the Resource Description Framework (RDF)
Model & Syntax and Schema (RDFS) speci�cations [39, 12]
using as a running example a cultural Portal catalog. To
build this catalog, we need to describe cultural resources
(e.g., Museum Web sites, Web pages with exhibited arti-
facts) both from a Portal administrator and a museum spe-
cialist perspective. The former is essentially interested in ad-
ministrative metadata (e.g., mime-types, �le sizes, modi�ca-
tion dates) of resources on the Web, whereas the latter needs

to focus more on their semantic description using notions
such as Artist, Artifact, Museum and their possible rela-
tionships. These semantic descriptions2 can be constructed
using existing ontologies (e.g., the International Council of
Museums CIDOC Conceptual Reference Model3) or vocab-
ularies (e.g., the Open Directory Topics4) and cannot always
be extracted automatically from resource content or links.
The lower part of Figure 1 depicts the descriptions created

for two MuseumWeb sites (resources &r4 and &r7) and three
images of artifacts available on the Web (resources &r2, &r3
and &r6). We hereforth use the pre�x & to denote the in-
volved resource URIs (i.e., resource identity). Let us �rst
consider resource &r4. On the one hand, it is described as
an ExtResource having two properties: title with value the
string \Reina So�a Museum" and last modified with value
the date 2000/06/09. On the other, &r4 is also classi�ed un-
der Museum, in order to capture its semantic relationships
with other Web resources such as artifact images. For in-
stance, we can state that &r2 is an instance of class Painting
and has a property exhibited with value the resource &r4
and a property technique with string value \oil on can-
vas". Resources &r2, &r3 and &r6 are multiply classi�ed:
under ExtResource and under Painting and Sculpture re-
spectively. Finally, in order to interrelate artifact resources,
some intermediate resources for artists (i.e., which are not on
the Web) need to be generated, as for instance, &r1 and &r5.
More precisely, &r1 is a resource instance of class Painter
and its URI is given internally by the Portal description
base. Associated with &r1 are: a) two paints properties
with values the resources &r2 and &r3; and b) a fname prop-
erty with value \Pablo" and a lname property with value
\Picasso". Hence, diverse descriptions of the same Web re-
sources (e.g., &r2 as ExtResource and Museum) are easily
and naturally represented in RDF as directed labeled graphs.
The labels for graph nodes (i.e., classes or literal types) and
edges (i.e., properties) are de�ned in RDF schemas.
The upper part of Figure 1 depicts two such schemas,

intended for museum specialists and Portal administrators
respectively. The scope of the declarations is determined by
the corresponding namespace de�nition of each schema, e.g.,
ns1 (www.icom.com/schema1.rdf) and ns2 (www.oclc.com/-
schema2.rdf). The uniqueness of schema labels is ensured
by using namespaces as pre�xes of the corresponding class
and property names (for simplicity, we will hereforth omit
namespaces). In the former schema, the property creates,
is de�ned with domain the class Artist and range the class
Artifact. Note that properties serve to represent attributes
(or characteristics) of resources as well as relationships (or
roles) between resources. Furthermore, both classes and
properties can be organized into taxonomies carrying inclu-
sion semantics (multiple specialization is also supported).
For example, the class Painter is a subclass of Artist while
the property paints (or sculpts) re�nes creates. In a nut-
shell, RDF properties are self-existent individuals (i.e., de-
coupled from class de�nitions) and are by default unordered
(e.g., there is no order between the properties fname and
lname), optional (e.g., the property material is not used),

2Note that the complexity of semantic descriptions depends
on the nature of resources (e.g., sites, documents, data, pro-
grams) and the breadth of the community domains of dis-
course (e.g., targeting horizontal or vertical markets).
3www.ics.forth.gr/proj/isst/Activities/CIS/cidoc
4www.dmoz.org

String
String

String

subPropertyOf (isA)

String

Integer

typeOf (instance)

"Rodin"

subClassOf (isA)

"August"

creates

"oil on canvas"

Date
last_modified

Ext.Resource

exhibited

titlemime-type

title

creates
Artist Artifact

Painter Painting

Sculptor Sculpture
material

technique

paints

exhibited

paints

Museum
exhibited

lname
&r5

"Pablo"

String

"Picasso"

technique

paints

title

last_modified

r1:www.culture.net#picasso132

2000-02-01

sculpts

r6:www.artchive.com/crucifixion.jpg

file_size

r7:www.rodin.fr

r5:www.culture.net#rodin424

last_modified

2000-06-09

r4:www.museum.es

"oil on canvas"

r2:www.museum.es/guernica.jpg

String

ns2:www.oclc.org/schema2.rdf

technique

r3:www.museum.es/woman.qti

mime-type

lname

fname

ns1:www.icom.com/schema1.rdf

P
or

ta
l r

es
ou

rc
e

de
sc

ri
pt

io
ns

P
or

ta
l S

ch
em

as
lname

fname

fname

"Rodin Museum"

"image/jpeg"

&r6

&r3

&r7

Museum"
"Reina Sofia&r4

&r1

&r2

Figure 1: An example of RDF resource descriptions for a Cultural Portal

multi-valued (e.g., we have two paints properties), and they
can be inherited (e.g., creates). Note that, although multi-
ple resource classi�cation can be expressed by multiple class
specialization, it is an unrealistic alternative, since it implies
that, for each class C in our cultural schema, a common sub-
class of C and ExtResource has to be created. However, in
a Web setting, resources are usually described by various
communities using their independently developed schemas.

2.1 RDF/S vs. Well-Known Data Models
The RDF modeling primitives are reminiscent of knowl-

edge representation languages like Telos [47, 49] as well as
of data models proposed for net-based applications such as
Superimposed Information Systems [25, 41] and LDAP Di-
rectory Services [34, 8]. It becomes clear that the RDF
modeling primitives are substantially di�erent from those
de�ned in object or relational database models [3]:

� Classes do not de�ne object or relation types: an in-
stance of a class is just a resource URI without any
value/state (e.g., the URI &r2 is an instance of Painting
regardless of any property associated to it);

� Resources (URIs) may belong to di�erent classes not
necessarily pairwise related by specialization: the in-
stances of a class may have associated quite di�erent
properties, while there is no other class on which the
union of these properties is de�ned (e.g., the di�erent
properties of &r2 and &r4 which both are instances of
ExtResource);

� Properties may also be re�ned by respecting a minimal
set of constraints i.e., domain and range compatibili-
ties (e.g., the property creates).

In addition, less rigid models, such as those proposed
for semistructured or XML databases [1], also fail to cap-
ture the semantics of RDF description bases. Clearly, most
semistructured formalisms, such as OEM [48] or UnQL [13],
are totally schemaless (allowing arbitrary labels on edges or
nodes but not both). Moreover, semistructured systems of-
fering typing features (e.g., pattern instantiation) like YAT [20,
21], cannot exploit the RDF class (or property) hierarchies.

Finally, RDF schemas have substantial di�erences from XML
DTDs [11] or the more recent XML Schema proposal [53,
42]: due to multiple classi�cation, resources may have quite
irregular structures (e.g., the di�erent descriptions of &r2
and &r4) modeled only through an exception mechanism a
la SGML [33] in the XML proposals. Last but not least,
they can't distinguish between entity labels (e.g., Artist)
and relationship labels (e.g., creates). On the other hand,
XML element content models (i.e., regular expressions) can-
not be expressed in RDF since properties are - by default
- unordered, optional and multi-valued. As a consequence,
query languages proposed for semistructured or XML data
(e.g., LOREL [4], StruQL [28], XML-QL [26], XML-GL [16],
Quilt [23] or the recent XQuery language [17]) fail to inter-
pret the semantics of RDF node or edge labels. The same is
true for the languages proposed to query standard database
schemas (e.g., SchemaSQL [38], XSQL [36], Noodle [46]).
Similar di�culties are encountered in logic-based frame-

works, which have been proposed for RDF manipulation.
For instance, SiLRI [24] proposes some RDF reasoning mech-
anisms using F-logic [37]. Although powerful, this approach
does not capture the peculiarities of RDF: re�nement of
properties is not allowed (since slots are locally de�ned within
classes), container values are not supported (since it relies
on a pure object model), while resource descriptions hav-
ing heterogeneous types cannot be accommodated (due to
strict typing). Metalog [43] uses Datalog to model RDF
properties as binary predicates and suggests an extension of
the RDFS speci�cation with variables and logical connec-
tors (and, or, not, implies). However, storing and query-
ing RDF descriptions with Metalog almost totally disre-
gards RDF schemas. Furthermore, the recently proposed
query language for DAML+OIL [54, 29] (a Description Logic
extension of RDF/S) has substantially limited expressive
power compared to RQL: only existential quanti�cation is
supported, disjunction is expressible only through the im-
plicit existential quanti�cation while (safe) negation, nested
queries and aggregate functions are not supported.

Finally, a number of languages [45, 51, 52] have been
proposed for querying RDF descriptions and schemas un-
der the form of triples (i.e., atomic statements). These
languages consider a
at relational representation of RDF
statements (i.e., a SQL table with attributes subject, pred-
icate, and object), as a logical model for issuing queries on
RDF graphs. Simple RQL queries (i.e., without transitive
closure on class/property hierarchies) can be easily rewritten
into these languages, leaving to the users the arduous task
of expressing path navigation with explicit join conditions.

3. A FORMAL MODEL FOR RDF
In this section we introduce a graph data model bridging

and reconciling W3C RDF Model & Syntax with Schema
speci�cations [39, 12]. Compared to the RDF/S speci�ca-
tions, the main contribution of our formal model is the in-
troduction of a type system for RDF schemas, as well as
the representation of RDF statements as atomic or complex
data values. Then the connection between the two worlds,
is ensured by an almost standard type interpretation func-
tion. These are two crucial issues for de�ning the semantics
and optimization features of RDF query languages such as
RQL. We believe that our model gives a valuable input to
ongoing W3C formalization e�orts of RDF [31].
RDF resource descriptions [39] are represented as directed

labeled graphs whose nodes are called resources (or literals)
and edges are called properties. RDFS schemas [12] essen-
tially de�ne vocabularies of labels for graph nodes, called
classes or literal types and edges called property types. Both
kinds of labels can be organized into taxonomies carrying
inclusion semantics (i.e., class or property subsumption).
More formally, each RDF schema uses a �nite set of class

names C and property names P . Properties are then de-
�ned using class names or literal types so that: for each
p 2 P , domain(p) 2 C and range(p) 2 C [L, where L is
a set of Literal type names like string, integer, date, etc.
We denote by H = (N;�) a hierarchy of class and property
names, where N = C[P . H is well-formed if � is a smallest
partial ordering such that: if p1; p2 2 P and p1 � p2, then
domain(p1) � domain(p2) and range(p1) � range(p2). Ad-
ditionally, we impose a unique name assumption on H.
In the RDF jargon, a statement is composed of a named

edge (a property) and two end nodes (a resource and a
value). Each statement can be represented by a triple hav-
ing a subject (e.g., &r1), a predicate (e.g., fname), and an
object (e.g., \Pablo"). The subject and object should be of
classes compatible (under specialization) with the domain
and range of the predicate5 (e.g., the rdf:typeof &r1 is de-
clared to be the class Painter). Note that type declarations
in RDF are not only limited to relating resources and classes,
but also to relating schema classes or properties with meta-
classes (e.g., rdfs:Class and rdf:Property are the two de-
fault RDF meta-classes). Moreover, meta-classes may also
appear in the domain and range of properties. Although not
illustrated in Figure 1, RDF also supports structured values

5Note that declaring vs. inferring valid classes for endpoint
resources of properties, is a major di�erence between the ex-
isting RDF Schema speci�cation [12] and the ongoing RDF
Model Theory [31]. We believe that inferring imposes seri-
ous modeling limitations. For instance, if a title is attributed
to &r2 then this resource will be automatically classi�ed un-
der all the classes declared in the domain of title. However,
classifying &r2 as Painting and/or ExtResource should be
under the entire responsibility of application developers.

called containers for grouping statements, namely rdf:Bag

(i.e., multi-sets) and rdf:Sequence (i.e., tuples), as well
as higher-order statements (i.e., rei�cation) which are not
treated here. In the rest of the paper, the term description
base will be used to denote a set of RDF statements and the
term description schema to denote one or more well-formed
hierarchies of RDF names used to label RDF statements.
Compared to the current status of the W3C RDF/S spec-
i�cations [39, 12], our model imposes a single domain and
range constraint on properties (i.e., they are not anymore
considered as relations) and provides a richer and still
ex-
ible type system. Readers are referred to [32] for formal
de�nitions of the imposed constraints. These constraints
guarantee that the union of two well-formed RDF schema
hierarchies is always well-formed w.r.t. the inclusion seman-
tics of class and property subsumption.

3.1 A Type System for RDF
RDFS schemas (a) do not impose a strict typing on the de-

scriptions (e.g., a resource may be liberally described using
properties which are loosely-coupled with classes); (b) per-
mit superimposed descriptions of the same resources (e.g.,
by classifying resources under multiple classes which are
not necessarily related by subclass relationships); (c) can
be easily extended to meet the description needs of speci�c
(sub-)communities (e.g., through specialization of both en-
tity classes and properties).
Thus, RDF data can be literals, resource URIs, container

values or class and property names. The type system fore-
seen by our model is given below:
� = �C j �P j �M j �U j �L j f�g j [1 : �1; 2 : �2; : : : ; n : �n] j

(1 : �1 + 2 : �2 + : : :+ n : �n)
where �C is a class, �P is a property, �M is a metaclass,
�L is a literal type in L, �U is the type for resource URIs
also including namespace URIs, f:g is the Bag type, [:] is
the Sequence type, and (:) is the Alternative type. Alterna-
tives in our model capture the semantics of union (or vari-
ant) types [14], and they are also ordered (i.e., integer labels
play the role of union member markers). Since there exists a
prede�ned ordering of labels for sequences and alternatives,
labels can be omitted (for bags, labels are meaningless). Fur-
thermore, no subtyping relation is de�ned in RDFS. The set
of all types we can construct is denoted by T .
This type system allows us to manipulate RDFS schema

classes and properties (as well as meta-classes) as self-existent
individuals. Moreover, it captures containers with both ho-
mogeneous and heterogeneous member types and thus repre-
sents - for example - n-ary relations returned by queries. For
instance, unnamed ordered tuples denoted by [v1; v2; : : : ; vn]
(where vi is of some type �i) can be de�ned as sequences
of type [�1; �2; : : : ; �n]. Unlike traditional object data mod-
els, RDF classes and data properties (i.e., relationships and
attributes of resources) are interpreted as unary relations
of type f�Ug and as binary relations of type f[�U ; �U]g (for
relationships) or f[�U ; �L]g (for attributes) respectively. In
addition, properties whose domain and range is a meta-class
are interpreted as: f[(�C + �P), (�C + �P)]g. Finally, an as-
signment of a �nite set of resources (of type �U) to each class
name (of type �C)

6 is captured by a population function
� : C ! 2U . In the same way, we can capture instantiation
of meta-classes with class and property names. The set of
all values that one can construct from the class or property

6Due to multiple classi�cation we consider here a non-
disjoint object id (URI) assignment to classes.

names, the resource URIs and the literals using our type
system is denoted by V and the interpretation function [[:]]
of types is de�ned in a straightforward manner. In the rest
of the paper, we will use the terms class and property extent
to denote their corresponding interpretations.

3.2 RDF Description Bases and Schemas
De�nition 1. An RDFS schema is a quintuple RS =

(VS; ES; ; �;H) where: VS is the set of nodes and ES is
the set of edges, H is a well-formed hierarchy of class and
property names H = (N;�), N = C [P , � is a labeling
function � : VS [ES ! T , and is an incidence function
 : ES ! VS � VS.

The nodes and edges of a schema are uniquely identi�ed
by their names in N (possibly using namespace URIs for dis-
ambiguation). The incidence function captures the rdfs:-
domain and rdfs:range declarations of properties. The la-
beling function relates the class and property names with
one of the types T previously presented. Note that both
functions are total in VS [ES and ES respectively. This
does not exclude the case of schema nodes which are not
connected through an edge.

De�nition 2. An RDF description base, instance of a
schema RS, is a quintuple RD = (VD; ED; ; �; �), where:
VD is a set of nodes and ED is a set of edges, is the
incidence function : ED ! VD�VD, � is a value function
� : VD ! V , and � is a labeling function � : VD [ED !
2N [fBag; Seq; Altg which satis�es the following:

� for each node n in VD, � returns either a set of class
names c 2 C or one of the container type names (Seq,
Bag, Alt), and the value of n belongs to the interpre-
tation of each c: �(n) 2 [[c]];

� for each edge � in ED going from a node n to a node n0,
� returns a property name p 2 P , and values n and n0

belongs to the interpretation of p: [�(n); �(n0)] 2 [[p]].

The valuation function relates the nodes and edges of RDF
statements with one of the values in V . The labeling func-
tion captures the rdf:type declaration, linking the RDF
data graph with the RDF schema graph. More precisely, the
labeling function returns either the name of container type
or the name of one or more classes which may be de�ned in
several well-formed hierarchies of names. In contrast to tra-
ditional object models, all class names annotating resource
nodes have a unique type �C . Finally, atomic nodes valuated
with literals belong to the interpretation of concrete types
like string, integer, date, etc.

4. THE RDF QUERY LANGUAGE: RQL
RQL is a typed query language relying on a functional ap-

proach (a la OQL [15]). It is de�ned by a set of basic queries
and iterators which can be used to build new ones through
functional composition. RQL supports generalized path ex-
pressions, [18, 19, 4] featuring variables on labels for both
nodes (i.e., classes) and edges (i.e., properties). The smooth
combination of RQL schema and data path expressions is a
key feature for satisfying the needs of several Semantic Web
applications such as Knowledge Portals and e-Marketplaces.
For the complete RQL syntax, formal semantics and type
inference rules, readers are referred to the RQL online doc-
umentation.7

7139.91.183.30:9090/RDF/RQL/

4.1 Basic Queries
The core RQL queries essentially provide the means to

access RDF description bases with minimal knowledge of
the employed schema(s). These queries can be used to im-
plement a simple browsing interface for RDF description
bases. For instance, in Knowledge Portals, for each topic
(i.e., class), one can navigate to its subtopics (i.e., sub-
classes) and eventually discover the resources (or their total
number) which are directly classi�ed under them. Similar
needs are exhibited for the classi�cation schemas used in
E-Marketplace registries.
To traverse class/property hierarchies de�ned in a schema,

RQL provides functions such as subClassOf (for transitive
subclasses) and subClassOf^ (for direct subclasses). For ex-
ample, the query subClassOf^(Artist) returns a bag with
the class names Painter and Sculptor. Similar functions ex-
ist for properties (i.e., subPropertyOf and subPropertyOf^).
Then, for a speci�c property we can �nd its de�nition by ap-
plying the functions domain (of type (�C + �M)) and range
(of type �L for attributes and (�C + �M) for relationships).
For instance, domain(creates) returns the class nameArtist.
We can access the interpretation of classes by just writing

their name. For instance, the query Artist returns a bag
containing the URIs www.culture.net#rodin424 (&r5) and
www.culture.net#picasso132 (&r1), since these resources
belong to the extent of Artist. It should be stressed that,
by default, we use an extended class (or property) interpre-
tation, that is, the union of the set of proper instances of
a class with those of all its subclasses. Thus, RQL allows
to query complex descriptions using only few abstract labels
(i.e., the top-level classes or properties). In order to obtain
the proper instances of a class (i.e., only the nodes labeled
with the class name), RQL provides the special operator
(\^"): e.g,. ^Artist.
Additionally, RQL uses as entry-points to an RDF de-

scription base not only the names of classes but also the
names of properties. For instance, by considering proper-
ties as binary relations, the basic query creates returns the
bag of ordered pairs of resources belonging to the extended
interpretation of creates:

source target
&r5 &r6
&r1 &r2
&r1 &r3

For cases when same names are used in di�erent schemas
one can use a namespace clause (in the style of XQuery [17])
to explicitly resolve such naming con
icts e.g.,
ns:title
Using Namespace ns=&www.olcl.org/schema2.rdf#
More generally, the whole schema can be queried as nor-

mal data using the names of appropriately de�ned meta-
classes. This is the case of the default RDF meta-classes
Class and Property. Using them as basic RQL queries, we
obtain in our example, the names of all the classes (of type
�C) and properties (of type �P) illustrated in the upper part
of Figure 1. Moreover, we can use the name of the built-in
meta-class DProperty, in order to retrieve only data prop-
erties (i.e., involving data resources). Since RDF allows for
instantiation links between classes, this query functionality
can be easily extended to user de�ned meta-schemas (e.g.,
DAML+OIL [54]). To retrieve the class (or meta-class)
name under which a resource (or class) is classi�ed one can
use the function typeof: e.g., typeof(www.artchive.com/-

crucifixion.jpg) will return a bag with the class names
Sculpture and ExtResource (due to multiple classi�cation).
Common set operators (union, intersect, minus) applied

to collections of the same type are also supported. For exam-
ple, the query "Sculpture intersect ExtResource" returns
a bag with the URI www.artchive.com/crucifixion.jpg
(&r6), since, according to our example, it is the only re-
source classi�ed under both classes. However, the following
query returns a type error since the function range is de-
�ned on names of properties and not on names of classes:8

bag(range(Artist)) union subclassof(Artifact)

As we can see from the above query, besides class or prop-
erty extents, RQL also permits the manipulation of RDF
container values. More precisely, we can explicitly construct
Bags and Sequences using the basic RQL queries bag and
seq. For instance, to �nd both the domain and range of
property creates one can issue the query:

seq (domain(creates), range(creates))

To access a member of a Sequence we can use the operator
\[]" with an appropriate position index. If the speci�ed
member element does not exist, the query returns a runtime
error. The Boolean operator in can be used for membership
test in Bags.
For data �ltering RQL relies on standard Boolean pred-

icates as =, <, > and like (for string pattern matching).
All operators can be applied on literal values (i.e., strings,
integers, reals, dates) or resource URIs. For example, \X
= &www.artchive.com/cruci�xion.jpg" is an equality condi-
tion between resource URIs. It should be stressed that this
also covers comparisons between class or property names.
For example, the condition \Painter < Artist" returns true
since the �rst operand is a subclass of the second. This is
equivalent to the basic boolean query Painter in subclassof
(Artist). Disambiguation is performed in each case by ex-
amining the type of operands (e.g., literal value vs. URI
equality, lexicographical vs. class ordering, etc.).
Last but not least, RQL is equipped with a complete set

of aggregate functions (min, max, avg, sum and count). For
instance, we can inspect the cardinality of class extents (or
bags) using the count function: count(Painting).
To conclude this subsection, note that basic RQL queries

allow us to retrieve the contents of any kind of collection
with RDF data or schema information. RQL provides a
select-from-where �lter to iterate over these collections
and introduce variables. Given that the whole description
base or related schemas can be viewed as a collection of
nodes/edges, path expressions can be used in RQL �lters to
traverse RDF graphs at arbitrary depths.

4.2 Schema Queries
In this subsection, we focus on querying RDF schemas,

regardless of any underlying instances. More precisely, we
show how RQL extends the notion of generalized path ex-
pressions [18, 19, 4] to entire class (or property) inheritance
paths in order to implement schema browsing or �ltering
using appropriate conditions. We believe that declarative
query support for navigating through taxonomies of classes

8It should be stressed that XML query languages like
XQuery [17] can be extended with RDF-speci�c function li-
braries as those provided by RQL (e.g., range, subclassof).
However, due to the XML and RDF model mismatch they
are not able to ensure type safety of the supported func-
tions. For instance, the above query expressed in XQuery
will return all the subclasses of Artifact and not a type error.

and properties is quite useful for real-scale Portal catalogs
and E-Marketplace registries, which employ large descrip-
tion schemas. Consider, for instance the following query,
where, given a speci�c schema property we want to �nd all
related schema classes:
Q1: Which classes can appear as domain and range of

the property creates?

select $C1, $C2 from f$C1gcreatesf$C2g

$C1 $C2
Artist Artifact
Artist Painting
Artist Sculpture
Painter Artifact
Painter Painting
Painter Sculpture
Sculptor Artifact
Sculptor Painting
Sculptor Sculpture

In the from clause of the �lter, we use a basic schema path
expression composed of the property name creates (i.e., an
edge label) and two class variables $C1 and $C2 (i.e., vari-
ables over node labels). The fg notation is used in RQL
path expressions to introduce appropriate schema or data
variables (see also next Subsection). In general, class vari-
ables are pre�xed by $ and - by default - range over the
extent of the RDF meta-class Class. The type of these vari-
ables is �C , i.e., names of available schema classes. Since
RDF properties can be applied to any subclass of their
domain and range (due to polymorphism), the expression
f$C1gcreatesf$C2g simply denotes that $C1 and $C2 it-
erate over subclassof (domain(creates)) and subclassof
(range(creates)), respectively (including the hierachy roots).
In other words, it is equivalent to the �ltering condition
\C1 <= domain(creates) and C2 <= range(creates)" eval-
uated over Class � Class (i.e., ClassfC1g, ClassfC2g). We
can observe that the above path expression essentially tra-
verses the rdf:SubClassOf links in the schema graph. It
should be stressed that such a kind of RQL path expres-
sions can be composed not only of edge labels like creates,
but also of node labels like Artist. Artistf$Cg is a shortcut
for subclassof(Artist)fCg (including the root Artist).
The select clause de�nes a projection over the variables

of interest (e.g., $C1, $C2). Moreover, we can use \select
*" to include in the result the values of all variables intro-
duced in the from clause. This projection will construct
an ordered tuple (i.e., a sequence), whose arity depends on
the number of used variables. The result of the �lter is a
bag. In Q1 the type of the result is f[�C ; �C]g. It should be
stressed that RDF container values are not strictly typed:
their members can be any name, URI, literal or other con-
tainer value. The union types provided by the RQL type
system permit the representation of heterogeneous query re-
sults. The closure property of RQL is ensured by the sup-
ported basic queries for container values (see previous sub-
section). For simplicity, we will present query results in this
paper using an internal relational representation (e.g., as
:1NF relations), instead of RDF containers. Readers can
execute all example queries with the RQL online demo9 to
see the results under the RDF/XML syntax for container
values or an HTML form produced after XSLT processing.
Let us now see how we can retrieve all related schema

properties for a speci�c class:

9http://139.91.183.30:9090/RDF/RQL/

Q2: Find all properties (and their range) that are appli-
cable on class Painter.
select @P , range(@P)
from f$Cg@P
where $C = Painter

@P range(@P)
creates Artifact
paints Painting
lname string
fname string

In the from clause of Q2, we use another schema path ex-
pression composed of a class variable $C (i.e., over node
labels) and a property variable @P (i.e., over edge labels).
In general, property variables are pre�xed by @ and by de-
fault they range over the extent of the built-in meta-class
DProperty, containing all data properties. The type of these
variables is �P , i.e., names of available schema properties.
Then, for each possible valuation p of @P , the class variable
$C ranges over subclassof(domain(p)). The condition in
the where clause will �lter @P valuations to keep only those
properties for which class Painter is equal to their domain
(e.g., paints) or is a valid subclass of their domain (e.g.,
creates, lname, fname). In other terms, Q2 is equivalent
to the �ltering condition domain(P)>=Painter evaluated
over DProperty (i.e., DPropertyfPg). We can observe that
the above path expression traverses the rdfs:domain and
rdfs:range links in conjunction with the rdfs:SubClassOf
links in the schema graph. Note that in the result of Q2,
range is of type union (�C + �L) since data properties may
range to classes (i.e., they represent relationships) and literal
types (i.e., they represent attributes).
We introduce in path expressions the notation fx;Cg that

�lters data nodes x (i.e., resources) which are labeled with
a class name C (i.e., the rdf:type links). In other terms, it
is equivalent to the �ltering condition \ C in typeof(x)".
By extension, f;Cg simply denotes a �ltering condition of
schema nodes (i.e., classes) identi�ed by a name C and tak-
ing into account the rdfs:SubClassOf links. For instance, in
the expression f;Painterg@P the domain of @P is denoted
to be Painter or any of its superclasses and it implies the �l-
tering condition \Painter >= domain(@P)". It is essentially, a
shorthand notation for Q2 by avoiding to introduce an itera-
tor $C (i.e., class variable) over the subclassof(domain(@P))).
To illustrate the expressive power of the RQL schema

querying capabilities combined with its functional seman-
tics, consider the following query:
Q3: Find all information related to class Painter (i.e., its

superclasses as well as direct or inherited properties).

seq(Painter, superclassof^(Painter),
(select @P , domain(@P), range(@P)
from f;Painterg@P))

To collect all relevant information we explicitly construct in
Q3 a sequence with three elements. The �rst element is a
constant (Painter) interpreted by the RQL type system as
a class name (i.e., of type �C). The second element is a bag
containing the names of the direct superclasses of Painter
(i.e., of type f�Cg). The third element is a bag of sequences
with three elements: the �rst of type property names (�P)
and the other two of type union (i.e., Alternative) of class
and literal type names (as in Q2).
We conclude this subsection, with a query illustrating

how RQL schema paths can be composed to perform more
complex schema navigation. It should be stressed that this

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

{$X}.{; }

{; }.{$X}

1

C2

P3

P

): (@P, @Q)
{; }.

3

P2

T1
��������

: $X

��������
: $X T3

��������
: $X 3T

��������
: $X 3T

P3
��������

: @P P2,

P31,P2(T), (T3,)
��������

: ($X, @P)

P3
��������

: @P
P3P2

P

1, 1,(P), (P������

{$X}.

P1 P2

@P
@P.@Q

P2P1 {$X}.

P1 P2

P1 .@P
P1 {$X}. @P
P1

Path Expression Variable bindings

P1

1C

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

3

C

3C

3

T

T

3C

3C

1

Figure 2: RQL Schema Path Compositions

kind of query cannot be expressed in existing languages with
schema querying capabilities (e.g., XSQL [36]).
Q4: What properties can be reached (in one step) from

the range classes of creates?
select $Y , @P , range(@P)
from createsf$Y g.@P

$Y @P range(@P)
Artifact exhibited Museum
Painting exhibited Museum
Sculpture exhibited Museum
Painting technique string
Sculpture material string

In Q4, the \." notation implies a join condition between
the range classes of the property creates and the domain of
@P valuations: for each class name Y in the range of creates,
we look for all properties whose domain is $Y or a superclass:
$Y <= domain(@P) and $Y <= range(creates). In other
words, this join condition will enable us to follow properties
which can be applied to range classes of creates (i.e., either
because they are directly de�ned or because they are inher-
ited) to any subclass of the range of creates. Schema path
expressions may also be exclusively composed of property
variables (with or without variables on domains and ranges).
For instance, @P:@Q will retrieve all two-step schema paths
emanating from the subclasses of the domain of @P and
whose second part is either inherited from / de�ned on su-
perclasses / subclasses of the domain of @Q. The complete
set of RQL schema path expressions is given in Figure 2,
where for each kind of expression, we give the part of the
schema graph over which the involved variables range.

4.3 Data Queries
In this subsection, we illustrate how RQL generalized

path expressions can be used to navigate/�lter RDF de-
scription bases without taking into account the (domain and
range) restrictions implied by the properties de�ned in an
RDF/S schema. This is quite useful since, in most real-scale
Knowledge Portals or E-Marketplaces, resources can be mul-
tiply classi�ed and several properties coming from di�erent
class hierarchies may be used to describe the same resources.
In this context, RQL generalized path expressions may be
liberally composed from node and edge labels featuring both
data or schema variables. As explained in the following, the
\." notation is used to introduce appropriate join condi-
tions between the left and the right part of the expression
depending on the type of each path component (i.e., node
vs. edge labels, data vs. schema variables). Consider, for
instance, the following query:
Q5: Find the Museum resources that have been modi�ed

after year 2000.

select X, Y
from MuseumfXg.last modi�edfY g
where Y >= 2000-01-01
In the from clause we use a data path expression with

a class name Museum and a property name last modi�ed.
The introduced data variables X and Y range respectively
over the extent of the class Museum (i.e., traversing the
rdf:type links connecting schema and data graphs) and
the target values of the extent of the last modi�ed property
(i.e., traversing properties in the RDF data graph). The
\." used to concatenate the two path components, implies
a join condition between the source values of the extent of
last modi�ed and X. Hence, Q5 is equivalent to the query
MuseumfXg; fZglast modifiedfY g where X = Z. As we
can see in Figure 1, the last modi�ed property has been
de�ned with domain the class ExtResource but, due to mul-
tiple classi�cation, X may be valuated with resources also
labeled with any other class name (e.g., Museum, Artifact,
etc.). Yet, in our model X has the unique type �U , Y has
type the literal type date, and the result of Q5 is of type
f[�U ; date]g. According to our example, Q5 returns the sites
www.museum.es (&r4) with last modi�cation date 2000-06-
09 and www.rodin.fr (&r7) with date 2000-02-01.
More complex forms of navigation through RDF descrip-

tion bases are possible, using several data path expressions.
Q6: Find the names of Artists whose Artifacts are ex-

hibited in museums, along with the related Museum titles.

select V , R, Y , Z
from fXgcreates.exhibitedfY g.titlefZg,

fXgfnamefV g, fXglnamefRg
In the from clause we use three data path expressions.

Variable X (Y) ranges over the source (target) values of
the creates (exhibited) property. Then, the reuse of vari-
able X in the other two path expressions simply introduces
implicit (equi-)joins between the extents of the properties
fname/lname and creates, on their source values. Since the
range of property exhibited is the class Museum we don't
need to further restrict the labels for the Y values in this
query.
Note that due to multiple classi�cation of nodes (e.g.,

www.museum.es (&r4) is both a Museum and ExtResource)
we can query paths in a data graph that are not explicitly
declared in the schema. For instance, creates:exhibited:title
is not a valid schema path since the domain of the title prop-
erty is the class ExtResource and notMuseum. Still, we can
query the corresponding data paths by ignoring the schema
classes labeling the endpoint instances of the properties (in
the style of LOREL [4], or XQuery [17]). This is achieved
by using only data variables on path nodes like X, Y and
Z. However, the
exibility of RQL path expressions enables
us to turn on or o� schema information during data �lter-
ing with the use of appropriate class and property variables.
This functionality is illustrated in the following query:
Q7: Find the source and target values of properties ema-

nating from ExtResources.
select X,Y
from fX;ExtResourceg@PfY g

X Y
&r6 \image/jpg"
&r7 \Rodin Museum"
&r4 \Reina So�a Museum"
&r7 2000-06-09
&r4 2000-02-01

Figure 3: The result of Q8 in HTML form

The mixed path expression of Q7, features both data (X,
Y) and schema variables on graph edges (@P). The no-
tation X;ExtResource denotes a restriction of X to the
resources that are (transitive) instances of (i.e., labeled by)
class ExtResource. @P is of type �P and is valuated to
all properties having as a domain ExtResource or one of
its superclasses (see Q2). Finally, Y is range-restricted, for
each successful binding of @P , to the corresponding tar-
get values. X is of type �U while Y type is a union of
all the range types of ExtResource properties. According
to the schema of Figure 1, @P is valuated to �le size, ti-
tle, mime-type, and last modi�ed, while Y will be of type
(integer + string + date).10 It should be stressed that the
data path expression ExtResourcefXg:@PfY g returns as
result not only the values of the properties having as a do-
main ExtResource but also those with domain any class un-
der which instances of ExtResource are multiply classi�ed
(e.g., exhibited, technique).

4.4 Combining Schema with Data Queries
In the previous subsections, we have presented the main

RQL path expressions allowing us to browse and �lter de-
scription bases with or without schema knowledge, or, al-
ternatively to query exclusively the schemas. Additionally,
RQL �lters admit arbitrary mixtures of di�erent kinds of
path expressions. In this way, one can start querying re-
sources according to one schema, while discovering in the
sequel how the same resources are described using another
schema. To our knowledge, none of the existing query lan-
guages has the power of RQL path expressions. This func-
tionality is illustrated by the following examples.
Q8: Find the descriptions of resources whose URI matches

"www.museum.es".

select X, (select $W , (select @P , Y
from fX;$Wg@PfY g)

from $WfXg)
from ResourcefXg
where X like "www.museum.es"
In Q8 we are interested to discover for each matching re-

source (Resource is considered as the top class of all schema
classes) the classes under which it is classi�ed and then for
each class the properties which are used along with their re-
spective values. This grouping functionality is captured by
the two nested queries in the select clause of the external
query. Note the use of string predicates such as like on

10In case we want to �lter Y values in the where clause, RQL
supports appropriate coercions of union types in the style of
POQL [2] or Lorel [4].

resource URIs. Then for each successful valuation of X, in
the outer query, variable $W iterates over the classes having
X in their extent. Finally, for each successful valuation of
X and $W , in the inner query, variable @P iterates over the
properties which may have $W as domain and X as source
value in their extent. According to the example of Figure 1
the type of Y is the union (�U + string + date). The �nal
result of Q8 is given in Figure 3. In cases where a grouped
form of RQL results is not desirable, we can easily gener-
ate a
at triple-based representation (i.e., subject, predicate,
object) of resource descriptions, as in the following query:
Q9: Find the description, under the form of triples, of re-

sources excluding properties related to the class ExtResource.

((select X, @P , Y from fXg@PfY g)
union
(select X, type, $W from $WfXg))
minus
((select X, @P , Y from fX;ExtResourceg@PfY g)
union
(select X, type, ExtResource from ExtResourcefXg))

In Q9 we essentially perform a set di�erence between the
entire set of resource descriptions (i.e., the attributed prop-
erties and their values, as well as, the class instantiation
properties) and the descriptions of resources which are in-
stances of class ExtResource. The only subtle issue in Q9
is the typing of the two union query results. First, the
inferred type for the constants type and ExtResource (in
the select clause of the two union subqueries) is �P (i.e.,
a property name) and �C (i.e., class name). Second, vari-
ables Y and $W (in the select clause of the �rst union) is of
type (�U + string + float+ integer+ date) and �C . In this
case, the union operation is performed between subqueries
of di�erent types. The RQL type system is equipped with
rules allowing us to infer appropriate union types when-
ever it is required for query evaluation, as for example,
(�U + string + float + integer + date + �C). Note that
set-based queries as Q9 are not supported by the so-called
triple-based query languages [45, 51, 52].

5. THE RDF SCHEMA-SPECIFIC DATABASE
We have implemented RDF storage and querying on top

of the PostgreSQL object-relational DBMS (ORDBMS).11

The architecture of our persistent RDF Store (RSSDB) is il-
lustrated in Figure 4. It comprises three main components:
the RDF validator and loader (VRP), the RDF descrip-
tion database (DBMS) and the query language interpreter
(RQL). In the following, we elaborate on the database rep-
resentation employed by RSSDB, as well as, the performance
results in storing and querying voluminous RDF description
bases. Readers are referred to [6] for a detailed presentation
of the system architecture and components.

5.1 Database Representation
In order to load RDF metadata in a ORDBMS, we con-

sider a database representation depending on the employed
RDF schemas (similar to the attribute-based approach for
storing XML data [30]). Many proposals [44, 40] use a single
table to represent RDF metadata under the form of triples.
These approaches provide a generic representation applica-
ble to all RDF schemas, where both RDF schemas and re-
source descriptions are stored in two tables called Resources
and Triples. The former represents each resource, whereas

11www.postgresql.org

source
rodin424 crucifixion.jpg

target
creates

subtable

uri
Painter Sculptor

Instances

picasso123 rodin424

uri

uri

SubClass SubProperty

Painter Artist paints creates

Class
domain rangep_name

createsArtist ArtifactArtist

c_name

subClass superClass subProp superProp

L
oa

de
r

A
PI

VRP Model

Pa
rs

er

Validator

A
PI

E
ng

in
e

E
va

lu
at

io
n

Optimizer
Module

Graph
Constructor

Pa
rs

er

VRP

DBMS

RQL

Artist

DProperty

Figure 4: Overview of the ICS-FORTH RSSDB
the latter represents statements about the resources identi-
�ed by a unique id. Compared to this representation, our
scheme is more
exible as it takes into account the speci�city
of the schemas (see [7] for a performance analysis).
In our approach, the core RDF/S model is represented by

four tables (see Figure 4), namely, Class, Property, Sub-
Class and SubProperty which capture the class and prop-
erty hierarchies de�ned in an RDF schema. The main goal
is the separation of RDF schema information from data in-
formation, as well as the distinction between unary and bi-
nary relations holding the instances of classes and proper-
ties. More precisely, class tables store the URIs of resources,
while property tables store the URIs of the source and target
nodes of the property. Indices (i.e., B-trees) are constructed
on the attributes URI, source and target of the above ta-
bles, as well as on all the attributes of the tables Class,
Property, SubClass and SubProperty.
Since no representation is good for all purposes, variations

of a basic representation are required to take into account
the speci�c characteristics of the employed schema classes
and properties, as well as those of the intended query func-
tionality. Our aim here is to reduce the total number of
created instance tables. This is justi�ed by the fact that
some commercial ORDBMSs (and not PostgreSQL) permit
only a limited number of tables. Furthermore, numerous
tables (e.g., the ODP catalog implies the creation of 252840
tables, i.e., one for each topic) have a signi�cant overhead
on the response time of all queries (i.e., to �nd and open a
table, its attributes, etc.). A variant we have experimented
with for storing the ODP catalog, is the representation of
all class instances by a unique table Instances. This ta-
ble has two attributes, namely uri and classid, for storing
the uri's of the resources and the id's of the classes which
the resources belong to. The bene�ts of this variant are il-
lustrated in the following section. These bene�ts arise as
a consequence of the fact that most ODP classes (i.e., top-
ics) have few or no instances at all (more than 90% of the
ODP topics contain less than 30 URIs). Another variant
could be the representation of properties with range a literal
type, as attributes of the tables created for the domain of
this property. Consequently, new attributes will be added
to the created class tables. The tables created for prop-
erties whose range is a class will remain unchanged. The
above representation is applicable to RDF schemas where
attribute-properties are single-valued and they are not spe-
cialized. Multi-valued attributes can always be represented
in a pure relational schema by separate tables but this im-
plies an extra translation cost by the RQL interpreter. More
on RQL query evaluations plans can be found in [35].

5.2 Performance Tests
For our performance study we used as a testbed the RDF

dump of the Open Directory Catalog (01-16-2001 version).
Experiments have been carried out on a Sun with two Ultra-

Query Description Algebraic Expression Case 1 Case 2 Case 3

QB1 Find the range (or domain) �id=propid(P) 0.0012

of a property
QB2 Find the direct subclasses �superid=clsid(SC) 0.0012 0.0022 0.0124

of a class
QB3 Find the transitive sub- repeat Wi (Wi�1 0.0463 0.0612 341.98

classes of a class >�id=superidSC)�Wi�1

until Wi = Wi�1

QB4 Check if a class is a repeat Wi (Wi�1 0.0333 0.0415 0.0662
subclass of another class >�id=subidSC)�Wi�1

until Wi = Wi�1 _ clsid 2Wi

QB5 Find the direct extent of �
id=clsid(I) 0.0015 0.0028 0.027

a class (or property)
QB6 Find the transitive extent [clsid2Q3(�id=clsid(I)) 0.0508 0.1118 482.45

of a class (or property)
QB7 Find if a resource is �

URI=r^id=clsid(I) 0.0016 0.0016 0.00174
an instance of a class

QB8 Find the resources having �
target=val(tpropid) 0.0013 0.0069 0.0466

a property with a speci�c
(or range of) value(s)

QB9 Find the instances of a class (�
id=clsid(I)) >�source=URI 0.031 0.0338 0.1059

that have a given property (tpropid) >�subjid=id(R)

QB10 Find the properties of a [propid2P (�source=r(tpropid)) 0.0071 0.0071 0.0076

resource and their values
QB11 Find the classes under which �URI=r(I) 0.0013 0.0015 0.0015

a resource is classi�ed

Table 1: Benchmark Query Templates for RDF Description Bases

SPARC-II 450MHz processors and 1 GB of main memory,
using PostgreSQL (7.0.2). We have loaded 15 ODP hierar-
chies with a total number of 252825 topics stored in 51MB of
RDF/XML �les as well as the corresponding descriptions of
1770781 resources (672MB). Note that only 82744 resources
were actually classi�ed under multiple ODP classes/topics.
We have measured the database size required to load the

ODP schema and resource descriptions in terms of triples.
As expected, the size of the DBMS scales linearly with the
number of schema and data triples. The tests show that
each schema triple requires on the average 0.086KB. The
average time for loading a schema triple is about 0.0021 sec.
When indices are constructed, the average storage volume
per schema triple becomes 0.1734KB and the average load-
ing time becomes 0.0025 sec. The average space required
to store a data triple is 0.123KB. Note that we could ob-
tain better storage volumes by encoding the resource URIs
as integers, but this solution comes with extra loading and
join costs (between the class and property tables) for the
retrieval of the URIs. The tests also show that the average
time for loading a data triple is about 0.0033 sec whithout
indices and 0.2566KB with indices while the average loading
time becomes 0.0043 sec.
To summarize, after loading the entire ODP catalog, the

size of tables is 32MB for Class (252825 tuples), 8KB for
Property (5 tuples), 11MB for SubClass (252825 tuples)
and the total size of indices on these tables is 44MB. The
size of table Instances is 150MB (1770781 tuples) whereas
that of the indices created on it is 140 MB.
The left part of Table 1 describes the RDF query tem-

plates that we used for our experiments, as well as their
algebraic expressions using the �rst variation of our core rep-
resentation scheme of section 5.1, i.e., employing a unique
table for representing all class instances (capital letters ab-
breviate the table names of Figure 4). This benchmark illus-
trates the core functionality of RQL: a) pure schema queries
on class and property de�nitions (QB1-QB4); b) queries on re-

source descriptions using available schema knowledge (QB5-
QB9); and c) schema queries for speci�c resource descriptions
(QB10, QB11). In this context, the most frequently asked
queries for Portals like ODP are: QB2,QB3,QB5,QB8 and QB9.
The right part of Table 1 displays the resulting execution
time (in sec) in up to three di�erent result cases per query.
Depending on the particular query templates, the di�erent
cases refer to di�erent characteristics of the class or prop-
erty in question, such as number of subclasses, length of
path from a class to its leaves, etc. For the sake of accuracy,
we carried out all benchmark queries several times: one ini-
tially to warm up the database bu�ers and then nine times
to obtain the average execution time of a query.
Queries QB3 and QB6, as expected are expensive, because

they involve a transitive closure computation over the sub-
class hierarchy. The execution time depends on the size of
the intermediate join results, as well as on the number of
iterations. The advantage of this representation over the
generic representation in terms of query evaluation perfor-
mance is drastic in the presence of complex path expressions.
Indeed, the latter representation implies expensive self joins
of a large table, namely Triples. In [32] we compared the
performance of queries QB8 and QB9 with the two representa-
tions. Our speci�c representation outperformed the generic
representation by a factor of almost 105.
We conclude this section with one remark concerning the

encoding of class and property names. Recall that schema
or mixed RQL path expressions need to recursively traverse
a given class (or property) hierarchy. We can transform
such traversal queries into interval queries on a linear do-
main, that can be answered e�ciently by standard DBMS
index structures (e.g., B-trees). This can be done by replac-
ing class (or property) names by ids using an appropriate
encoding, such as the one used in [5]. We are currently
working on the choice of a such a linear representation of
node or edge labels allowing us to optimize queries that in-
volve di�erent kinds of traversals in a hierarchy.

6. SUMMARY AND FUTURE WORK
In this paper, we presented a data model capturing the

most salient features of RDF and a declarative query lan-
guage, RQL, for uniformly querying both RDF schema and
resource descriptions. We reported on the design and im-
plementation of a system for storing and querying volumi-
nous RDF description bases, called RSSDB, and gave some
performance results using the ORDBMS PostgreSql. There
currently exist two distinct implementations of RQL, one
by ICS-FORTH (139.91.183.30:9090/RDF/RQL) and the
other by Aidministrator (sesame.aidministrator.nl/rql/). As
a matter of fact, RQL is a generic tool actually used by sev-
eral EU projects (i.e., C-Web, MesMuses, Arion and Onto-
Knowledge12) aiming at building, accessing and personaliz-
ing Community Knowledge Portals.
The optimization of RQL query evaluation is a challeng-

ing issue and a topic of our current research. In particular,
we study the translation of RQL into SQL3 queries in the
presence of path expressions interleaving schema with data
querying, as well as appropriate encoding schemes for class
and property taxonomies in order to optimize transitive clo-
sure queries over deep hiearchies of names.

7. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo,
G. Moerkotte, and J. Sim�eon. Querying Documents in
Object Databases. International Journal on Digital
Libraries, 1(1):5{18, April 1997.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[4] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel Query Language for
Semistructured Data. International Journal on Digital
Libraries, 1(1):68{88, April 1997.

[5] R. Agrawal, A. Borgida, and H.V. Jagadish. E�cient
Management of Transitive Relationships in Large
Data Bases. In SIGMOD'89, pages 253{262, Portland,
Oregon, USA, 1989.

[6] S. Alexaki, G. Karvounarakis, V. Christophides,
D. Plexousakis, and K. Tolle. The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description
Bases. In 2nd International Workshop on the
Semantic Web, pages 1{13, Hong Kong, 2001.
Available at 139.91.183.30:9090/RDF/publications/-
semweb2001.pdf.

[7] S. Alexaki, G. Karvounarakis, V. Christophides,
D. Plexousakis, and K. Tolle. On Storing Voluminous
RDF descriptions: The case of Web Portal Catalogs.
In 4th International Workshop on the Web and
Databases (WebDB), Santa Barbara, CA, 2001.
Available at
139.91.183.30:9090/RDF/publications/webdb2001.pdf.

[8] S. Amer-Yahia, H. Jagadish, L. Lakshmanan, and
D. Srivastava. On bounding-schemas for LDAP
directories. In Proceedings of the International
Conference on Extending Database Technology, volume

12See cweb.inria.fr, aquarelle.inria.fr/mesmuses, dlfo-
rum.external.forth.gr:8080, www.ontoknowledge.org,
respectively.

1777 of Lecture Notes in Computer Science, pages
287{301, Konstanz, Germany, March 2000. Springer.

[9] G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis,
L. Dodds, J. Eisenzopf, D. Galbraith, R.V. Guha,
K. MacLeod, E. Miller, A. Swartz, and E. van der
Vlist. Rich Site Summary Speci�cation Protocol (RSS
1.0). Internet Draft, August 2000.

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scienti�c American, May 2001.

[11] T. Bray, J. Paoli, and C.M. Sperberg-McQueen.
Extensible markup language (XML) 1.0. W3C
Recommendation, February 1998. Available at
www.w3.org/TR/REC-xml/.

[12] D. Brickley and R.V. Guha. Resource Description
Framework (RDF) Schema Speci�cation 1.0. W3C
Candidate Recommendation, 2000.

[13] P. Buneman, S.B. Davidson, and D. Suciu.
Programming Constructs for Unstructured Data. In
Proceedings of International Workshop on Database
Programming Languages, Gubbio, Italy, 1995.

[14] L. Cardelli. A semantics of multiple inheritance.
Information and Computation, 76(2/3):138{164, 1988.

[15] R.G.G. Cattell, D. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez. The Object Database Standard ODMG 3.0.
Morgan Kaufmann, January 2000.

[16] S. Ceri, S. Comai, E. Damiani, P. Fraternali,
S. Paraboschi, and L. Tanca. XML-GL: a Graphical
Language for Querying and Restructuring XML
Documents. In Proceedings of International World
Wide Web Conference, Toronto, Canada, 1999.

[17] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and
M. Stefanescu. XQuery: A Query Language for XML.
Working draft, World Wide Web Consortium, June
2001. Available at www.w3.org/TR/xquery/.

[18] V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. From Structured Documents to Novel
Query Facilities. In Proc. of ACM SIGMOD Conf. on
Management of Data, pages 313{324, Minneapolis,
Minnesota, May 1994.

[19] V. Christophides, S. Cluet, and G. Moerkotte.
Evaluating Queries with Generalized Path
Expressions. In Proc. of ACM SIGMOD, pages
413{422, 1996.

[20] V. Christophides, S. Cluet, and J. Sim�eon. On
Wrapping Query Languages and E�cient XML
Integration. In Proceedings of ACM SIGMOD Conf.
on Management of Data, Dallas, TX., May 2000.

[21] S. Cluet, C. Delobel, J. Sim�eon, and K. Smaga. Your
Mediators Need Data Conversion! In Proceedings of
ACM SIGMOD Conf. on Management of Data, pages
177{188, Seattle, WA., June 1998.

[22] The UDDI community. Universal description,
discovery, and integration (uddi v2.0). Available at
www.uddi.org/, October 2001.

[23] D. Florescu D. Chamberlin, J. Robie. Quilt: An xml
query language for heterogeneous data sources. In
WebDB'2000, pages 53{62, Dallas, US., May 2000.

[24] S. Decker, D. Brickley, J. Saarela, and J. Angele. A
query and inference service for RDF. In W3C QL
Workshop, 1998.

[25] L. Delcambre and D. Maier. Models for superimposed
information. In ER '99 Workshop on the World Wide
Web and Conceptual Modeling, volume 1727 of Lecture
Notes in Computer Science, pages 264{280, Paris,
France, November 1999. Springer.

[26] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy,
and D. Suciu. A Query Language for XML. In
Proceedings of the 8th International World Wide Web
Conference, Toronto, 1999.

[27] The ebXML community. Enabling a global electronic
market (ebxml v.1.4). Available at www.ebxml.org/,
February 2001.

[28] M.F. Fernandez, D. Florescu, J. Kang, A.Y. Levy, and
D. Suciu. System Demonstration - Strudel: A
Web-site Management System. In Proceedings of ACM
SIGMOD Conf. on Management of Data, Tucson,
AZ., May 1997. Exhibition Program.

[29] R. Fikes. DAML+OIL query language proposal,
August 2001. Available at
www.daml.org/listarchive/joint-committee/0572.html.

[30] D. Florescu and D. Kossmann. A performance
evaluation of alternative mapping schemes for storing
xml data in a relational database. Technical Report
3680, INRIA Rocquencourt, France, 1999.

[31] P. Hayes. RDF Model Theory. W3C Working Draft,
September 2001.

[32] ICS-FORTH. The ICS-FORTH RDFSuite web site.
Available at 139.91.183.30:9090/RDF, March 2002.

[33] ISO. Information Processing-Text and O�ce Systems-
Standard Generalized Markup Language (SGML).
ISO 8879, 1986.

[34] H. Jagadish, L. Lakshmanan, T. Milo, D. Srivastava,
and D. Vista. Querying network directories. In
Proceedings of ACM SIGMOD Conf. on Management
of Data, pages 133{144, Philadelphia, USA, 1999.
ACM Press.

[35] G. Karvounarakis, V. Christophides, D. Plexousakis,
and S. Alexaki. Querying RDF Descriptions for
Community Web Portals. In BDA'2001 (17iemes
Journees Bases de Donnees Avances - French
Conference on Databases), pages 133{144, Agadir,
Morocco, 2001. Available at
139.91.183.30:9090/RDF/publications/bda2001.pdf.

[36] M. Kifer, W. Kim, and Y. Sagiv. Querying
object-oriented databases. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 393{402, 1992.

[37] M. Kifer and G. Lausen. F-logic: A higher-order
language for reasoning about objects, inheritance, and
scheme. In Proceedings of ACM SIGMOD Conf. on
Management of Data, volume 18, pages 134{146,
Portland, Oregon, June 1989.

[38] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian.
SchemaSQL - a language for interoperability in
relational multi-database systems. In Proceedings of
International Conference on Very Large Databases
(VLDB), pages 239{250, Bombay, India, September
1996.

[39] O. Lassila and R. Swick. Resource Description
Framework (RDF) Model and Syntax Speci�cation.
W3C Recommendation, 1999.

[40] J. Liljegren. Description of an RDF database

implementation. Available at
www-db.stanford.edu/~melnik/rdf/db-jonas.html.

[41] D. Maier and L. Delcambre. Superimposed
information for the internet. In ACM SIGMOD
Workshop on The Web and Databases Philadelphia,
Pennsylvania, June 3-4, pages 1{9, 1999.

[42] M. Maloney and A. Malhotra. XML schema part 2:
Datatypes. W3C Candidate Recommendation,
October 2000. Available at
www.w3.org/TR/xmlschema-2/.

[43] M. Marchiori and J. Saarela. Query + metadata +
logic = metalog. In W3C QL Workshop, 1998.

[44] S. Melnik. Storing RDF in a relational database.
Available at
www-db.stanford.edu/~melnik/rdf/db.html.

[45] L. Miller. RDF Query using SquishQL.
sword�sh.rdfweb.org/rdfquery/, 2001.

[46] I.S. Mumick and K.A. Ross. Noodle: A Language for
Declarative Querying in an Object-Oriented Database.
In Proceedings of International Conference on
Deductive and Object-Oriented Databases (DOOD),
pages 360{378, Phoenix, Arizona, December 1993.

[47] J. Mylopoulos, A. Borgida, M. Jarke, and
M. Koubarakis. Telos: Representing Knowledge about
Information Systems. ACM TOIS, 8(4):325{362, 1990.

[48] Y. Papakonstantinou, H. Garcia-Molina, and
J. Ullman. MedMaker: A Mediation System Based on
Declarative Speci�cations. In Proceedings of IEEE
International Conference on Data Engineering
(ICDE), pages 132{141, New Orleans, LA., February
1996.

[49] D. Plexousakis. Semantical and Ontological
Considerations in Telos: a Language for Knowledge
Representation. Computational Intelligence,
9(1):41{72, 1993.

[50] Some proposed RDF APIs.
GINF: www-db.stanford.edu/~melnik/rdf/api.html,
RADIX:
www.mailbase.ac.uk/lists/rdf-dev/1999-06/0002.html,
Netscape/Mozilla:
lxr.mozilla.org/seamonkey/source/rdf/base/idl/,
RDF4J: www.alphaworks.ibm.com/formula/rdfxml/,
Jena: www-uk.hpl.hp.com/people/bwm/RDF/jena,
Redland: www.redland.opensource.ac.uk/docs/api.

[51] A. Seaborne. RDQL: A Data Oriented Query
Language for RDF Models.
www-uk.hpl.hp.com/people/afs/RDQL/, 2001.

[52] M. Sintek and S. Decker. RDF Query and
Transformation Language.
www.dfki.uni-kl.de/frodo/triple/, August 2001.

[53] H.S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML schema part 1: Structures.
W3C Candidate Recommendation, October 2000.
Available at www.w3.org/TR/xmlschema-1/.

[54] F. van Harmelen, P. Patel-Schneider, and I. Horrocks.
Reference description of the DAML+OIL ontology
markup language. Available at
www.daml.org/2001/03/reference.html, March 2001.

[55] Web Service Description Language (WSDL). Available
at www106.ibm.com/developerworks/library/ws-rdf,
2000.

