

Abstract—Data communication and networking are essential

in our daily lives. Companies rely on computer networks and

internetworks to exchange information that is normally stored

in large databases, with their customers. Nonetheless, it is not

guaranteed that all networks are reliable; therefore, database

content should be protected against any unauthorized access.

One of the most powerful strategies that has been used in

existing database security systems to protect databases is

database encryption. Few of these systems are practical to be

used with large databases since one important issue is not

satisfactorily addressed which is concerning key management.

It may take days to encrypt the huge databases. Imagine how

the situation will be when a key is compromised!

Straightforward solutions to address this problem demand that

the keys used in database encryption to be replaced with new

keys. Consequently, a database re-encryption process has to be

executed. In this thesis, we propose "RSA-based Key

Compromised Resistant Protocol (KCR)" to effectively address

this problem.

Index Terms—cryptography; database encryption; database

security; key management; secret sharing scheme

I. INTRODUCTION

N the past, people had to exchange information physically

back and forth, but nowadays we live in electronically

connected world age. The invention of the Internet

connects computer networks to serve people all over the

world. The enormous amount of information resources

available and ease of communication have made the Internet

the most valuable tool in various settings of a person's life.

However, the Internet is not considered a trustworthy

network and the transmitted information is vulnerable to

attacks which brings up the important issues of information

security. Information security is the practice of protecting

information and information systems against unauthorized

access or alteration of information. It is a combination of

data security and network security. Regarding data security,

three security goals need to be achieved: confidentiality

(hide data from attackers), integrity (keep data safe from

unauthorized modifications), and availability (give

authorized users access to their data) [1]. Along with these

goals, there are five security services related to networking

security: confidentiality, integrity, authentication,

nonrepudiation, and authentication. Some of these services

are for entities and messages sent or received by those

Manuscript received July 14, 2015; revised July 28, 2015.

F. Alharbi was with the Computer Science Department, California State

University at Los Angeles.

H. Guo is with the Computer Science Department, California State

University at Los Angeles. Los Angles, CA 90032 USA (phone: 323-343-

6673 fax: 323-343-6672 e-mail: hpguo@calstatela.edu).

entities [2]. An optimal security application should

efficiently implement these goals and services.

Other than information security, facilitating the access

to information resources is a fundamental subject to make

people's life much easier. Databases are used as storages to

gather information and to effectively store a large number of

records. While data should be available to legitimate users,

database administrators are responsible for restricting the

access privileges for protection against any kind of attacks.

According to [3] and [4], such approach is one of the

strategies of database security. Other strategies and methods

have been studied for some time. Early work [5], [6]

considers physical security, operating system security,

Database Management System (DBMS) security and data

encryption as the major strategies that support database

security. Regarding physical security, this strategy excludes

any remote access without legal permission to the database.

Although making physical contact with database contents is

an expensive measure, it partially ensures data integrity

[5],[7]. On the subject of operating system security,

according to [8], any operating system protection model is

consisted of three elements: objects within the system,

entities who access these objects, and regulations that

manage how entities access objects. However, it is difficult

to govern entities from disclosing these regulations to

unwanted parties; this type of attack is called client

colluding attack. The third strategy concerns DBMS

security. Available DBMS security solutions assume the

database grants the appropriate privileges to legitimate users

and this obviously is not guaranteed against Trojan horse

attacks [9]. All of these strategies by themselves do not

completely satisfy the requirements of database security [5],

[6]. The forth strategy that uses encryption as a technology is

the practical solution to dominate database security [5], [6],

[7], [8]. Many systems have been developed and evaluated

to support database encryption. For example, the scheme in

[10] proposes an encryption mechanism to provide security

and improve query processing efficiency. Many other

schemes have been studied to improve some encryption

algorithms for various purposes. For example, privacy

protection using the Chinese Remainder Theorem [11] has

been examined (e.g. [5], [6]). The studies are mainly based

on encryption and anonymizing. Regarding key management

for encipherment systems, strategies such as key division

ciphers and commutative ciphers (e.g. [12] and [13) have

been implemented.

Although these techniques and methods can improve the

encryption and decryption procedures, none of them

provides a key management system that prevents the re-

encryption process of large databases when a key is

compromised. For example, consider a massive organization

- industrial, government, or military - where all employees

RSA Based Key Compromised Resistant

Protocol(KCR) For Large Databases

 Fatemah Alharbi and Huiping Guo

I

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

(referred to as users) are granted the appropriate privileges

to access the organization's database that contains thousands

of records. We assume that a modern Public Key

Infrastructure (PKI) is available and all users are capable to

perform their requests by applying the appropriate

encryption techniques. Now suppose that a key pair (public

key and private key) is generated and that the public key is

used to encrypt the huge database and the private key, which

is shared among all users in the organization, is used for

decryption. Presume that an unauthorized user breaks the

organization's security firewall and gains access to the

decryption key. All database contents would be disclosed.

One possible approach is to periodically change the database

encryption and decryption keys, but this strategy addresses

two main drawbacks. First, the overhead caused by

frequently changing the keys is overkill. The second

drawback is the re-encryption process of large databases that

requires time and a lot of resources. To the best of my

knowledge, there is no efficient and practical solution to

such a problem.

In this paper, we propose a novel key management

protocol called "RSA-based Key Compromised Resistant

protocol", referred to as KCR. The primary objective of this

protocol is to effectively avoid re-encrypting large databases

in case their keys have been compromised. KCR protocol

consists of a set of strategies where the protocol operates

practically. The protocol has been implemented and some

experiments have been conducted for the purposes of

evaluation. Simulation results show that my proposed

protocol is works well.

I. KCR PROTOCOL

A. General description

In this study, the focus is on key management for

database encryption. The essential objective of KCR

protocol is to solve the problem of re-encrypting a large

database when its decryption key is compromised. Before I

demonstrate the design details of KCR and how this protocol

works, there are some assumptions and general explanations

that should be taken into account:

• KCR protocol uses one key for encryption and a set of

keys for decryption. When any of the decryption keys is

compromised, it is discarded and replaced with another

decryption key without the need of re-encrypting the

large database.

• Clients are grouped. Each group is granted a decryption

key that is going to be used by all clients in the group.

When a key is compromised, any of the group members

contacts the responsible agency then gets a new

decryption key for her/his group. The protocol assumes

that the groups are predefined and the number of groups

is less than the number of decryption keys.

• Distribute control in the context of decryption keys

among different parties is proposed as a solution to

strengthen the security measures of large database

contents. The primary cryptographic algorithm of KCR

protocol is RSA which demands two keys: public key

and private key. The public key is used for database

encryption while the private key is used for database

decryption. The private key is divided into a set of key

pairs in which the product of the two entries of each key

pair equals the original private key; in other words, the

entries represent factors of the original private key.

These entries are distributed between the database

server and the groups.

• To decrypt a database object, the workload of the

decryption process is distributed between the client who

wants to access the object and the database server.

• The protocol provides secure communications between

involved parties.

B. KCR Encryption and Decryption

Essentially, KCR protocol is based on RSA

cryptosystem which consists of three processes: keys

generation, encryption, and decryption. The proposed

protocol adds more features to these processes.

Keys Generation. The public and private keys are

generated as follows. First, a server selects two large primes,

P and Q. Then, it computes N = PQ and the totient function

of N which is ø(N) = (P-1) (Q-1). The server selects

randomly an integer number E such that the greatest

common devisor of D and ø(N) equals 1. An integer number

D is calculated as follows: D = E-1 mod ø(N). Now, the keys

are ready to be used, the public key is (E, N) and the private

key is (D, N). The server computes the factors of D: F1, F2,

F3, ..., Fn. Then, it generates a set of key pairs {(D1, D1'),

(D2, D2'), (D3, D3'), ..., (Dn, Dn')} in which D = D1D1' =

D2D2' = D3D3' = ... = DnDn'.

Encryption. A plaintext P is encrypted to generate a

ciphertext C using the public key (E, N) as follows:

Decryption. To get the original plaintext P, partial

decryption is done on the ciphertext C using the key pair (Di,

Di') and the modulus N:

In case the key pair (Di, Di') is compromised, it must be

discarded and replaced by a new key pair (Dj, Dj'). To get P

using the new key pair, the partial decryption process is as

follows:

Proof of KCR. The following proves that encryption and

decryption are inverses of each other:

We want to prove that: P = CD mod N where D = DiDi'

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

A summary of all notations used in KCR encryption and

decryption procedures is shown in Table I.

Table 1: NOTATIONS USED IN KCR ENCRYPTION

AND DECRYPTION

P, Q Two large primes

N
Modulus

(E, N) Public key

(D, N) Private key

Fi The ith private key factor

(Di, Di') The ith private key pair

Di The first entry of the ith key pair

Di' The second entry of the ith key pair

P Plaintext

C Fully decrypted ciphertext

C' Partially decrypted ciphertext

C. Design

The design architecture of KCR protocol comprises four

components: Keys server, KDC server, Database server, and

Client.

Components. The basic idea that explains the tasks of each

component is as follows:

1) Keys server: Keys server is responsible for KCR keys

generation process. It calculates the RSA public key (E,

N) and private key (D, N) . When this process is

accomplished, the server sends the public key (E, N) to

the Database server. In addition, it stores the private key

pairs {(D1, D1'), (D2, D2'), (D3, D3'), ..., (Dn, Dn')} in its

database, and it maintains all information regarding

these pairs. An important information that Keys server

should store in its database is key pairs status Kstatus. The

initial value of key pairs status is "inactive". When a key

is granted, the status value is changed to "active". When

a key is compromised, the status is replaced with the

value "compromised". In addition to these tasks, Keys

server is primarily responsible of the key distribution

process. When a key pair first entry Di is granted to a

group Gi , Keys server forwards the key pair second

entry Di' to the Database server along with information

about the group which owns the key.

2) KDC server: KDC forms groups, which are predefined,

for clients then it distributes those clients (as members)

among the different groups according to predefined

rules. The server contains a database to store

information of the groups (G1, G2,G3,...,Gn). The

following example illustrates this approach. In a dentists

clinic, suppose there are d dentists, a dentist assistants,

and p patients. So, the groups are dentist, dentist

assistant and patient, and the total number of clients is

d+a+p in which each one of the clients is a member of

her/his correspondent group. Other than forming

groups, KDC is needed to manage the interaction

between groups members and the Keys server. It acts as

a trusted agency to send confidential messages from

members to Keys server and vise versa. Also, this server

is used to associate each group with a key. It establishes

a connection with the Keys server to obtain the first

entry of key pairs (D1, D2, D3, ... , Dn) and grants each

group a key.

3) Client: When a client wants to process a query to access

a database object, she/he needs to join a group in the

first place. She/he contacts the KDC server to join a

group Gi. Then, the KDC sends a member ID Mi_ID

and the key Di to the client. I assume that the group IDs

are published. To process a query Qi , the client sends

the ID of group Gi and Qi to the Database server. After

receiving the partially decrypted object from the

Database server, the client finishes the decryption

process by using her/his group's key Di. Moreover, the

client is responsible to inform KDC when the key is

compromised. Consequently, KDC contacts Keys

server, then the latter server updates the information

stored in its database regarding the compromised key.

After that, Keys server gives a new decryption key ,if

available, to the group. Accordingly, Keys server

forwards these updates to the Database server.

4) Database server: This server contains the main database

that we need to encrypt. The encipherment is done using

the RSA public key received from Keys server. In

addition to this task, the server plays an important role

in the decryption process. When a client sends a query

Qi to Database server along with other information to

identify the group she/he belongs to, the server uses the

appropriate key received from Keys server Di' and

partially decrypts the object and sends the result to the

client. Then, the client completes the decryption process

by decrypting the received result using her/his key Di.

Scenarios. As aforementioned, KCR protocol is based on

the interaction between four essential components: Keys

server, KDC server, Database server and Client. These

interactions define five important scenarios: Public key

distribution scenario, private key distribution in normal case

scenario, join group scenario, private key distribution in case

a key is compromised scenario, access database scenario.

The following presents details of each scenario (Hint: M, M',

E(), D(), and Hash() denotes to transmitted message,

encrypted message, encryption function, decryption

function, and hash function, respectively).

• Scenario 1 - Public key distribution:

 After generating the key pairs (public and private key),

Keys server sends a message that includes the public

key to Database server. The message, M = (E, N), is

encrypted using a secret session key KL between Keys

server and Database server: M' = E(M, KL). Upon

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

receiving the encrypted message, Database server

decrypts it with KL: M = D(M', KL) to get the public key

and encrypts the database according to the KCR

encryption process discussed earlier. The design

architecture of this scenario is shown in Figure 1. Table

II shows the notations used in the scenario.

Figure 1: KCR protocol: Scenario 1 - Public key distribution

TABLE II

NOTATIONS USED IN SCENARIO 1

KL

 Encrypted with Keys-Database secret

key

(E,

N)
Public key for database encryption

• Scenario 2 - Private key distribution in normal case:

This scenario consists of three steps:

1) To grant a decryption key to a group Gi, the KDC

creates a message that contains the group ID Gi_ID and

the key status, M = (Gi_ID, Kstatus). The key status is

"inactive" to indicate that group Gi is a new group and

does not own a key yet. The message is sent to Keys

server. The message is encrypted using a secret session

key KM between KDC server and Keys server: M' =

E(M, KM).

2) When Keys server receives the encrypted message

M', it decrypts it: M = D(M', KM) to get Gi_ID and

Kstatus. Since Kstatus = "inactive", Keys server scans its

database to extract a key pair (Di, Di') then grants this

key pair to the group Gi . Keys server updates the value

of the key pair status which is stored in its database

from "inactive" to "active". The server then replies to

KDC by sending a message that contains the first entry

of the private key pair (N is part of the private key); M

=(Di, N). For confidentiality, the message is encrypted

using the secret session key KM as follows: M' = E(M,

KM).

3) Keys server forwards a message to Database server.

The message includes the second entry of the private

key pair, Gi_ID, and the hash value of the first entry of

the private key; M = ((Di', N), Gi_ID, Hash(Di)). The

message is encrypted with a secret session key KL

shared between Keys server and Database server. The

format of the message is as follows: M' = E(M, KL).

Figure 2 shows the scenario steps. Table III summarizes

the notations used in the scenario.

Figure 2. KCR protocol: Scenario 2 - Private key distribution in

normal case

TABLE III

NOTATIONS USED IN SCENARIO 2

KL

 Encrypted with Keys-Database secret

key

KM
Encrypted with KDC-Keys secret key

Gi The ith group

Gi_ID The ID of group Gi

Kstatus Key status (active, inactive, compromised)

(Di, N) The ith first entry of the ith private key pair

(Di', N)
The ith second entry of the ith private key

pair

Hash(Di) Hash value of Di

• Scenario 3 - Join group. The following steps explain

how a client joins a group:

1) A client sends a short message that is encrypted by

a secret session key KN between her/him and the KDC

server. The message contains the group ID Gi_ID of the

group Gi that she/he wants to join, and it is encrypted as

follows: M' = E(Gi_ID , KN).

2) KDC server decrypts the message as follows: M =

D(M', KN) to get Gi_ID. Then, it adds the client as a

member Mi to group Gi and responds by sending the

member ID Mi_ID and the group's key; M =(Mi_ID,(Di,

N)). The message is sent as an encrypted message: M' =

E(M, KN).Then the client decrypts the message: M =

D(M', KN).

The steps are shown in Figure 3. The notations used in

the scenario are summarized in Table IV.

• Scenario 4 - Private key distribution in case a key is

compromised. The heart of the KCR protocol is

handling the situation when a large database decryption

key is compromised. This scenario presents the steps

that explain the interaction between the involved

components:

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Figure 3. KCR protocol: Scenario 3 - Join group

 TABLE IV

NOTATIONS USED IN SCENARIO 3

KN
 Encrypted with Client-KDC secret key

Gi The ith group

Gi_ID The ID of group Gi

(Di, N) The ith first entry of the ith private key pair

Mi The ith member of group Gi

Mi_ID The ID of member Mi

(Di, N) The ith first entry of the ith private key pair

1) When a private key pair (Di, Di') of a group Gi has

been attacked, group members are responsible of

informing the KDC about the situation. A client, a

group member, sends a message to the KDC server that

contains Gi_ID and Kstatus = "compromised" : M =

(Gi_ID, Kstatus). The message is encrypted using a secret

session key KN between the client and KDC server: M'

= E(M, KN).

2) When KDC receives the encrypted message M, it

decrypts it: M = D(M', KN) to get Gi_ID and Kstatus.

Since Kstatus = "compromised", KDC forwards the

message to Keys server to get a new key for group Gi.

The message is encrypted with KM, a secret key shared

between KDC and Keys servers: M' = E(M, KM).

3) Then, Keys server decrypts message M': M = D(M',

KM) and updates its database that contains information

about group Gi and its key pair (Di, Di'; it changes the

value of the key pair status from "active" to

"compromised". The server then grants another key pair

(Dj, Dj') to group Gi. It sends a message containing the

first entry Dj of the new key pair as a private key (M =

(Dj, N)) to KDC after encrypting it using KM : M' =

E(M, KM).

4) After receiving the message from Keys server,

KDC decrypts it: M = D(M', KM) to get the key (Dj, N)

then grants the new decryption key to group Gi. Next,

the server sends an enciphered message using KN to the

client. The message includes the new key Dj: M' = E(M,

KN).

5) Keys server sends the second entry Dj' to Database

server. The message (M = (Dj,, N), Gi_ID , Hash(Dj)))

is encrypted by KL: M' = E(M, KL).Consequently,

Database server discards the old key of group Gi and

exchanges it with the new one.

The steps of this scenario are shown in Figure.4 and the

notations used are summarized in Table V.

Figure 4. KCR protocol: Scenario 4 - Private key distribution in case

a key is compromised

TABLE V

NOTATIONS USED IN SCENARIO 4

KL
 Encrypted with Keys-Database secret key

KM
Encrypted with KDC-Keys secret key

KN
 Encrypted with Client-KDC secret key

Gi The ith group

Gi_ID The ID of group Gi

Kstatus Key status (active, inactive, compromised)

(Dj, N) The jth first entry of the jth private key pair

(Dj', N) The jth second entry of the jth private key pair

Hash(Dj) Hash value of Dj

• Scenario 5 - Access database. The scenario steps are

explained as follows:

1) To process a query Qi, a client contacts the

Database server and sends a message that contains

Qi along with an additional information that helps

the Database server indicate which key to use. This

information is either the group ID Gi_ID or the

hash value of the group's key first entry Di. If the

client chooses Gi_ID, the message content is M =

(Qi, Gi_ID). If she/he forgets her/his group ID,

she/he can still access the database using the hash

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

i

i'

Figure 5. KCR protocol: Scenario 5 - Database access with group ID

choice

Figure 6. KCR protocol: Scenario 5 - Database access with hash

value choice

value of her/his key. In this case, the message content

is M = (Qi, Hash(Di)). A secret session key KO is used

to encrypt the transmitted message: M' = E(M, KO).

2) Upon receiving the query, Database server

decrypts the message: M = D(M', KO), processes the

query Qi, and extracts the second entry Di' of the

private key pair. Then, it decrypts the encrypted query

result CRi to generate a partially decrypted ciphertext:

C' = (CRi)
D mod N. Database server sends an

encrypted message to the client using KO. The

message includes the partially decrypted result C': M'

= E(C', KO). When the client receives the message,

she/he decrypts it: M = D(M', KO) to get C' then

completes the decryption process to get the original

Result Ri: Ri = (C') D mod N.

Figure .5 shows the steps of database access scenario

with Gi_ID choice.

Figure 6 shows the steps of the scenario with hash

value choice. Table VI summarizes the notations used

in this scenario.

D. Conclusions

In this paper, we propose a novel key management

system. Some features could be added to make the

implemented project more efficient. Besides the tasks that

KDC server is responsible for, KDC could manage adding

and deleting groups. In this case, it is not necessary that

groups be predefined. The same could be applied to

members. Another feature might be generating public and

private keys automatically in case Keys server is out of key

pairs. Accordingly, all groups members are notified by email

that their keys are compromised so they need to contact

KDC to get their new keys.

TABLE VI

NOTATIONS USED IN SCENARIO 5

KO
Encrypted with client-Database secret key

Gi The ith group

Qi The ith client requested query

(Di, N) The ith first entry of the ith private key pair

(Di', N) The ith second entry of the ith private key pair

Hash(Di) Hash value of Di

CRi The ith encrypted result of query Qi

Ri The ith result of query Qi after decryption

C' The partially decrypted cipher text

 In applications where the performance of encrypting

database is not satisfactory, the proposed scheme can be

easily extended to improve the performance. Instead of

encrypting the database using RSA, we can use any modern

block cipher such as 3DES or AES to encrypt databases,

and then use the proposed scheme to protect the encryption

key.

REFERENCES

[1] B. A. Forouzan, Data communications and networking. New York:

The McGraw-Hill Companies, 2007.

[2] B. Forouzan, Cryptography and network security. New York: The

McGraw-Hill Companies, 2008.

[3] M. C. Murray, "Database security: What students need to know,"

Journal of Information Technology Education: Innovations in

Practice, vol. 9, 2010,

http://www.jite.org/documents/Vol9/JITEv9IIPp061-

077Murray804.pdf.

[4] H. Kayarkar, Classification of various security techniques in

databases and their comparative analysis, ACTA Technica

Corviniensis-Bulltin of Angineering, Report ISSN 2067-3809, April-

June, 2012, http://acta.fih.upt.ro/pdf/2012-2/ACTA-2012-2-25.pdf.

[5] G. I. Davida, D. L. Wells and J. B. Kam. "A Database encryption

system with subkeys," Journal of ACM Transactions on Database

Systems (TODS), vol. 6, no. 2, pp. 312-328, June 1981.

[6] M.-S. Hwang and W.-P. Yang. " Multilevel secure database

encryption with subkeys," Data & Knowledge Engineering, vol. 22,

pp 117-131, April 1997.

[7] J. A. Cooper, Computer and communications security: Strategies for

the 1990s. New York: McGraw-Hill, 1989.

[8] G.S. Graham and P.J. Denning, "Protection-principles and practice,"

Joint Computer Conference , vol. 40, pp. 417-429, 1972.

[9] P. A. Dwyer, G. D. Jelatis, and B. M. Thuraisingham. "Multilevel

security in database management systems." In Computers and

Security, vol. 6, no. 3, pp. 252, June 1987.

[10] W. Zhao, D. - F. Zhao, F. Gao, and G. - H. Liu. "A Cryptography

index technology and method to measure information disclosure in

the DAS model," Journal of WSEAS Transactions on Information

Science and Applications, vol. 6, no. 9, pp. 1443-1452, Sept. 2009.

[11] J. Grosschadl. "The Chinese reminder theorem and its application in a

high-speed RSA crypto chip," in Proceedings of the 16th Annual

Computer Security Application Conference, 2000, pp. 384-393.

[12] S. Chen, S. Chen, H. Guo, B. Shen, and S. Jadjodia, "Efficient proxy-

based Internet media distribution control and privacy protection

infrastructure," in Proceedings of the 14th IEEE International

Workshop on Quality of Service, New Haven, CT, 2006, pp. 209-

218.

[13] M. Malkin, T. Wu, and D. Boneh, "Experimenting with shared

generation of RSA keys," in Proceedings of the Internet Society's

1999 Symposium on Networking and Distributed System Security

(NDSS), 1999, pp. 43-56.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

