
Scientific Programming 14 (2006) 1–11 1
IOS Press

RSCS: A parallel simplex algorithm for the

Nimrod/O optimization toolset

Andrew Lewisa, David Abramsonb and Tom Peacheyb

aDivision of Information Services, Griffith University, Brisbane, Qld, Australia

E-mail: a.lewis@griffith.edu.au
bDepartment of Computer Science, and Software Engineering, Monash University, Melbourne, Vic., Australia

E-mail: {davida,tcp}@csse.monash.edu.au

Abstract. This paper describes a method of parallelisation of the popular Nelder-Mead simplex optimization algorithms that

can lead to enhanced performance on parallel and distributed computing resources. A reducing set of simplex vertices are used

to derive search directions generally closely aligned with the local gradient. When tested on a range of problems drawn from

real-world applications in science and engineering, this reducing set concurrent simplex (RSCS) variant of the Nelder-Mead

algorithm compared favourably with the original algorithm, and also with the inherently parallel multidirectional search algorithm

(MDS). All algorithms were implemented and tested in a general-purpose, grid-enabled optimization toolset.

Keywords: Parallel programming, optimization, Nelder-Mead algorithm

1. Introduction

In scientific and engineering research and design in-
creasingly sophisticated, rigorous and realistic numer-
ical simulations of physical systems are used to under-

stand these systems, and aid in the design process. En-
gineers can use computational models instead of build-
ing physical prototypes to examine the behaviour of
components or systems. Such an approach is usually

faster and cheaper and hence allows the user to explore
various design scenarios. In particular the user may
search through combinations of design parameters in
order to achieve a design that is optimal in some sense.
Similarly, scientific research is increasingly using com-

putational models, and there is often a need to deter-
mine those model parameters that produce the best fit
to real-world data.

While use of computational models is becoming rou-

tine across a wider range of applications, they are often
used in an informal manner: an engineer might use a
simulation to test a handful of different cases and pick
the best of them. More rigorous use to comprehensively
explore the design parameter space has the potential to

deliver better outcomes. This drives a demand for the

capability to perform automatic optimization, minimis-

ing or maximising some derived quantity, a measure of

“fitness” of the design, to reach a desired objective.

The computationof these objective function values is

generally an extremely computationally intensive pro-

cess when models, which may each take hours to com-

pute, must be run tens, or maybe hundreds, of times

to effectively refine possible designs. An ability to de-

ploy the parallel and distributed computing resources

that form the basis of contemporary high performance

computing architectures would be a distinct advantage

in making automatic optimization a practical tool in the

engineering design process.

The design engineer who uses the optimization pro-

gram, while an expert in the application domain, cannot

always also be expected to be an expert in computer sci-

ence. Ideally, to be useful a general purpose optimiza-

tion tool should be easily applicable to a wide range

of problems without assuming specialised knowledge

in methods of optimization from the user. The more

it can be treated as a “black box”, the wider its poten-

tial adoption and the greater its end benefit. To meet

these needs, the algorithms described in this word have

ISSN 1058-9244/06/$17.00 2006 – IOS Press and the authors. All rights reserved

2 A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset

been implemented as components of a fully integrated

optimization toolset, Nimrod/O [1–3].

Many different optimization algorithms have been

developed, from traditional gradient descent meth-

ods [4,5] to more recent innovations inspired by sys-

tems in nature, evolutionary and genetic algorithms [6].

Of enduring popularity, particularly for problems with

“noisy” objective functions, or where gradient infor-

mation is unreliable, unavailable or difficult to obtain,

are direct search methods. Foremost among these is

the simplex algorithm of Nelder and Mead [7].

In the Nelder-Mead simplex algorithm, the n + 1
vertices of a simplex of approximations to an optimal

point in n-dimensional parameter space are sampled,

ordered by objective function value, and an attempt

made to replace the worst vertex by reflection through

the convex hull of the remaining vertices, using limited

sampling along the search direction so defined. Use

of the Nelder-Mead simplex algorithm remains cur-

rent, largely because, on a range of practical engineer-

ing problems, it is capable of returning a very good

result [8]. It is also robust to small perturbations or

inaccuracies in objective function values [9].

Since the original algorithm treats a single vertex at a

time, the overall optimization process can be very time-

consuming. With the wide availability of parallel and

distributed computing resources, an obvious approach

to attempt to reduce the total optimization time is to

simultaneously consider and relocate several vertices.

This paper proposes a method for concurrent execu-

tion of a simplex optimization algorithm, and presents

results from numerical tests of the revised algorithm

on a number of case studies derived from real-world

problems in scientific and engineering applications.

2. The Nimrod/O toolset

Nimrod/O is a development of the Nimrod research

project [10–12], incorporating automatic optimization

into the framework of what was originally a parame-

ter sweep toolset. Nimrod allows a scientist or engi-

neer to succinctly describe their numerical simulation,

define parameter ranges and perform automatic explo-

rations of parameter space using enumeration of the

cross-product of the defined parameters on parallel or

distributed computers.

While an extremely useful tool, Nimrod suffers from

the shortcoming of combinatorial explosion of required

model evaluations as problem dimensionality and de-

sired solution resolution increases. Nimrod/O avoids

this problem by extending the toolset to include auto-

matic optimization in the same, easily usable frame-

work. Nimrod/O is equipped to run a number of very

different optimisation algorithms, those described in

this paper being just one set. Importantly, different

problems are better suited to different algorithms, and

Nimrod/O allows the user to try different algorithms (in

parallel if the resources are available) and to choose the

one that performs best. In this paper we are describing

some enhancements to one of these algorithms.
The structure of Nimrod/O and outline of its opera-

tion is shown in Fig. 1. It is designed to be modular,

the incorporation of additional optimization algorithms

being a relatively simple operation. Since the C source

code for Nimrod/O is freely available [13], the devel-

oper of a new algorithm can rapidly obtain the service

of distributed evaluations Nimrod/O provides. Nim-

rod/O will also provide an extensive constraint parser,

cacheing of completed jobs, granularity control for the

parameters and statistical summaries of the evaluations.
The simplest way to incorporate an algorithm is to

use the “hooks” provided. For example, if the algorithm

is coded in the functionuserSuppliedOptimiza-

tion1 (for which a skeleton is provided) then that

algorithm may be invoked by the line

method special 1

in a schedule file.

The user-supplied function will initially be passed a

starting point in search space. What it does with this

point is defined by the optimization method. For exam-

ple, in simplicial methods the starting simplex is con-
structed around the starting point. However, it should

be borne in mind that differing starting points are the

only differentiation between the multiple, simultaneous

optimizations available through Nimrod/O’s multi-start

feature.

The dimensionality of parameter space is available

through a global variable, and its bounds through

passed variable attribute structures. The code needs to

use an array of structures of type Point. Each struc-

ture will hold the coordinates of a point in the search
space; simultaneous evaluation of the objective func-

tion at a number of points constitutes a “batch of jobs”.

Execution of a batch is performed by passing the array

to the function evalBatchOfJobs. On return each

structure gives the status of the corresponding job, the

result of any imposed constraints, the location of the

“optimum” found and the value of the objective func-

tion at that point. More detail is supplied in Chapter 10

of the Nimrod/O User’s Guide [14].

A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset 3

Fig. 1. The Nimrod/O Architecture.

A limitation of this approach is that only the tolerance

setting, a value that can be used to decide convergence,

is available to the algorithm. Other static, operational

parameters of the optimization method may be read

from a file, but if the developer wants settings to be

passed from the schedule file to the algorithm, it is

necessary to modify other parts of the Nimrod/O code.

In this case it is advisable to fully incorporate the new

method using an existing method as a guide.

Several changes are required. The files involved are

shown in parentheses.

– Additions to the parser lexicon to recognise new

statements in the schedule (parsesched.c and defi-

nitions.h).

– Additions to the structure Opt_Settings to in-

clude the information required (definitions.h).

– Insertion of parsing options inParseInnerLine

(parsesched.c).

– Additions of the new method as a case in

Optimize (penalties.c).

– Creation of the new optimization algorithm to be

called from Optimize.

A wide variety of methods is already available in the

source code and can be used to provide examples of the

code and information needed.

Control of optimization experiments is via a declar-

ative plan file, a simple description of the execution of

the numerical model and optimization problem, includ-

ing parameters, their ranges, and details of the opti-

mization methods to be used. Nimrod/O interprets the

plan file, sets up the run environment and passes control

to the requested optimization algorithm(s). Nimrod/O

explicitly supports simultaneous execution of multiple

optimization runs from different starting points, and

simultaneous use of multiple optimization methods.

An optimization algorithm,as it runs, passes requests

to Nimrod/O job control for objective function evalua-

tions to be performed. These can be grouped in batches

where the algorithm is capable of generating multi-

ple concurrent tasks. Job control checks the requested

set of parameters against a cache of previously com-

puted results and then automatically dispatches evalua-

tion jobs to computing resources provided by the user,

whether they be parallel or distributed computers, via

one of a number of job distribution mechanisms. Cur-

rently three are provided in the standard toolset:

– Nimrod/G, which is a Globus-enabled tool for

use of computational grid resources [15]. Not

only does the Grid offer additional computing re-

sources, but potentially also access to specialised

software packages and licences unavailable lo-

cally.

– an API to EnFuzion, a commercially available im-

plementation of the original Nimrod tool that al-

lows use of parallel computers or collections of

workstations on a LAN.

– a mode in which processes are run locally using

fork(). This mode suits symmetric multiproces-

sors.

These tools take care of job submission, execution

tracking and input and output file handling.

Following is a simple, example declarative plan file.

Further details of the syntax can be found in the Nim-

rod/O Users’ Guide.

parameter b float range from 5 to 35

parameter tness float range from 2 to 9

parameter bias float range from -0.02 to 0.02

task main
copy runfiles/* node:.

node:execute ./run.script $b $tness $bias

copy node:result.dat output.$jobname

endtask

method simplex

starts 8 named "simplex"

4 A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset

starting points random

tolerance 0.005

endstarts

endmethod

The plan file starts by defining the parameters. A

parameter is named, its type defined, how it will be

expressed and, where appropriate, the bounds on its

value. Supported parameter types are float, integer and

text. Float and integer types must be expressed as a

range of values, text as a list of values. Where text

parameters are used, the listed cases will be evaluated

by simple enumeration, i.e. multiple optimizations will

be performed, one for each value of the text parameter.

Then, in the section labelled as “task main”, a brief

description is given of how to run the numerical simula-

tion. Input and output of the simulation are assumed to

be via named files. This has been a common method of

interaction with large-scale simulations, and is an easy

method independent of the model implementation. For

each objective function evaluation task input files are

copied to the “node” on which execution is to be sched-

uled. All other files necessary for execution of the sim-

ulation should also be copied, including all necessary

scripts and executables.

Then a user-provided script is run on the node. It is

assumed that the script will provide the commands to

run the simulation and derive the single, floating-point

objective function value, possibly by post-processing

of the model output. It may be noted that the parame-

ters are provided to the script via named environment

variables. These will be substituted by the particular

parameter values supplied by the optimization algo-

rithm at run-time. The results, written to a file, are

copied back to the scheduling node, and placed in a

file with the standard name “output” and an extension

identifying the particular job.

Following the description of the model execution is

the section specifying the algorithm to be used. Multi-

ple algorithms can be specified, and will be executed si-

multaneously. Parameters for the algorithms are kept to

a minimum, are generally intuitive, and provided with

sensible default values. In the example shown, eight si-

multaneous runs will be performed using a parallel im-

plementation of the Nelder-Mead Simplex algorithm,

from random starting points. The algorithm descrip-

tion also specifies a desired solution tolerance. For the

Simplex algorithm, and the new variant described in

this paper, this specifies the convergence criterion by

defining the magnitude of the fractional gradient of the

final simplex.

Local
gradient

1

2

3

3a

2b

Step 1

reflection
Step 2

reflection

Fig. 2. Sequential Nelder-Mead reflection.

This is sufficient to specify the entire optimization

experiment to Nimrod/O. Importantly, the user is not

concerned with the computational platform, since sup-

port for this is provided by Nimrod or EnFuzion. Issues

relating to the Grid are managed through the Nimrod

Portal.

3. Reducing Set Concurrent Simplex (RSCS)

The application of supplementary search directions

to the Nelder-Mead algorithm, drawing on the methods

of the Multidimensional Search (MDS) algorithm of

Dennis and Torczon [16–18] has been suggested pre-

viously by Hamma [19]. This still implemented ad-

ditional searches sequentially. As illustrated in Figs 2

and 3, a straightforward, concurrent implementation of

all the possible Nelder-Mead search directions is po-

tentially inefficient.

When the search directions of the Nelder-Mead sim-

plex algorithm are applied sequentially, step one pro-

ducing the new vertex 3a and step 2 producing the new

vertex 2b, the search directions are generally downhill,

relative to the local gradient. However, if they are ap-

plied concurrently, it may quite often be the case that

one or more may be to some degree uphill (for example,

the trial vertex 2a in Fig. 3). Note: the MDS search

directions have been omitted for clarity: they would be

from vertices 2 and 3, through vertex 1.

In this paper a different approach to generating sup-

plementary search directions for concurrent search is

proposed. The search direction from the worst vertex

is through the centroid of the remaining n vertices, as

A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset 5

Local
gradient

1

2

3

3a

2a

Step 1

reflection of

vertex 3

Step 1

reflection of

vertex 2

Fig. 3. Concurrent Nelder-Mead reflection.

Local
gradient

1

2

3

Fig. 4. RSCS search directions.

in the normal Nelder-Mead algorithm. But the search
direction from the next worst vertex is through the n−1
remaining vertices that are better than it, and so on,

until the search direction from the second best vertex
is reduced to the MDS search direction though the best

vertex. All searches are performed concurrently, and

all vertices are independently relocatable.
The method can be considered as deriving from a

hybrid of the Nelder-Mead and MDS algorithms. In

this work it will be referred to as the Reducing Set Con-

current Simplex (RSCS) algorithm. The set of search
directions generated is illustrated in Fig. 4. Compar-

ing the search directions illustrated in Fig. 4 with the

concurrent search directions of Fig. 3, it may be noted
that the search directions generated by RSCS are more

likely to be downhill.

Viewed in two dimensions RSCS can appear to be
a simple hybrid of Nelder-Mead and MDS. However,

if the 3-dimensional case is considered it becomes ap-

parent there are differences. Figures 5, 6 and 7 show

Local

Gradient

A

B

C

D

Centroid of {B,C,D}

Search

Direction

Fig. 5. First RSCS search direction – 3D case.

Local

Gradient

A

B

C

D

Centroid of {C,D}Search

Direction

Fig. 6. Second RSCS search direction – 3D case.

the three search directions constructed by RSCS, and

the edges and vertices used in their construction. The

search direction shown in Fig. 6 will not appear in either

the Nelder-Mead or MDS algorithms.

4. Numerical experiments

We have assembled a number of case studies drawn

from interesting and challenging scientific and engi-

neering applications. These were used to test and as-

sess the performance of the individual algorithms. The

following problems were used for these investigations:

4.1. Laser 1 and 2

A two-dimensional test surface was derived from the

computation of a quantum electrodynamical simulation

of a laser-atom interaction experiment [10]. The base

case, Laser 1, is quite a smooth surface, the dataset

containing only 4 minima, of which the global mini-

mum is quite dominant, as can be seen in Fig. 8(a).

Additive fractal noise was overlaid on this dataset to

develop a “noisier”, more challenging surface to test

6 A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset

Local

Gradient

A

B

C
D

Search direction through

remaining point, D

Fig. 7. Third RSCS search direction – 3D case.

the algorithms. This dataset, Laser 2, contained 1157

local minima of varying severity, and is illustrated in

Fig. 8(b).

4.2. Crack 1 and 2

Finite element analysis of a thin plate under cyclic

loading, with a cutout specified by parameters, was

used to generate the Crack datasets [20]. Common

practice in damage tolerant design has been to minimise

the maximum stress under load. Isosurfaces of these

stress values are shown in Fig. 8(c). This dataset, Crack

1, was reasonably smooth, with only 26 local minima.

A new approach in modeling stressed components is

to attempt to maximize durability. The Crack 2 model

seeks to maximise the life of the part as determined

by the minimum time taken for fatigue crack growth

to a defined length from any of a number of starting

crack locations. Isosurfaces at a number of values are

shown in Fig. 8(d). In contrast to Crack 1, this dataset

was “noisy”, with 540 local maxima, and discontinuous

isosurfaces.

4.3. Aerofoil

This test case models the aerodynamic properties of a

two dimensional aerofoil. The objective function to be

minimised is the lift-drag ratio [2], and this is computed

by executing a Computational Fluid Dynamics model

of the object. Figure 8(e) shows a number of isosurfaces

in the parameter space investigated. The dataset was

generally smooth, with only 12 local minima and a

dominant global minimum.

4.4. Bead

The application from which this case study was

drawn used a ceramic bead to minimise distortion of

the radiation pattern of a mobile telecommunications

handset during testing [21]. The objective function

value, derived from an FDTD full-wave analysis of the

handset and signal feed cable structure, was a measure

of transmission strength through the bead at 1 GHz.

The dataset for the Bead case study, of which isosur-

faces for a particular value are shown in Fig. 8(f), is

quite complex and contains 298 local minima.

4.5. Rosenbrock’s function

In order to provide a point of comparison, the well-

known Rosenbrock’s function in two dimensions was

included. The objective function values for this test

case were directly computed from:

f(x) = 100(x2 − x2
1
)2 + (1− x1)

2 for xi ∈ [−2, 2]
which has one local minimum at f(1, 1) = 0.

4.6. Case study assembly

It is generally not practical to directly use complex,

real-world problems as test cases. The “black box”,

when queried, can take a considerable amount of time

and computational resource to provide a response. So

parameter sweeps were made of the numerical mod-

els that form the basis of these test cases, and the out-

put data stored. These pre-computed data are interro-

gated, and linear interpolation employed to provide re-

alistic responses from what are, in effect, “sandboxes”

in which optimization programs can readily be tested.

These “sandboxes” themselves represent a large invest-

ment of time and computational resource – for example,

the data acquisition necessary to build the “Bead” test

case required over 2 months of continuous computation

on a multi-processor supercomputer.

Generally, the case studies fell into 2 sets:

– Smooth, with a dominant global minimum (Laser

1, Crack 1, Aerofoil, Rosenbrock’s function)

– Multiple/many local minima, non-convex (Laser

2, Crack 2, Bead)

In formulating ideas about the most appropriate algo-

rithm for use with a particular problem,a great deal may

depend on whether the problem encountered is “noisy”

or “smooth”. Particular attention has been addressed

to this issue when assessing algorithm performance.

A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset 7

Table 1

Median results obtained across 10 runs – Objective function values

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock

NM −0.481 −0.032 191.9 5299 −67.85 3.66 0

MDS −0.481 0.279 188.0 5319 −67.92 1.63 0.066

RSCS −0.481 −0.286 193.5 5310 −68.56 2.41 0.186

Table 2

Median results obtained across 10 runs – Function evaluations

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock

NM 97 100.5 106 66 88 50 240

MDS 96 93 94 260.5 121 49 2358

RSCS 103 120.5 132 180 118 106 227

(a) Laser 1

(b) Laser 2

(c) Crack 1

(d) Crack 2

(e) Aerofoil

(f) Bead

Fig. 8. Test case isosurfaces.

5. Results of Experiments

To evaluate the new RSCS algorithm, it was com-

pared with the original, Nelder-Mead algorithm and an

implementation of the MDS algorithm. The Nelder-

Mead algorithm performs evaluation of four points

when considering relocation of each vertex, corre-

sponding to the various alternatives of reflection, ex-

tension and contraction of the simplex. All these points

are independent of each other, completely defined by

the existing simplex geometry, and could be evaluated

concurrently. The algorithm was slightly modified to

exploit this concurrency, and all results reported for the

“original” algorithm in this section refer to this parallel

implementation.

Each of the algorithms was run on each of the test

cases from 10 randomly distributed start points. For

the purposes of comparison, in a given test case the

same set of start points were used for each algorithm.

The starting simplices were right simplices aligned with

the coordinate axes. By default they were scaled to

10% of the parameter range for each coordinate, as

use of reasonably large simplices has been shown to

enhance performance [22]. Convergence criterion for

most cases was a fractional step-wise gradient of 10−3.

Function evaluations are performed concurrently in

batches in Nimrod/O. The batch count can be inter-

preted as equivalent to Effective Serial Function Eval-

uations (ESFE), a measure of the wall-clock time taken

for completion, providing the machine has enough pro-

8 A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset

Table 3

Median results obtained across 10 runs – Equivalent Serial Function Evaluations

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock

NM 24.5 25.5 26.5 16.5 22 12.5 63.5

MDS 16.5 16 11 29.5 14 6 393.5

RSCS 13.5 16 12 16 10.5 10 29

Table 4

Best objective function values obtained in 10 runs

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock

NM −0.48 −0.56 187.6 5353 −68.64 −26.98 0

MDS −0.48 −0.56 187.6 5357 −68.64 −16.12 3e-4

RSCS −0.48 −0.56 187.6 5347 −68.64 −26.91 0

Table 5

Time taken, in ESFE, to achieve best objective function values, across 10 runs

Laser 1 Laser 2 Crack 1 Crack 2 Aerofoil Bead Rosenbrock

NM 24 24 25 23 20 16 54

MDS 16 12 13 1000 14 7 1000

RSCS 22 12 9 42 7 12 39

cessors to concurrently evaluate all points, a reasonable

assumption given the ready access to cheap clusters.

Analysis of the returned objective function values

using the Shapiro-Wilk W test statistic determined that

the results are not normally distributed. For this reason,

median values and non-parametric, descriptive statisti-

cal methods are used for comparison of algorithms.

Tables 1, 2 and 3 show, for each algorithm on each

test case over the 10 runs performed, respectively:

– The median objective function value obtained,

– The median number of function evaluations per-

formed (FE) and

– The median Effective Serial Function Evaluations

(ESFE).

For each test case, the best median objective func-

tion value is highlighted in bold type. Also highlighted

is the fastest time, in terms of ESFE, for an algorithm

to achieve a result within 10% of the best median ob-

jective function, as a percentage of the range of median

values obtained.

Table 4 shows the best objective function value ob-

tained in 10 runs for each algorithm on each test case.

Table 5 shows the actual ESFEs required to obtain that

result. For each test case, the best objective function

value obtained by any algorithm, and the fastest ESFE

to obtain that value, are highlighted in bold type.

From Table 1, it can be seen that RSCS appears to

deliver slightly better results than Nelder-Mead on the

majority of test cases. From Table 4 it can be seen that

RSCS was also capable of equalling the best objective

function value returned by both the Nelder-Mead and

MDS algorithms on almost all test cases. In the one
case it fell slightly behind, it was by less than 0.2%.

Analysis of objective function values returned, using

the Kruskal-Wallis H test statistic and pair-wise com-

parisons using Mann-Whitney U test statistics indicated

there was no statistically significant difference in the

quality of results returned by RSCS, Nelder-Mead sim-

plex and MDS algorithms.

The only significant remaining difference between

RSCS and the other algorithms is thus its speed. RSCS

gave median ESFE that were consistently better than

the Nelder-Mead algorithm. On average, RSCS was
78% faster.

From Table 3, it can be seen that RSCS is approx-

imately 20% faster than MDS on average. This ex-

cludes the time taken by MDS on Rosenbrock’s func-

tion, which was considered a pathological example of

the tendency of simplicial methods toward premature

convergence [23]. If the median time taken on Rosen-

brock’s function is included, RSCS is on average faster

than MDS by a factor of 4.5. The decision to include

these poorer results may be justified by reference to

Table 4 in which it can be seen that on two differ-
ent test cases MDS terminated by exceeding the max-

imum permissible iterations (1000), rather than satis-

fying convergence criteria. It can be conjectured that

the insistence on congruency of consecutive simplices

in the MDS algorithm forces premature contraction of

the simplex diameter.

To further investigate the behaviour of the algo-

rithms, the median objective function values achieved

after each iteration of each algorithm across all 10 runs

A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset 9

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

NM

MDS

RSCS

Fig. 9. Convergence history of median values – Laser 1.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

NM

MDS

RSCS

Fig. 10. Convergence history of median values – Laser 2.

on each of the real-world test cases were examined. As

noted above, the case studies used can be classified into

two classes, “smooth” and “noisy”. In Figs 9 and 10

the two case studies derived from the quantum elec-

trodynamical models, Laser 1 and Laser 2, are shown.

The first of these exemplifies a “smooth” test case, the

latter a “noisy” one.

From Fig. 9 it can be seen that all methods achieve

similar results in terms of the objective function values

obtained, as can be confirmed by reference to Table 1.

Both RSCS and MDS reach better intermediate results

faster than Nelder-Mead, and converge slightly earlier,

demonstrating the advantages of treating multiple ver-

tices simultaneously.

In Fig. 10, it is MDS that is left behind, as several of

the test runs from which the median is drawn become

trapped in local minima in regions of low overall gra-

dient far from the global minimum. Nelder-Mead and

RSCS obtain better results, with more of the RSCS runs

terminating successfully at or near the global minimum.

From these brief observations it may be concluded that

RSCS is a more consistently reliable method, across

10 A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset

both smooth and noisy test cases.

6. Conclusions

A method of concurrent execution of a simplex op-
timization algorithm has been proposed, and its per-
formance on a range of real-world problems compared
with the popular Nelder-Mead and MDS algorithms
from which it is derived. The supplementary search
directions used are constructed from reducing sets of
vertices in a manner which increases the probability
they will be aligned with the local gradient.

In general, the Nelder-Mead and MDS algorithms
perform well on the “smooth” test cases, but poorly on
the class of cases with noise or many local minima. The
new algorithm, RSCS, performs reasonably (or very)
well on both types of problems. It generally provides
equivalent or slightly better results, and delivers them
considerably faster.

A general-purpose optimization toolset, Nimrod/O,
in which the prototype and test algorithms have been
implemented has also been described. The toolset
makes the use of parallel and distributed computing
for automatic optimization in the engineering design
process readily and easily applicable. Nimrod/O can
run a number of very different optimisation algorithms,
in parallel if the resources are available. It allows a
user to try different algorithms and select those which
perform best on a particular problem. The toolset is
configured for use on parallel computers, collections
of workstations on networks, or grid-based computing
resources.

By increasing the speed of the optimization algo-
rithm using parallel computing resources, the method
described delivers automatic optimization as a feasible
tool for use by the practising engineer tackling real-
world problems. With the growing availability of in-
expensive computing clusters, rigorous exploration of
design alternatives can be made, rather than haphaz-
ard, ad hoc evaluation of limited numbers of prototype
designs.

References

[1] D. Abramson, A. Lewis and T. Peachey, Nimrod/O: A tool

for Automatic Design Optimization, in Proceedings of The 4th

International Conference on Algorithms & Architectures for

Parallel Processing (ICA3PP 2000), Hong Kong, China, 2000.

[2] D. Abramson, A. Lewis and T. Peachey, Case Studies in Auto-

matic Design Optimisation Using the P-BFGS Algorithm, in

Proceedings of 2001 High Performance Computing Sympo-

sium (HPC’01), Seattle, WA, 2001, 104–109.

[3] D. Abramson, A. Lewis, T. Peachey and C. Fletcher, An Auto-

matic Design Optimization Tool and Its Application to Com-

putational Fluid Dynamics, in Proceedings of ACM/IEEE

SC2001 Conference, Denver, CO, 2001.

[4] R. Fletcher, Practical Methods of Optimization, (2nd ed.),

John Wiley & Sons, Chichester, 1987.

[5] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization,
Academic Press, London and New York, 1981.

[6] T. Bäck, Evolutionary Algorithms in Theory and Practice,

Oxford University Press, New York, NY, 1996.

[7] J. Nelder and R. Mead, A simplex method for function mini-

mization, Comput. J. 7 (1965), 308–313.

[8] M. Wright, Direct search methods: Once scorned, now re-

spectable, in: Proceedings of the 1995 Dundee Biennial Con-

ference in Numerical Analysis, D. Griffiths and G. Watson,
eds, Harlow, UK: Addison Wesley Longman, 1995, pp. 191–

208.

[9] H. Neddermeijer, G. van Oortmarssen, N. Piersma, R. Dekker

and J. Habbema, Adaptive extensions of the Nelder and Mead

simplex method for optimisation of stochastic simulation mod-

els, Faculty of Economics, Erasmus University, Rotterdam,

The Netherlands, Tech. Rep., Econometric Institute Report

EI2000-22/A, 2000.
[10] D. Abramson, R. Sosic, J. Giddy and B. Hall, Nimrod: A Tool

for Performing Parametised Simulations Using Distributed

Workstations, in Proceedings of the 4th IEEE Symposium on

High Performance Distributed Computing, Virginia, August

1995.

[11] A. Lewis, D. Abramson, R. Sosic and J. Giddy, Tool-Based

Parameterisation: An Application Perspective, Proceedings

of Computational Techniques and Applications Conference
(CTAC95), Melbourne, Australia, 1995, 463–469.

[12] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic,

R. Sutherst and N. White, The Nimrod Computational Work-

bench: A Case Study in Desktop Metacomputing, Proceedings

of the Australian Computer Science Conference (ACSC97),

Sydney, Australia, 1997.

[13] D. Abramson, Nimrod/O, in Nimrod: Tools for Distributed
Parametric Modelling, http://www.csse.monash.edu.au/

˜davida/nimrod/nimrodo.htm, Last viewed 7 November, 2005.

[14] T. Peachey, Nimrod/O user’s guide: for version 2.1.x, Monash

University, Melbourne, Australia, Tech. Report, 2003.

[15] I. Foster and C. Kesselman, Globus: A metacomputing in-

frastructure toolkit, International Journal of Supercomputer

Applications 11 (1997), 115–128.

[16] J. Dennis and V. Torczon, Direct search methods on parallel
machines, SIAM J. Optim. 1 (1991), 448–474.

[17] V. Torczon, Multidirectional Search, Ph.D. dissertation, Rice

University, Houston, TX, 1989.

[18] V. Torczon, On the convergence of the multidirectional search

algorithm, SIAM J. Optim. 1 (1991), 123–145.

[19] B. Hamma, Local and global behavior of moving poly-

tope algorithms, CERFACS, Toulouse, France, Tech. Report

TR/PA/97/39, 1997.
[20] T. Peachey, D. Abramson, A. Lewis and R. Jones, Distributed

Optimization Using Nimrod/O and Its Application to Fault

Tolerant Structures, Fifth International Conference on Parallel

Processing and Applied Mathematics (PPAM 2003), Czesto-

chowa, Poland, 2003.

[21] A. Lewis, S. Saario, D. Abramson and J. Lu, An Application

of Optimisation for Passive RF Component Design, Proceed-

ings of the Conference on Electromagnetic Field Computation,
Milwaukee, 2000.

A. Lewis et al. / RSCS: A parallel simplex algorithm for the Nimrod/O optimization toolset 11

[22] D. Humphrey and J. Wilson, A revised simplex search pro-

cedure for stochastic simulation response-surface optimiza-

tion, in: Proceedings of the 1998 Winter Simulation Confer-

ence, D. Medeiros, ed., Piscataway, N.J.: IEEE Press, 1998,

pp. 751–759.

[23] R. Barton and J.J.S. Ivey, Nelder-Mead simplex modifications

for simplex optimization, Management Science 42 (1996),

954–973.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

