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Abstract

Wireless Sensor Networks (WSNs) are a new technol-
ogy that is expected to be used in the near future due to
its cheap cost and data processing ability. However, se-
curing WSNs with traditional cryptographic mechanism is
insufficient because of the existing limited resources and
the lack of tamper resistant hardware. In this paper, we
propose a Reputation-based Secure Data Aggregation for
WSNs (RSDA) that integrates aggregation functionalities
with the advantages provided by a reputation system to en-
hance the network lifetime and the accuracy of the aggre-
gated data. We bind symmetric secret keys to geographic
locations and assign these keys to sensor nodes based on
their locations. RSDA therefore can resist an adversary
that is capable to compromise up toW sensor nodes in to-
tal with no more thant − 1 compromised nodes in any cell.

1. Introduction

Securing network communications has traditionally been
achieved through cryptographic mechanisms, but these are
insufficient to protect wireless sensor networks (WSNs).
Because sensor nodes are deployed for long periods in hos-
tile environments it is possible for an adversary to physi-
cally take over a sensor node and obtain access to the cryp-
tographic keys. Adversaries are given the opportunity to
pretend to be a legitimate node while performing malicious
actions. Another reason is the limited resources that WSN
suffers from such as low computational capability, limited
energy source and small memory. The wireless security
community has therefore developed a suite of mechanisms
to complement cryptographic techniques such as a reputa-
tion system that can be defined as a system that collects,
processes, and disseminates feedback about the history of
sensors’ behavior.
Most current research in reputation systems focus on ad

hoc networks not WSNs. Unfortunately, existing reputation
schemes, that are proposed for WSNs, are not appropriate to
be used in the data aggregation context. For example, stud-
ies such as [2] examined how good these nodes are in per-
forming routing functionalities. They are not aware about
the content of the sensed data. The disadvantage of this
is that some sensors may still get good reputation values al-
though they provide invalid readings since no check is made
on the sensed data. On the other hand, most of the existing
secure data aggregation schemes focus either on the aggre-
gator behavior such as Secure Information Aggregation in
sensor network (SIA) [5] or on the security of the aggrega-
tion functions such as Resilient Aggregation in WSN [7].
They assume that leaf nodes are honest and report correct
readings.
In this paper, we propose a Reputation-based Secure Data
Aggregation for wireless sensor networks (RSDA) that in-
tegrates the aggregation functionalities with the advantages
that are provided by a reputation system in order to enhance
the network life time and the accuracy of the aggregated
data without trimming the abnormal (but correct) readings
as suggested by Wagner [7]. Eliminating abnormal read-
ings with no further investigation is impractical especially
in applications such as monitoring bush fire or monitoring
temperatures within oil refineries. The target terrain, where
RSDA is implemented, is divided into smaller cells of equal
size. Each cell hasT nodes where only one of them is se-
lected, based on its reputation value, to be the Cell Rep-
resentative. Each node has a monitoring mechanism simi-
lar to the Watchdog that was proposed by Martie et al. [4]
in order to compare its result with the result of its neigh-
bors. Each node in a cell performs redundant operations to
monitor the cell representative operations.RSDA follows
a request-response paradigm where the base station initi-
ates the aggregation process by flooding a query message
into the network. The transformation from this paradigm to
the periodic paradigm however is straight forward by letting
the representatives periodically report their data without the
need to wait for the base station’s query. An example of the



applications whereRSDA can fit is checking the tempera-
ture in oil refineries where normal and abnormal readings
are equally important for the safety department.
The rest of the paper is organized as follows. Section 2
lists the requirements forRSDA. Section 3 discusses the
expected type of adversary thatRSDA resists. Section 4
describesRSDA. In Section 5, the performance ofRSDA
is discussed. Section 6 concludes the paper.

2 Requirements

RSDA focuses on providing two main properties which
aredata accuracy anddata availability. Other requirements
are necessary in order to achieve these two properties as will
be discussed in Section 5. These requirements are:
Data Integrity that ensures the content of a message has
not been altered, either maliciously or accidentally, during
transmission which helpsRSDA to filter out incorrect data
and save the processing energy if this data traveled all the
way to the base station (BS).
Data Freshness that ensures the data are recent and have
not been replayed. Injecting old data into the network re-
quires nodes to process this unnecessary data which leads
to more energy consumption. This old data also did not
represent the current (correct) cell reading which affectsthe
accuracy of the aggregated data.
Entity Authentication that allows the receiver to verify
whether the message is sent by the claimed sender or not.
Therefore, an adversary will not be able to participate and
inject data into the network and then affect the data accu-
racy unless it has valid keys.

3 Adversarial Model

Given that the number of sensor nodes in each cell isT ,
we assume that the adversary (ADV) is capable of compro-
mising W sensor nodes whereW ≫ T but there is no
more thant − 1 compromised nodes in any cell. When the
ADV compromises a sensor nodex, it is able to read all
x’s internal memory and then theADV could manipulate
x to alter the received content or even drop it. Moreover,
ADV can degrade the reputation system accuracy by lying
about the reputation values. For example, it can falsely ac-
cuse well-behaving nodes by assigning them negative rep-
utation values and then distributing them to its neighbors.
TheADV however can not compromise theBS which is
secured and under the supervision of a network administra-
tor.

4 The Proposed Scheme - RSDA

We assume that sensor nodes lack tamper-resistance
property, have unique id, and are preloaded with two net-

Figure 1: RSDA

Table 1: Reputation Table Format

Node RS RF RA

ID α β α β α β

x1 10 4 8 6 - -
x2 13 1 14 - 14 -
x3 8 6 10 4 - -
. . . . . . .
xi . . . . . .

work wide shared keysK1 andK2. We also assume a large
deployment area, the dimensions of which are known in
advance and that nodes are uniformly distributed over this
area. A grid structure is used to divide the target terrain into
smaller non-overlapping cells of equal areas. The dimen-
sion of each cell is small enough to allow the radio range
of each sensor to cover its surrounding cells. We assume
the existence of a short period of time when the network is
not vulnerable to any attacks. During this time, each sensor
node discovers its neighboring nodes, finds out which cell it
belongs to, and computes its cell key and shared keys with
neighboring cells as described below.
RSDA focuses on the multiple aggregator model that was
identified by Alzaid et al. [1] where the aggregation is per-
formed at each cell. Each node monitors the behavior of
other nodes within the same cell and then calculates the
reputation value for them based on participation in some
cell operations such as sensing, forwarding, and aggrega-
tion. RSDA is composed of two types of identities: aBS
and normal sensor nodes. TheBS is entrusted with the task
of initiating queries to the network, processing received an-
swers for these queries, and deriving meaningful informa-
tion that reflects the events in the target field. The normal
sensors are grouped into cells and in each cell one of sen-
sors is selected to be the cell representativeCrep.
Initially Crep is chosen randomly since all nodes start with
same reputation value. These cells can be an intermediate
cell, that receives data from downstream cells and performs
sensing, aggregation, and forwarding operations, or a leaf



cell that does not receive data from downstream cells and
does not perform aggregation functions (see Figure 1). The
Crep is responsible for confirming its cell readingCread

(reported by other cell member), aggregating it with other
readings (if the cell is an intermediate cell), and forwarding
it to upper stream cell. In addition to reportingCread to
Crep, other nodes evaluate the behavior of theirCrep and
other nodes in the same cell. The node behavior is repre-
sented in the form (α,β) tuple whereα andβ represent the
amount of positive and negative ratings that are calculated
by each node for other nodes in its cell and then stored in
the reputation table (see Table 1). Ifx has behaved well
for a specific function,α for nodex is incremented by one.
Otherwiseβ is incremented. The nodes behavior are exam-
ined for three functions: data sensing, data forwarding, and
data aggegation (ifx is theCrep for an intermediate cell).
Each node therefore maintains a reputation table for its cell
members and keeps recordingα andβ for these functions
(sensing, forwarding, aggregation) separately as in Table1.
To fill this reputation table, each sensor node evaluates the
sensing, forwarding, and aggregation (if it is in an interme-
diate cell) functionalities of each cell members and com-
putes the amount of positive and negative (α,β) ratings for
each function.RSDA uses beta probability density function
(PDF) to update the reputation value of each sensor node
due to its flexibility, strong foundation on the statistics,sim-
plicity that meet the needs of resource constraint nodes [3].
The reputation value can be expressed as follows:

RS/A/F =
αS/A/F

αS/A/F + βS/A/F

when nothing is known, thea priori distribution is the uni-
form beta PDF withα = 1 andβ = 1. Due to space lim-
itation, we refer the interested readers to Ismail and Jøang
[3] for details about beta distribution. The notation to be
used in the rest of the paper can be found in Table 2.

Bootstrap Phase. This phase constitutes a short duration
of time immediately following the network deployment. It
is short enough to assume that no attacks are possible during
this phase. For example, let us consider an arbitrary sensor
nodex within Ci. The nodex computesKCi

which is used
to authenticate any communication between itself and any
node in the same cell in a similar way to Ren et al. [6] as
follows:

KCi
= H(K1 || Ci)

where || represents bit string concatenation. TheKCi
is

used to prevent non cell members from participating in the
cell operations and then affecting the accuracy ofCread

i .
After that, each sensor node computes the authentication
key with adjacent cellsCj as follows:

K
Cj

Ci
= H(K2 || Ci || Cj)

At the end of this phase, each sensor node deletesK1 and
K2 to preventADV from getting access.

Table 2: Notations forRSDA

Name Description

K1,K2 two network wide shared keys.
Ci Theith cell.
KCi

Cell key for theith cell.
K

Cj

Ci
Shared key betweenith andjth cell.

H(.) Hash function.
MACKci

Message authentication code com-
puted by usingKCi

.
MAC

K
cj
ci

Message authentication code com-
puted by usingKCj

Ci
.

ADV An adversary around the WSN.
T Number of nodes in each cell.
N Total number of nodes inRSDA.
W Total number of compromised nodes.
t The minimum number of nodes in a

cell that is required to revoke misbe-
havingCrep or to confirm a newCread

x, y sensor nodex andy respectively.
rx, ry readings fromx andy respectively.
BS The base station.
Cread

i Reported (sensed) data fromCi.
F An aggregation function.
ADCi

Aggregated data obtained byF atCi.
Qn A query number.
Rx

S/A/F Reputation value for asensing/ aggre-
gation/ forwardingfunctionality ofx.

αx
S/A/F The amount of positive ratings for

a sensing/ aggregation/ forwarding
functionality ofx.

βx
S/A/F The amount of negative ratings for

a sensing/ aggregation/ forwarding
functionality ofx.

ThrA/S The pre-defined threshold for theag-
gregation/ sensingfunctionality.

Data Aggregation. Before describing how aggregation
works, we first introduce the packet format used within the
network. Each packet has the following format:

{

C
rep
i , C

rep
j , Qn , Payload

}

whereC
rep
i represents the sending cell representative,C

rep
j

represents the receiving cell representative, andPayload

denotes the packet content. An aggregation process begins



when theBS propagates a query to all cells as follows:

{ BS, all cells, Qn, Payload }

The propagated query and the answer to this query are re-
layed to its destination via some intermediate cells. The
data flow relies further on the routing algorithm that is not
discussed here due to the space limits. Functions, that are
done at each cell to answer this query, vary depending on
whether the cell is an intermediate cell or a leaf cell.

At leaf cell When a leaf cellCi receives the query,Crep
i

randomly selects a sensor nodex from its cell to send back
rx as follows:

{ C
rep
i , x, Qn, Payload }

As a response,x senses some physical phenomena (as re-
quested) and then sends it back toC

rep
i as follows:

{x, C
rep
i , Qn, Payload} , where

Payload ≡ rx || MACKci
(x ||Qn ||rx)

Other nodes inCi are listening to the on-going traffic be-
tween the elected node andC

rep
i since they share the same

cell key. A neighboring nodey does not agree on the read-
ing rx if |ry −rx| < ThrS . If they agree onrx, they update
αx

S andαx
F of nodex and considerrx as theCread

i . They
also updateαS for all other nodes because their agreements
on theCread

i means that their readings were withinThrS .
If they do not agree, they:

• Updateβx
S (if the reading was unacceptable) orβx

F (if
the destination was not the cell representative or no re-
ply was sent).

• Collaborate with other nodes in the cell to supplyC
rep
i

with the correctCread
i .

Each disagreeing node sends its reading to theC
rep
i and

thus other nodes are updatingα
y
S andβ

y
S . After receiving

claims fromn ≥ t eligible nodes1 regarding the reported
reading,Crep

i computes the cell reading by usingExoge-
nous Discounting of Unfair Ratingswhere the reputation
values of thesen nodes are used to determine the weight
given to the information as proposed by Whitby et al. [8] as
follows:

Cread
i =

∑n
i=1

(ri ∗ Ri
S)

∑n
i=1

(Ri
S)

It is based on the assumption that sensors with low repu-
tation are likely to give unfair information and vice versa.
Then, theCrep

i forwards this reading to next cell in the up-
stream path as follows:

{ C
rep
i , C

rep
j , Qn , Payload} , where

1To be an eligible node, a nodex should hasRx > ThrR.

Payload ≡ Cread
i || MAC

K
Cj

Ci

(Crep
i ||Qn ||Cread

i )

Other nodes in the cell monitor this transmission to evalu-
ate the behavior of theCrep

i since they also know the shared
key betweenCi and neighboring cells. If the cell reading is

different by more thanThrS , thenβ
Crep

i

S is updated. Oth-

erwise,α
Crep

i

S is updated. WheneverCrep
i forwards the ag-

gregated data to the right destination,α
Crep

i

F is updated.

At an intermediate cell In order to ensure that the mes-
sage is received from the claimed entity (data-origin au-
thentication), theCrep

j computes theMAC for the received
data from the downstream cell, and compares it with the
attached one. If they do not match, then the reading com-
ing from C

rep
i is ignored. Otherwise,Crep

j removes the
attachedMAC and considers the reported data as an input
to the aggregation function. Then,C

rep
j waits until receiv-

ing readings from its cell (which is done in the same way as
the leaf cell does) and other children cells in order to apply
the aggregation function on them as follows:

ADCj
= F(Cread

1 , Cread
2 , ..., Cread

j )

After that,Crep
j forwardsADCj

to upper cell representative
C

rep
k with the following packet format:

{ C
rep
j , C

rep
k , Qn , Payload} , where

Payload ≡ ADCj
|| MAC

K
Ck
Cj

(Crep
j ||Qn ||ADCj

)

Other nodes in cellCj are still able to keep an eye on the
aggregation and forwarding behavior ofC

rep
j . They cal-

culate the aggregation functionAD∗

Cj
and match the result

with ADCj
. If they are bounded by small value such as

|ADCj
−AD∗

Cj
| < ThrS , α

Crep
j

A is increased by one. Oth-

erwise,β
Crep

j

A is increased by one. Also, theα
Crep

j

F is in-
creased by one ifCrep

j forwards the packet to rightCrep

that is not in the black list and is one-cell closer to the base
station. RSDA uses a reactive form of dissemination fre-
quency where reputation values are computed and propa-
gated after the occurrence of an event. There are two types
of reputation-related information that need to be stored in
each node:

• Black-List which contains a list of nodes that misbe-
haved during their act as aCrep. OnceRA falls below
ThrA, a newCrep should be elected, and black list the
previousCrep. The black list is shared with neighbor-
ing cells in order to be informed about misbehaving
nodes.

• Reputation-Table which contains a list of the cell
members and their reputation values as in Table 1.



Cell Representative Replacement As soon as theR
Crep

i

A

fall below ThrA, the revocation mechanism is called. The
main aim of this mechanism is to: inform neighboring cells
about misbehavingCrep, select a newCrep that has higher
RS andRF , and black list misbehavingCrep. The revo-
cation process starts whenn nodes (n ≥ t) in Ci send re-
voke messages to neighboringC

rep
j in order to inform them

about misbehavingCrep
i . Each sensor node, sayx, selects

one nodey that has the highestRy
S andR

y
F and never been

in the black list, as a good candidate to be the newC
rep
i and

sends the revoke message as follows:

{ x , C
rep
j , Qn , Payload} , where

Payload ≡ C
rep
i || R

Crep
i

A || y ||

MAC
K

Cj

Ci

(x || Qn || Crep
i ||R

Crep
i

A ||y)

Each neighboring cell representative, sayC
rep
j , should re-

ceive at leastt valid2requests to participate in the replace-
ment process. TheβF will be updated for those nodes that
did not participate in reporting revocation message. After
receiving thesen messages, the newCrep

i is selected by
applying simple majority vote on them. The replacement
process requires exchanging a number of messages which
can affect the network lifetime. This process however never
starts unless abnormal behavior detected.

5 Discussion

The discussed adversarial capability in Section 3 fits into
the medium adversary classthat was identified by Alzaid
et al. [1] sinceADV in RDSA has limited computational
power and only can compromise up toW nodes with
no more thant − 1 nodes in each cell. The comparison
between existing secure data aggregation schemes with
same adversary type, that was done in [1], is adapted to
evaluateRSDA.

Attack Resistance: We study the resilience behavior
of RSDA against different attacks that affect either the
data accuracy or data availability property. Due to space
limitation, we refer the interested readers to Alzaid et al.
[1] for details about these attacks.
Each node inRSDA is equipped with the Watchdog
mechanism to monitor the behavior of neighboring nodes
which helps RSDA to resist against attacks listed in
Table 3. When a compromisedCrep

i , for example, stops
forwarding some selective packets to the upper node (called
a selective forwarding attack (SF)), other nodes within the
cell are evaluating its behavior and subsequently a negative

2A valid request means a request that is received from a sensor node
that has an acceptable reputation value and is located in thesame cell where
the revokedCrep is

Table 3: Attacks Against Existing Aggregation Schemes.

Scheme NC SF R S

SDA • • •
WDA • • • •
SecureDAV • • • •
SDAP • • •
ESA • • •
RSDA •

feedback is assigned. If this misbehavior went undetected,
the accuracy of the aggregated data will be affected since
some information is not considered in the aggregation
results.
Moreover, replayed data can be processed if the entity
authentication requirement is met. If this data is not
prevented, the data accuracy and data availability properties
will be affected. The data accuracy will be affected in the
sense that incorrect data is considered instead of the current
data while the data availability is affected because nodes in
the path toBS need to receive, process, and forward this
data. Therefore,RSDA introduces a query number in each
packet to resists against replay attack (R).
Furthermore,RSDA suffers from the node compromise
attack (NC) as do most of the WSN schemes that lack
tamper-resistance. However, it is important to know how
a single compromised node can affect the robustness of
RSDA. An ADV needs to compromise at leastt nodes in
any cell in order to be able to fool theCrep

i and let it accept
false data, or to revoke current well-behavedC

rep
i with one

of theset nodes to beCrep∗
i . Any cell with t compromised

nodes is called a compromised cell.
Moreover, a stealthy attack (S) occurs whenADV injects
false data into the network without revealing its existence
which can be launched inRSDA if the ADV is able to
keep the injected false data within [−ThrS ,ThrS ] and
is elected byCrep

i to report theCread∗
i . We claim that

this injected error is acceptable sinceThrS is a network
parameter and set by the network administrator.ADV
however can accumulate the accepted error rate for more
than one cell in sequence to drift the collected data into
outside the accepted range without been detected. This
requires to compromise more than one cell in the path to
BS. TheC

rep
i then elects one of these compromised nodes

to report theCread∗
i . We claim that this is even harder than

compromisingt nodes in a cell which is the security limits
for RSDA because theADV needs to compromise more
than one cell in each path toBS to feedRSDA with an
error rate bigger thanThrS .

Services provided: RSDA overcomes existing secure data



Table 4: Secure aggregation schemes comparison

Scheme C I F AV AU

SDA • • •
WDA • •
SecureDAV • • •
SDAP • • • •
ESA • • • •
RSDA • • • •

aggregation mechanisms by providing data availability
(AV). It eliminates misbehaving nodes and prevents them
from participating in the network. This reduces the number
of untrusted packets traveling within the network which
leads to reduce the energy consumption that is resulted
from processing these packets and consequently prolong
the network lifetime. RSDA also provides other security
services such as data integrity (I), freshness (F), and authen-
tication (AU). Data confidentiality (C) can be offered by
RSDA since nodes share intra/inter keys with neighboring
nodes. However, data confidentiality is not considered in
this paper because we only focus on data accuracy and
data availability as discussed in Section 2. To the best of
our knowledge,RSDA is the only secure data aggregation
that provides data availability (AV) beside the minimum
security services ((I), (F), and (AU)), that were identified in
[1], for such a secure data aggregation (see Table 4).

Communication overhead: We assume, for demon-
stration purpose, that node and cell ID are 2 bytes, key size
is 4 bytes,Qn is 1 byte, sensed and aggregated data are 2
bytes,MAC is 9 bytes, and a reputation value is 1 byte
long. Let us consider the ideal case where there is noNC
has been launched yet and the sensed data is within the
accepted error rate.Crep

i randomly selectsx to report the
cell reading with 5 bytes communication overhead.x then
senses the required information and reports it back toC

rep
i

with 16 bytes overhead.Crep
i then aggregates (ifCi is an

intermediate cell) and forwards it to the upper stream cell
with 16 bytes overhead. If the average path length toBS is
P , then the estimated communication overhead per query
is 5 + 16P bytes. Let us now consider the case where the
NC attack has been launched withW compromised nodes
but no more thant − 1 compromised nodes at each cell.
Nodes that are disagreed with the reported reading need to
send their readings toCrep

i with communication overhead
around16m wherem represents the number of disagreed
nodes. Other communication overhead comes whenC

rep
i

needs to be replaced. It introduces19n bytes wheren is the
number of nodes that sent revoke messages andn ≥ t. The
total number of communication overhead therefore can be
calculated as5 + 16P + D ∗ 16m + D′ ∗ 19n, whereD

represents the number of cells where disagreement about
the reported reading occurred andD′ represents the number
of cells where theirCrep need to be replaced.

6 Conclusion

In this paper, we have proposed a reputation-based se-
cure data aggregation that focuses on enhancing the data
availability and the accuracy of the aggregated data. By
monitoring neighborhood’s activities, each sensor node
evaluates the behavior of its cell members in order to filter
out the inconsistent data in the presence of multiple com-
promised nodes (< t in each cell). RSDA is expected to
detect compromised nodes and then black list them which
helps to reach the main two goals: extend the network life-
time and protect the accuracy of the aggregated data. In the
future work, we are going to evaluateRSDA by using one
of the network simulations such as NS2 and consider data
confidentiality and study the impact ofNC attack on the
privacy of the aggregated data.
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