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ABSTRACT

Motivation: RNA-seq has been extensively used for transcriptome
study. Quality control (QC) is critical to ensure that RNA-seq data
are of high quality and suitable for subsequent analyses. However,
QC is a time-consuming and complex task, due to the massive size
and versatile nature of RNA-seq data. Therefore, a convenient and
comprehensive QC tool to assess RNA-seq quality is sorely needed.
Results: We developed the RSeQC package to comprehensively
evaluate different aspects of RNA-seq experiments, such as
sequence quality, GC bias, polymerase chain reaction bias,
nucleotide composition bias, sequencing depth, strand specificity,
coverage uniformity and read distribution over the genome structure.
RSeQC takes both SAM and BAM files as input, which can be
produced by most RNA-seq mapping tools as well as BED files,
which are widely used for gene models. Most modules in RSeQC
take advantage of R scripts for visualization, and they are notably
efficient in dealing with large BAM/SAM files containing hundreds of
millions of alignments.
Availability and implementation: RSeQC is written in Python and C.
Source code and a comprehensive user’s manual are freely available
at: http://code.google.com/p/rseqc/.
Contact: WL1@bcm.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Deep transcriptome sequencing (RNA-seq) provides massive and
valuable information concerning all transcribed elements in the
genome. Using RNA-seq, researchers are able to, for instance,
profile gene expression, interrogate alternative splicing, identify
novel transcripts and detect aberrant transcripts and coding variants.
RNA-seq experiments should ideally be able to directly identify
and quantify all RNA species, regardless of their size or frequency.
However, current RNA-seq protocols still possess several intrinsic
biases and limitations, such as nucleotide composition bias, GC bias
and PCR bias. These biases directly affect the accuracy of many
RNA-seq applications (Benjamini and Speed, 2012; Hansen and
Brenner, 2010) and can be directly checked from raw sequences
using tools like FastQC. However, these raw sequence-based
metrics are not sufficient to ensure the usability of RNA-seq
data; other RNA-seq-specific quality control (QC) metrics, such
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as sequencing depth, read distribution and coverage uniformity,
are even more important. For instance, sequencing depth must be
saturated before carrying out many RNA-seq applications, including
expression profiling, alternative splicing analysis, novel isoform
identification and transcriptome reconstruction. The use of RNA-
seq with unsaturated sequencing depth gives imprecise estimations
(such as for RPKM and splicing index) and fails to detect low
abundance splice junctions, thereby limit the precision of many
analyses. At the same time, sequencing depth is directly related to
the cost of analysis. For an RNA-seq dataset close to saturation,
additional sequencing is not cost-effective, as it would provide
little additional information. Currently, a few tools are available
for the QC of high-throughput sequencing data, but most of
them (FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), htSeqTools, FASTX-ToolKit (http://hannonlab.cshl.edu/
fastx_toolkit/) and SAMStat) only focus on raw sequence-related
metrics (Goecks et al., 2010; Lassmann et al., 2011; Planet et al.,
2012; Reich et al., 2006). RNA-SeQC is the only tool designed
for RNA-seq QC, but it still lacks many important functions, such
as saturation checking (Deluca et al., 2012). To address these
needs, we have developed RSeQC to comprehensively assess the
quality of RNA-seq experiments performed on clinical samples
or other well-annotated model organisms, such as mouse, fly,
Caenorhabditis elegans and yeast. RSeQC contains basic modules
to evaluate raw sequence quality, RNA-seq-specific modules to
perform annotation-based checking and utility modules for data
visualization (Supplementary Fig. S1). Comparison with other QC
tools indicates not only that RSeQC is more comprehensive and
efficient but also that it has several unique checks not available
elsewhere (Supplementary Table S1).

2 FEATURES AND METHODS
RSeQC consists of a series of Python programs to evaluate RNA-seq
experiments from different aspects. Below are some selected modules from
RSeQC:

(1) ‘bam_stat.py’ is used to check the mapping statistics of reads that are
QC failed, unique mapped, splice mapped, mapped in proper pair, etc.

(2) ‘inner_distance.py’ is used to estimate the inner distance distribution
between paired reads. The estimated inner distance should be
consistent with gel size selection. This is an important parameter
when using RNA-seq data to detect structure variation or aberrant
splicing.

(3) ‘geneBody_coverage.py’ scales all transcripts to 100 nt and calculates
the number of reads covering each nucleotide position. Finally, it
generates a plot illustrating the coverage profile along the gene body
(Fig. 1A).
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Fig. 1. Examples of RSeQC output. (A) Coverage uniformity over gene
body. All transcripts were scaled into 100 nt. (B) Saturation analysis of
expression for 25% highest expressed genes. (C) Saturation analysis of
junction detection. (D) Annotation of detected splice junctions. ‘known’:
splice junctions with both 5′ splice site (5′SS) and 3′ splice site (3′SS)
annotated by reference gene model; ‘complete novel’: splice junctions with
neither 5′SS nor 3′SS annotated by reference gene model; ‘partial novel’:
splice junctions with either 5′SS or 3′SS annotated by reference gene model

(4) ‘read_distribution.py’ calculates the fraction of reads mapped to
coding exons, 5′-untranslated region (UTR) exons, 3′-UTR exons,
introns and intergenic regions based on the gene model provided.
This module roughly reflects the uniformity of coverage; for example,
reads are generally over-represented in 3′-UTR for the polyA +
RNA-seq protocol. One can also apply this module to estimate the
background noise level.

(5) ‘RPKM_saturation.py’ determines the precision of estimated RPKMs
at the current sequencing depth by resampling (jackknifing) the total
mapped reads. We use percent relative error (100×|RPKMobs −
RPKMreal|/RPKMreal) to measure the precision of estimated RPKM
(Fig. 1B). In practice, it is impossible to evaluate RPKMreal, and we
use RPKM estimated from total reads to approximate RPKMreal.

(6) ‘junction_saturation.py’ determines if the current sequencing depth
is sufficient to perform alternative splicing analyses. The concept is
similar to that of ‘RPKM_saturation.py’: splice junctions are detected
for each re-sampled subset of reads, and the number of detected splice
junctions will increase as the resample percentage increases before
finally reaching a fixed value. The junction saturation test is very
important for alternative splicing analysis, as using an unsaturated
sequencing depth would miss many rare splice junctions. (Fig. 1C).

(7) ‘infer_experiment.py’ is used to speculate the experimental design
by sampling a subset of reads from the BAM file and comparing
their genome coordinates and strands with those of the reference gene
model. This module can determine if the given RNA-seq has been
sequenced with paired-end or single-end reads. The module can also
gauge whether sequencing is strand-specific, and if so, how reads are
stranded.

(8) ‘junction_annotation.py’ separates all detected splice junctions into
‘known’, ‘complete novel’ and ‘partial novel’ by comparing them
with the reference gene model (Fig. 1D).

(9) ‘RPKM_count.py’ calculates the raw read count and RPKM values
for each exon, intron and mRNA region defined by the reference gene
model.

(10) ‘bam2wig.py’ can efficiently convert a BAM file into a wiggle file
for visualization. Wiggle files can be easily converted to bigwig files
using the UCSC wigToBigWig tool.

3 RESULTS AND CONCLUSIONS
In summary, the RSeQC package provides a number of useful
modules that can comprehensively evaluate RNA-seq data. ‘Basic
modules’ quickly inspect sequence quality, nucleotide composition
bias, PCR bias and GC bias, whereas ‘RNA-seq specific modules’
investigate the sequencing saturation status of both splice junction
detection and expression estimation. These modules also inspect the
mapped read-clipping profile, mapped read distribution, coverage
uniformity over the gene body, reproducibility, strand specificity
and splice junction annotation. Finally, RSeQC includes several
useful tools to manipulate and normalize BigWig files for data
visualization.
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