
RSL-PL: A Linguistic Pattern Language for
Documenting Software Requirements

David de Almeida Ferreira, Alberto Rodrigues da Silva
INESC-ID, Instituto Superior Técnico (IST), Lisbon, Portugal

{david.ferreira, alberto.silva}@inesc-id.pt

Abstract—Software requirements are traditionally documented
in natural language (NL). However, despite being easy to under-
stand and having high expressivity, this approach often leads to
well-known requirements quality problems. In turn, dealing with
these problems warrants a significant amount of human effort,
causing requirements development activities to be error-prone
and time-consuming. This paper introduces RSL-PL, a language
that enables the definition of linguistic patterns typically found in
well-formed individual NL requirements, according to the field’s
best practices. The linguistic features encoded within RSL-PL
patterns enable the usage of information extraction techniques to
automatically perform the linguistic analysis of NL requirements.
Thus, in this paper we argue that RSL-PL can improve the
quality of requirements specifications, as well as the productivity
of requirements engineers, by mitigating the continuous effort
that is often required to ensure requirements quality criteria,
such as clearness, consistency, and completeness.

Index Terms—Requirements Engineering, Linguistic Analysis,
Requirements Linguistic Patterns, Information Extraction.

I. INTRODUCTION

To deliver successful software, one must document re-
quirements in a clear and precise manner, as poorly defined
requirements often lead to well-known requirement defects [1].
However, despite some quality problems due to the inherent
characteristics of natural language (NL) such as ambiguity, the
majority of requirements documents are still documented with
such Requirements Specification Language (RSL) [2]. This is
mainly due to the expressive power of NL, and also because
business stakeholders require no training for being able to
communicate with NL. Being the “least common denomina-
tor” between business stakeholders and the development team,
NL supports an effective communication of requirements.

Balancing the tradeoffs of using NL to document require-
ments, namely perfecting such requirements specifications and
relying on the typical multi-representation strategy based on
complementary conceptual models to mitigate the negative
effects of ambiguity, often entails a significant amount of
human effort [3]. For instance, enforcing the consistency
between NL and the respective conceptual models significantly
increases the burden on requirements engineers.

Moreover, there is a clear lack of tool support for the
linguistic analysis of requirements documented in NL, which
is still manually performed by requirements engineers. Such
analysis is crucial to deal with requirements at the semantic
level of their NL representations, instead of following the tra-
ditional tool support approach of only handling requirements
metadata (i.e., requirements attributes and relations). Although

current Natural Language Processing (NLP) techniques are
still unable to fully “understand” NL text in a generalized
manner [4], there are some simplifications that can improve
the current tool support for the linguistic analysis of NL
requirements. Such improvement would significantly lessen
the burden on requirements engineers to enforce requirements
clearness, consistency, and completeness.

To address typical requirements development problems [3],
both in terms of productivity and quality, we advocate a re-
quirements specification approach based on linguistic patterns,
such as RSLingo [5]. This approach follows a multi-language
strategy to support a requirements formalization process based
on linguistic patterns that enables one to document in a precise
manner requirements originally stated in NL.

This paper introduces RSL-PL, one of RSLingo’s specific
languages. RSL-PL is a pattern definition language based on
linguistic patterns that abstract over well-formed requirements
representations, according to the best practices of Require-
ments Engineering (RE) [2]. The purpose of RSL-PL is
to define linguistic patterns that enable one to deal with
the linguistic concerns of the textual representations of NL
requirements, so that such patterns can be used by RSLingo’s
toolset during the information extraction process. This paper
emphasizes the usefulness of RSL-PL for the automation of
the requirements linguistic analysis within this process, by
presenting its constructs, namely the elements that define
lexical constraints upon the token types that can be matched
against each position of a pattern, and the operators that
combine them into more complex linguistic patterns.

The remainder of this paper is structured as follows. Sec-
tion II presents the motivation for RSL-PL. Section III states
the design principles of RSL-PL and defines its constructs.
Section IV presents a set of guidelines for defining linguistic
patterns that, through the examples, illustrates the practical
feasibility of RSL-PL. Finally, Section V concludes this paper.

II. BACKGROUND

Considering the premises introduced in the previous section,
regarding the common practices of the requirements documen-
tation activity, we consider that the quality of requirements
specification still strongly depends on the expertise of whoever
is performing this activity. Given that most RE activities are
still manually performed and involve a large amount of infor-
mation, to produce a high quality requirements specification
these activities warrant an experienced requirements engineer

978-1-4799-0948-3/13 c© 2013 IEEE RePa 2013, Rio de Janeiro, Brasil

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

17

with a vast skills set. Thus, to avoid large discrepancies in the
outcome of the RE process (i.e., the requirements baseline),
we advocate that the quality of requirements specifications and
the productivity of the requirements documentation activity
can be increased through the formalization of requirements.
However, since requirements are typically documented in NL,
we consider that this requirements formalization process must
entail the automation of the linguistic analysis of the textual
NL representation of such requirements.

A. The RSLingo Approach

RSLingo is an information extraction approach based on
linguistic patterns, which follows a multi-language strategy
based on two languages [5]: RSL-PL (Pattern Language)
for defining linguistic patterns, and RSL-IL (Intermediate
Language) that acts as a formal requirements interlingua [6].
The main goals of RSLingo are: (1) to perform the linguistic
analysis; and (2) to formalize requirements originally stated in
NL by addressing them at a deeper semantic level. To attain
these goals, RSLingo is based on lightweight NLP techniques.
After enriching the surface requirements text with the required
linguistic features, RSLingo follows an information extraction
mechanism based on a pattern alignment algorithm [7] that
can be used to exploit the syntactic–semantical alignment of
words within a NL sentence. This technique allows to capture
requirements-related information with the linguistic patterns
defined in RSL-PL. In turn, through previously declared
transformations between RSL-PL and RSL-IL, one is able
to automatically generate semantically equivalent (but formal)
RSL-IL specifications. Since the obtained specifications are
amenable to be processed by computers, they enable the auto-
matic verification of some requirements quality criteria, such
as clearness, consistency, and completeness. The requirements
formalization process supported by RSLingo, as well as the
part played by RSL-PL, are depicted in Figure 1.

Figure 1. Overview of the RSLingo approach.

It is noteworthy that such a decoupling of linguistic concerns
from requirements formalization issues – attained with this

multi-language strategy – addresses the previously mentioned
requirements specification problems without introducing new
and disruptive languages that business stakeholders must learn
(which, in turn, could hinder them from directly authoring
and validating their own requirements). RSLingo is meant to
enable the active participation of business stakeholders in the
requirements development workflow of the RE process, by
enabling them to directly author their own requirements in NL.
Moreover, since this requirements formalization process can be
automated, the feedback on requirements quality problems is
less reliant on the expertise of requirements engineers.

B. Natural Language Documentation

As technical documentation, requirements specifications
written in NL should follow the best practices of technical
writing [8]. The goal of following these best practices is
improving the readability of requirements specifications, as
well their understandability, in order to support an effective
communication between different stakeholder. These best prac-
tices are often described in terms of wording and writing style
guidelines for creating NL sentences that represent individual
requirements. The literature on RE (specially textbooks [2],
[8]) contains several recommendations regarding the writing
styles that requirements engineers (as technical writers) should
adhere to improve the quality of NL requirements specifica-
tions. These recommendations focus mostly on syntactic struc-
tures that are regarded as being well-formed for documentation
purposes. As illustrated in Listing 1, these syntactic structures
work as templates distilled from experience.

Listing 1. Example of requirements templates extracted from the literature.

Patterns for individual requirements:

<when> THE SYSTEM SHALL <process> <object>.
”R114: When the glass break detector detects the damaging of a window, the
system shall inform the head office of the security service.” (adapted from [2])

THE SYSTEM SHALL <action> <to_whom> <what>.
”The system shall ask the operator for the passenger name.” (adapted from [3])

<actor> <action> <what> <how>.
”A user can view landscape files in AutoCAD format.” (adapted from [8])

Each <owner_entity_name> shall have an unique ID (...).
”Each loan approval decision rule shall have an ID by which it can be referred.”
(adapted from [9])

Patterns for Use Case steps:

<subject> <verb> <direct_object> <prepositional_phrase>.
”The system deducts the amount from the account balance.”
(adapted from [10])

Patterns for atomic business rules:

If <condition> then <action>.
”If repeated customer requests discount, then offer 5% discount for interior
window cleaning line items.” (extracted from [11])

On <event> if <condition> then <action>.
”On close-of-week if out-standing payment then issue reminder letter.”
(extracted from [11])

Recognizing that these requirements templates are by them-
selves project artifacts that play a key role regarding the

18

quality assurance of requirements specifications, following the
best practice of reusing knowledge from previous projects,
we consider of the utmost importance to collect and organize
these patterns recurring in requirements specifications because
they are the result of a successive refinement of knowledge
accumulated by requirements engineers.

As presented in Listing 1, most of the approaches to de-
fine requirements templates are based on syntactic structures.
These structures are created by keeping function words [12],
whereas content words [12] are replaced by placeholders that
abstract them [2]. To help requirements engineers to instantiate
these templates, each placeholder contain a description that
provides a hint on the expected content [2]. But, following
such an approach warrants human cognition to determine
which words can fill each placeholder. Thus, it is unsuitable
to be used by automated information extraction techniques.

In addition to these knowledge reuse concerns, which are
often realized through catalogues of well-defined requirement
patterns [9], these templates should support the linguistic
analysis of NL requirements. This technique is crucial to
improve the understanding and communication of require-
ments. The guidelines provided by the literature on RE often
recommend the identification of lexical words, such as nouns
and verbs [13]. Although there are some tools that are able
to (partially) support this technique, most of the times the
linguistic analysis of textual requirements specifications is
manually performed by requirements engineers.

To support the linguistic analysis of requirements in an
automated manner, the best approach is to rely on well-known
NLP techniques. For instance, bearing in mind the state of
the art in terms of lightweight NLP techniques, one could
argue that Chunking [4] could solve the problem. However,
due to its roots on regular expressions [14], this technique is
inadequate for dealing with the flexibility of NL: it would yield
a boolean outcome (i.e., it is either a match or not). Despite
being technically possible to address the problems that led
to the development of RSL-PL with an approach based on
regular expressions, it would require very complex regular ex-
pressions (or, alternatively, a large number of smaller but very
similar regular expressions) to deal with partial matches or
unexpected tokens. Therefore, such approach is not feasible in
practice because it would be extremely difficult to manage. An
information extraction approach (such as RSLingo) requires
the robustness and flexibility of fuzzy matching during the
detection of pattern alignments [7]. For instance, Listing 2
illustrates the limitations of a RegexpChunkRule [4] when
parsing a requirement sentence in NL.

Listing 2 identifies noun phrases (i.e., chunks) consisting of
an optional determiner followed by one or more nouns. The
chunk parser correctly matches three noun phrases (lines 8,
11, and 14). However, this approach requires one to explicitly
take into account the possibility that requirements textual
representations contain additional tokens between the elements
defined by the requirements pattern; otherwise the pattern
will not match as it was intended, if unexpected tokens
are encountered. For example, the last noun phrase was not

correctly identified (lines 16–18) because the rule does not
take into account noun modifiers (in this case “given”) based
on the past-participle construction (line 17).

Listing 2. Limitations of Chunking based on regular expressions.

RegexpChunkRule: ’NP:{<DET>?<N.∗>+}’

Requirement: ”The system shall allow the call center operator to list all bank
accounts of a given client.”

Output:
(S

(NP The/DET system/N)
shall/MOD
allow/V
(NP the/DET call/N center/N operator/N)
to/TO
list/V
(NP all/DET bank/N accounts/N)
of/P
a/DET
given/VN
(NP client/N)
./.)

Moreover, these rules only support the definition of con-
straints based on the part-of-speech of each token, disregarding
other relevant restrictions such as the type of the token.
Also, when dealing with words (one of the possible token
types), these rules do not consider lexical and semantical
relations, such as those provided by WordNet [15] (e.g., the
notion of synset). Furthermore, while defining requirements
templates it is desirable to have the ability to specify some
pivotal words in verbatim (e.g., function words). However,
since chunk rules are regular expressions defined in terms of
word’s part-of-speech tags (i.e., a single level of abstraction),
it does not support the creation of such fixed anchors within
a linguistic pattern.

Therefore, the RSLingo’s specific information extraction
needs are not supported (to the best of our knowledge) by
any other state of the art techniques and languages.

III. LINGUISTIC PATTERNS WITH RSL-PL

To address the problems presented in the previous section,
we developed RSL-PL as a concern-specific language for
defining linguistic patterns1 aligned with the recommendations
and style guidelines to write requirements in NL, which
provide linguistic-oriented abstractions of the requirements
templates mentioned above [2]. However, RSL-PL goes fur-
ther, as it deals with NL tokens at different abstraction
levels based on their linguistic features, without disregarding
aspects related with its practical usability and maintainability
of pattern catalogues. RSL-PL provides the foundations for the
extensibility of linguistic patterns, as well as for the (re)use
of catalogues of well-formed requirements templates.

Since RSL-PL supports the representation of a wide range
of linguist constructions in terms of lexicon and syntax, it
provides a sort of extensibility mechanism in the sense that

1In the context of RSLingo, we refer to requirements templates as linguistic
patterns because, for coping with its information extraction specific needs,
they must convey more than just syntactic-related restrictions.

19

it enables the definition of new linguistic patterns to cope
with the writing styles and idiosyncrasies of different projects
and domains. Thus, the flexibility of RSL-PL in supporting
new or tailored linguistic patterns significantly enlarges the
coverage in terms of NL requirements representations that are
recognized by the RSLingo approach.

Moreover, RSL-PL addresses the automation problem by
enriching the placeholders provided by typical requirements
templates with computer-processable constraints on the NL
tokens (e.g., words) that can fill each of those placeholder
positions. In addition to enabling the synthesis of well-formed
requirements templates, RSL-PL goes further by allowing the
establishment of mappings to RSL-IL, the language that allows
the formal representation of requirements within the RSLingo
approach. It should be noted that RSL-IL provides a low-level
language that acts as a mold to be filled with information
extracted from NL requirements through their alignment with
the linguistic patterns defined in RSL-PL.

A. Design Principles

After discussing the motivation for creating a new language
such as RSL-PL, the following paragraphs present the most
relevant design principles that were taken in consideration
while developing it, which are somewhat expressed by the
semantics and notation of its constructs.

a) Domain-independency: RSLingo follows a linguistic-
-oriented perspective to the extraction of relevant information
from NL requirements representations. Therefore, since there
is a strong alignment with NL, RSL-PL inherits its universality
characteristic, in the sense that it is general enough to define
linguistic patterns for different application domains.

b) Cognitive-alignment: RSL-PL constructs reflect the
linguistic foundations of RSLingo by enabling the definition
of linguistic patterns with elementary notions of NL grammar.
For instance, there are just a few basic token types (e.g., word,
symbol), which can be refined considering a limited set of
lexical properties and relations (e.g., part-of-speech and syn-
onymy, respectively), or simply by providing a specific token
in verbatim. Additionally, the concept of linguistic pattern is
intrinsically related with the notion of NL sentence. Thus, a
RSL-PL pattern intuitively maps to an ordered sequence of
NL tokens whose scope is entailed within the boundaries of a
common sentence written in plain English.

c) Simplicity: Coping with all and every aspect of NL
with today’s technology is a difficult (if not impossible) task
to accomplish. Within these current limitations, for attaining
a pragmatic information extraction approach for requirements
specifications written in NL, we followed the guideline of not
introducing unnecessary language elements when creating a
specialized language [16].

d) Usability: For mitigating the common adoption resis-
tance of new languages, the RSL-PL constructs were designed
to be moderately easy to understand by readers and straight-
forwardly applied by writers. The concrete syntax of RSL-PL
was designed in such a manner that it does not require a
sophisticated tool to be edited: a simple text editor suffices

for reading and writing the RSL-PL, even without syntax
highlighting and autocompletion.

e) Computability: For attaining high quality require-
ments specifications in a cost-effective manner, the approach
supported by RSL-PL strongly relies on the automation of the
typical manual process of analyzing and translating informal
into formal requirements specifications. Given this dependence
on the ability to automate the linguist analysis of require-
ments specifications (written in NL), during the design of
the RSL-PL constructs we carefully considered technological
issues regarding the parsing and further processing of the
linguistic patterns defined with them.

f) Maintainability: Thinking both in terms of extensi-
bility and reusability, we took special care regarding how
RSL-PL patterns can be maintained. On one hand, it is
important to support customization of existing patterns in order
for them to be applied in new application domains. On the
other hand, it is important that the growth of the catalogue of
recognized linguistic pattern is performed with some kind of
tool support, otherwise the ad-hoc expansion of this resource
might lead to redundant linguistic patterns.

B. Overview of RSL-PL Design

RSL-PL’s abstract syntax is defined by the metamodel
depicted in Figure 2, which highlights the main notions and
relations underlying its constructs. Since we favored simplicity
as the most important design principle, an RSL-PL construct
is either an atomic element, or an operator that combines these
atomic Elements into more complex structures (e.g., nested
Patterns). RSL-PL provides four atomic Elements,
namely: (1) Word, to represent the occurrence of a typical
dictionary word; (2) DataType, to support the recognition of
primitive data types (e.g., an integer); (3) Symbol, to express
a single occurrence of punctuation marks or any another
character, except for white spaces (that are simply ignored)
and alphanumeric characters (to avoid overlap with Words
or DataType tokens); and (4) Reference, to provide a
placeholder for both the representation of the requirement’s
unique identifier, and the insertion of trace links to other
requirements or external artifacts.

Additionally, to compose these atomic elements, RSL-PL
provides two operators: (1) Concatenation, which en-
ables the creation of Patterns by chaining together these
atomic Elements; and (2) Composition, which enable
Patterns to be interchangeably treated themselves as
Elements when the Concatenation operator is being
applied to form new Patterns, thus supporting the creation
of nested structures. Also, to increase the expressive power
of RSL-PL, the Composition operator provides the basic
means to support the quantification of Patterns included
by other Patterns, in the sense that it allows to spec-
ify how often a given sub-Pattern is allowed to occur
within the context of the including Pattern. Within these
more complex structures, each Pattern abstracts over a
constituent with a specific syntactical function (or that plays a

20

Figure 2. The RSL-PL metamodel.

semantic role2) regarding the sentence that the outer Pattern
represents.

C. Description of RSL-PL Constructs

The semantics of each of the RSL-PL constructs mentioned
above is explained in the following paragraphs. Also, the
accompanying examples unveil their concrete syntax.

g) Word Element: The Word element represents any of
the three types of compound words, namely closed compounds,
hyphenated compounds, and open compounds. However, to
identify a open compound (i.e., two or more words separated
by white spaces) as a single Word, the respective NL text
must explicitly indicate that these words must be treated as a
single unit of meaning, otherwise they are treated separately.

Regarding its concrete syntax, a Word element is repre-
sented by a single capital ‘W’ letter. Figure 3, illustrates the
alignment of a linguistic pattern (the upper sequence) with the
beginning of a traditional “shall” requirements statement.

Figure 3. Example of the concrete syntax of an RSL-PL Word element.

However, as illustrated in Figure 3, a pattern consisting of
three ‘W’ would match3 any sequence of three consecutive
dictionary words; that is, in its simplest form, a Word element
would not be more useful than defining a regular expression
for matching such words. Thus, besides the first classification
level – whose purpose is to determine whether a token (i.e.,
a sequence of characters) is classified as being a Word based
solely on its form –, the RSL-PL language must provide ad-
ditional mechanisms to restrict the range of possible matches.

2VerbNet: A Class-Based Verb Lexicon, <http://verbs.colorado.edu/
∼mpalmer/projects/verbnet.html> (accessed on April 29th, 2013)

3Each match is represented by a light-gray column connecting the Word
element of the RSL-PL pattern with the respective token of the NL sentence.

To enable the automatic extraction of information at a
semantic level, the Word element must be parameterized
with semantic selectors to further refine the range of allowed
matches based on linguistic information. This refinement can
range from an abstract restriction of the word’s lexical category
(i.e., its part-of-speech tag) to concretely specifying the word
verbatim (i.e., the exact word to be used). In addition to lexical
refinements, the Word element can be parameterized with
semantical restrictions based upon WordNet synsets, namely
by exploiting the relations defined among them, and also
taking advantage of the explicitly provided definition of their
meaning. In short, these parameters constrain the expected
token for a given position within a RSL-PL pattern by refining
the kinds of words, or even the exact words, that can be
matched against that specific Word element. For instance,
Figure 4 illustrates some of the parameters that are supported
by the RSL-PL Word element. The fist Word only allows
determiners (i.e., the ‘DET’ part-of-speech tag), such as the
words “a” or “the”. Note that the background of the third
column is dark-gray to emphasize that a mismatch occurred,
because the second position of the RSL-PL pattern was defined
to only allow an adjective (i.e., the ‘ADJ’ part-of-speech tag),
and the corresponding position in the NL sentence is filled by
a noun (i.e., the ‘N’ part-of-speech tag) instead. This problem
does not occur with the third Word (i.e., the fourth column)
because both the RSL-PL element and the NL word share
the same part-of-speech tag (i.e., the ‘N’ part-of-speech tag).
Finally, the fourth Word explicitly defines that it will only
match with that exact word (i.e., the modal verb “shall”).

Figure 4. Example of Word elements with parameters.

21

h) DataType Element: Often NL requirements include
tokens that represent datatypes typically found in program-
ming languages and database schemas. Additionally, quality
attributes (a subset of non-functional requirements) further
constrain the manner by which the functionality (described by
functional requirements) should be provided by the software
system. Such constraints are frequently described in terms of
requirements metrics and their respective units [8]. There-
fore, in addition to introducing a new classifier for better
distinguishing NL tokens, the DataType element provides
a sort of hookup in RSL-PL that allows the recognition
of common datatype values, such as boolean, integer, float
(which subsumes decimal), or even strings. When representing
the metrics of quality attributes, these datatype values might
also include the unit of the metric they represent (e.g., “x
transactions/sec” or “x % of incidents leading to failures”).

i) Symbol Element: The RSL-PL Symbol element pro-
vides the means to represent single-character tokens (e.g.,
comma, colon, semicolon) that often play an important role
within linguistic patterns, namely to establish the relation
between the main clause of a sentence with the other sen-
tence’s constituents (e.g., prepositional phrases, subordinate
clauses) [12]. These tokens enable the definition of more
complex sentence structures, while reducing its ambiguity by
establishing boundaries between these sentence’s constituents.
Thus, Symbols act as anchors to better identify subsequences
within RSL-PL linguistic pattern, by reducing the number
of possible interpretations. Besides reducing ambiguity, these
Symbols are essential to identify the boundaries of consecu-
tive sentences within a paragraph (i.e., a well-formed sentence
must be terminated with a proper punctuation mark).

Regarding its concrete syntax, as illustrated in Figure 5 a
Symbol element is represented by a single capital ‘S’ letter.

Figure 5. Example of the concrete syntax of an RSL-PL Symbol element.

j) Reference Element: Enabling requirements traceabil-
ity is essential to better support the activities of the RE process.
To enable the identification of implicit knowledge, namely
less obvious relations between requirements (e.g., determining
all requirements in which a given business entity is acted
upon), it is important to support the field’s best practices
that are based on explicit trace information, either within the
requirements textual representations, or through their meta-
data (i.e., requirement attributes) [17]. These traces between
requirements within the same requirements specification (or
even between requirements and external documents) are often
defined through references. In its essence, a reference is a
special NL token that allows the reader to uniquely identify
another well-defined piece of information, usually another
snippet of text (e.g., a paragraph, record, or modeling element),
or the whole artifact (e.g., document, database, or model,

respectively). The most common approach to represent such
references resorts to the target requirement’s unique identifier,
which can be supplemented by a descriptor similar to a
citation of a bibliographic reference. This approach copes
with application scenarios in which the requirement being
referenced is not contained within the same requirements
specification.

The concrete syntax chosen to represent a RSL-PL
Reference element is ‘REF’. Employing a Reference
within a given position of a RSL-PL Pattern implies
that it will only match with a sequence of characters
(without white spaces) that obey to the following schema:
<req type><separator><hierarchical numbering> (e.g.,
“FR-1.2.10”). The first part, the requirement type, only allows
uppercase letters, whereas the last part only allows digits and
dots to create an hierarchical sequence of natural numbers.
To ensure that the context of requirements is preserved, the
prefix of this hierarchical sequence (i.e., the leftmost n − 1
numerical sequences) should be aligned with the requirements
specification structure layout.

Figure 6. The concrete syntax of an RSL-PL Reference element.

k) Pattern: The previously introduced Elements are
atomic (i.e., they directly map to a single NL token) and,
consequently, are not sufficient by themselves to support an
information extraction approach because they only represent
an individual position within a linguistic pattern. Thus, to
represent linguistic patterns in RSL-PL we require the (non-
-atomic) Pattern element, which enables the creation of
arrangements of RSL-PL Elements, such as the sequence of
Word elements depicted in Figure 3. To create one of these
complex structures according to the metamodel of RSL-PL
depicted in Figure 2, this language provides two operators,
which are expressed through the composition relationship
established between a Pattern and its Components. The
semantics of these two operators is as follows.

l) Concatenation Operator: The most elementary oper-
ator to assemble atomic Elements together into a Pattern
is the Concatenation operator. Note that this operator is
implicitly represented by the composition relationship between
a Pattern and its Components. According to the RSL-PL
metamodel, the Component values in any given instantiation
are ordered. This implies that their values at instantiation are
sequentially ordered. Such mapping is important to support the
definition of declarative transformations that use RSL-PL as a
source language (e.g., RSL-PL => RSL-IL mapping) [5].

Despite covering a wide range of practical scenarios, by
itself the Concatenation operator does not support the
definition of recurring sub-Patterns (i.e., specifying that a
sub-Pattern may appear zero or more times). This operator
requires that every occurrence of a given Component within

22

a Pattern to be explicitly defined. For instance, to match an
arbitrary NL sentence of at most n Word elements, one would
need to define a Pattern with exactly n Word elements, in
order to ensure that a complete alignment would be possible.

m) Composition Operator: The purpose of this operator
is to allow the definition of sub-Patterns (i.e., well-defined
groups that form nested structures) within a larger Pattern.
Although the Concatenation operator is simpler than the
Composition operator (in the sense that it only deals with
flat structures of atomic Elements), these two operators
should be regarded as complementary. For instance, without
the Composition operator, the Concatenation operator
would only be able to create sequences of atomic RSL-PL
Elements. Only after that can we indifferently intertwine the
atomic Elements with these created Patterns. Figure 7
illustrates how Patterns are combined together with the
Concatenation and Composition operators.

Figure 7. Example of the RSL-PL operators being applied.

The sub-Patterns defined through the Composition
operator lay the foundations for improved maintainability,
and also to support features similar to those provided by
regular expressions. On one hand, sub-Patterns provide a
better understanding of the internal grammatical structure of
the containing Pattern. This improved understanding helps
during the maintenance of the accumulated knowledge, which
is realized as the catalogue of RSL-PL Patterns. On the
other hand, sub-Patterns provide the basis for mimicking
the matching behavior of regular expression quantifiers [14].
This can be achieved through the attributes isOptional
and isRecurrent, which respectively specify whether the
Pattern is optional, and also whether it represents a set
of consecutive (unbounded) repetitions of the Components
sequence that it entails. These two simple attributes support
the three most important quantifiers of regular expression [14]:
(1) Kleene star, (2) Optional; and (3) Kleene plus.

After defining the semantics of the RSL-PL operators that
allow the creation of Patterns, it is important to describe
their two attributes: name and type. On one hand, the name
attribute, provides the description of the sub-Pattern’s role
within the containing Pattern. Providing a meaningful
name can be helpful for the maintenance of linguistic patterns
(e.g., recording the rationale for that sub-Pattern) and to better
assist the definition of transformations, namely to use the
name of a given sub-Pattern to refer to the capture’s value
within the target language, instead of using numerical indexes
of the positions within the sub-Pattern. On the other hand,

the type attribute provides the means to support different
sentence-based format of requirements.

IV. LINGUISTIC PATTERN DEFINITION GUIDELINES

RSL-PL was designed to be general enough so that it can
cope with virtually any kind of writing style. Thus, we provide
guidance for creating meaningful and well-formed patterns.

n) Guideline for Wording Style: There are three differ-
ent styles to write a requirement statement, namely [8]: (1) in
the present tense; (2) using modal verbs (i.e., the traditional
“shall” statements); and (3) in the imperative mood. Although
the outcome of applying the imperative mood might not re-
semble typical a “requirement statement”, it straightforwardly
conveys the essence of a requirement. This writing style is
commonly used to document the goals of the system-of-
-interest, and can be directly adapted to use in diagrams, tables,
and database-supported requirements repositories. Listing 3
illustrates the differences between these three requirement
wording styles, and how can they be defined in RSL-PL.

Listing 3. Wording of an individual requirement’s sentence.
Present tense: ”A manager generates the status report.”
[?<actor>W(DET) W(N)+] [?<action>W(V)] [?<entity>W(DET) W(N)+]

Modal verb: ”A user shall be able to generate the status report.”
[?<actor>W(DET) W(N)+] ”shall” ”be” ”able” ”to” [?<action>W(V)]

[?<entity>W(DET) W(N)+]

Imperative mood: ”Generate the status report.”
[?<action>W(V)] [?<entity>W(DET) W(N)+]

o) Guideline for Legal Obligation: Despite being cor-
related with the metadata of individual requirements such
as the “criticality” (e.g., critical, standard, optional) and/or
“prioritization” (e.g., a numeric scale) attributes, requirements
engineers often explicitly emphasize the degree of contractual
obligation through the wording of the requirement state-
ment [2]. As it was introduced above, different modal verbs
can be used to express different legal bindings [18].

According to the field’s common practice [2], modal verbs
such as shall, should, and will are used to express different
degrees of requirements priority and obligation on each of the
system’s features. Thus, the user must take this convention
into account when defining RSL-PL Patterns, to ensure a
proper wording according to the expected legal obligations to
be captured by those Patterns, as illustrated in Listing 4.

Listing 4. Using modal verbs to express legal obligation.
Mandatory: ”A user shall be able to generate the status report.”
[?<actor>W(DET) W(N)+] ”shall” ”be” ”able” ”to” [?<action>W(V)]

[?<entity>W(DET) W(N)+]

Recommended: ”A user should be able to generate the status report.”
[?<actor>W(DET) W(N)+] ”should” ”be” ”able” ”to” [?<action>W(V)]

[?<entity>W(DET) W(N)+]

Desirable: ”A user will be able to generate the status report.”
[?<actor>W(DET) W(N)+] ”will” ”be” ”able” ”to” [?<action>W(V)]

[?<entity>W(DET) W(N)+]

23

p) Guideline for Term Definitions: As illustrated in
Listing 5, this sort of sentences make assertions about the
problem space. For instance, they can be used to assign a
precise meaning to concepts or auxiliary terms that are used
in the requirements specification. Since definitions don’t have
a truth value (i.e., whether it is satisfied or not), they support
the definition of detailed requirements and high-level design
from requirements in an arguably correct manner.

Listing 5. Patterns for term definitions.
Pattern:
[?<term>W(DET) W(N)+] ”is” [?<new term>W(DET) W(N)+] [?<condition>

”when” [?<entity>W(DET) W(N)+] ”is” [?<state> (...)]]

Domain definition:
[[A bank client] [is said to be] [a ”premium bank client”]] [when [the total

amount] [of all of his/her bank accounts] is higher than $ 5.000,00].

q) Guideline for Domain Descriptions: The knowledge
about the problem space is often made explicit through de-
scriptive statements. The described properties are based on
natural laws or physical constraints, thus they can be regarded
as domain invariants. As depicted in Listing 6, the most
suitable writing style is the present indicative.

Listing 6. Patterns for domain descriptions.
Pattern:
[?<entity>W(DET) W(N)+] { ”is” | ”has” } [?<entity>W(DET) W(N)+]

Domain descriptions:
[A bank client] [is] [a user].
[A bank client] [has] [[one or more] bank accounts].

r) Guideline for User Interactions: Besides providing
the means to abstract over traditional requirement “shall” state-
ments, RSL-PL is versatile enough to define simpler linguistic
patterns that are frequently used in the steps of Use Case
descriptions [10]. The present indicative (i.e., the present tense
wording style) is suitable to describe the interactions between
the actors and the system-of-interest. These sentences follow
a simple grammar based on the Subject–Verb–Object (SVO)
structure, optionally ending with a prepositional phrase.

Listing 7 presents a Pattern defined in RSL-PL that
is generic enough to match any of the following Use Case
steps. However, one might need to enforce a clear distinction
between the action verbs available for different actors (e.g.,
system versus user). In such cases, the best approach is to
define different Patterns to cope with specific subjects, and
thus control the allowed range of action verbs.

Listing 7. Patterns for Use Case description steps.
Pattern:
[?<actor>W(DET) W(N)+] [?<action> W(V)] [?<entity>W(DET) W(N)+]

[?<prepositional> W(P) [?<related entity>W(DET) W(N)+]]?
Use Case steps:
1. [The call center operator] [enters] [the bank account number] [of the bank

client].
2. [The system] [displays] [the balance] [of the bank account].
3. [The call center operator] [informs] [the bank client] [of the balance of

his/her bank account].

V. CONCLUSION

This paper presents RSL-PL, the language that deals with
the linguistic concerns that must be considered when docu-
menting requirements in NL, and which addresses the unique
linguistic features required to support an information extrac-
tion approach [5]. RSL-PL encodes these concerns as linguistic
patterns that abstract over individual requirements considered
as being well-formed according to the field’s best practices.
The flexibility of RSL-PL in defining new linguistic patterns
and coping with different requirements writing styles fosters
the extensibility of a catalog of linguistic patterns, allowing it
to be adapted and reused in different application scenarios.

ACKNOWLEDGMENT

This work was supported by national funds through
FCT – Fundação para a Ciência e a Tecnologia, under the
PEst-OE/EEI/LA0021/2013 project.

REFERENCES

[1] A. M. Davis, Software Requirements: Objects, Functions and States,
2nd ed. Prentice Hall, March 1993.

[2] K. Pohl and C. Rupp, Requirements Engineering Fundamentals: A
Study Guide for the Certified Professional for Requirements Engineering
Exam. Rocky Nook, April 2011.

[3] A. M. Davis, Just Enough Requirements Management: Where Software
Development Meets Marketing. Dorset House Publishing, May 2005.

[4] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media, June 2009, ISBN-13: 978-0596516499.

[5] D. Ferreira and A. Silva, “RSLingo: An Information Extraction Ap-
proach toward Formal Requirements Specifications,” in Proc. of the
2nd Int. Workshop on Model-Driven Requirements Engineering (MoDRE
2012). IEEE Computer Society, September 2012, pp. 39–48, ISBN-13:
978-1-4673-4388-6.

[6] ——, “RSL-IL: An Interlingua for Documenting and Reusing Software
Requirements,” in Proc. of the 3rd Int. Workshop on Model-Driven
Requirements Engineering (MoDRE 2013). IEEE Computer Society,
July 2013.

[7] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, March 1981.

[8] B. Kovitz, Practical Software Requirements: Manual of Content and
Style. Manning, July 1998.

[9] S. Withall, Software Requirement Patterns (Best Practices). Microsoft
Press, June 2007.

[10] A. Cockburn, Writing Effective Use Cases, 1st ed. Addison Wesley,
October 2000, ISBN-13: 978-0201702255.

[11] E. Gottesdiener, The Software Requirements Memory Jogger: A Desktop
Guide to Help Soft. and Business Teams Develop and Manage Require-
ments. GOAL/QPC, November 2009.

[12] A. DeCapua, Grammar for Teachers: A Guide to American English for
Native and Non-Native Speakers, 1st ed. Springer, January 2008.

[13] R. Abbott, “Program design by informal English descriptions,” Commu-
nications of the ACM, vol. 26, no. 11, pp. 882–894, November 1983.

[14] J. Goyvaerts and S. Levithan, Regular Expressions Cookbook. O’Reilly
Media, May 2009.

[15] G. Miller, “WordNet: A Lexical Database for English,” Communications
of the ACM, vol. 38, no. 3, pp. 39–41, 1995.

[16] U. Frank, “Some Guidelines for the Conception of Domain-Specific
Modelling Languages,” in Proceedings of the 4th International Work-
shop on Enterprise Modelling and Information Systems Architectures
(EMISA), September 2011, pp. 93–106.

[17] C. Hood, S. Wiedemann, S. Fichtinger, and U. Pautz, Requirements
Management: The Interface Between Requirements Development and
All Other Systems Engineering Processes. Springer, December 2007.

[18] S. Bradner, “RFC 2119: Key words for use in RFCs to Indicate
Requirement Levels,” [online] Available at: <http://www.ietf.org/rfc/
rfc2119.txt> [Accessed January 25, 2013].

24

