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RSS-Based Localization in Wireless Sensor
Networks Using Convex Relaxation: Noncooperative
and Cooperative Schemes

Slavisa Tomic, Marko Beko, and Rui Dinis, Member, IEEE

Abstract—In this paper, we propose new approaches based
on convex optimization to address the received signal strength
(RSS)-based noncooperative and cooperative localization prob-
lems in wireless sensor networks (WSNs). By using an array of
passive anchor nodes, we collect the noisy RSS measurements from
radiating source nodes in WSNs, which we use to estimate the
source positions. We derive the maximum likelihood (ML) esti-
mator, since the ML-based solutions have particular importance
due to their asymptotically optimal performance. However, the
ML estimator requires the minimization of a nonconvex objective
function that may have multiple local optima, thus making the
search for the globally optimal solution hard. To overcome this
difficulty, we derive a new nonconvex estimator, which tightly
approximates the ML estimator for small noise. Then, the new
estimator is relaxed by applying efficient convex relaxations that
are based on second-order cone programming and semidefinite
programming in the case of noncooperative and cooperative local-
ization, respectively, for both cases of known and unknown source
transmit power. We also show that our approaches work well in
the case when the source transmit power and the path loss expo-
nent are simultaneously unknown at the anchor nodes. Moreover,
we show that the generalization of the new approaches for the
localization problem in indoor environments is straightforward.
Simulation results show that the proposed approaches significantly
improve the localization accuracy, reducing the estimation error
between 15% and 20% on average, compared with the existing
approaches.

Index Terms—Centralized localization, cooperative localiza-
tion, noncooperative localization, received signal strength (RSS),
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second-order cone programming (SOCP) problem, semidefinite
programming (SDP) problem, wireless localization, wireless sen-
sor network (WSN).

I. INTRODUCTION

IRELESS SENSOR networks (WSNs) comprise a num-

ber of sensor nodes, which can, in general, be clas-
sified as anchor and source (target) nodes [1]. The locations
of the anchor nodes are known, whereas the locations of the
source nodes are yet to be determined. WSNs have application
in various areas such as target tracking, intrusion detection,
energy-efficient routing, monitoring, underground, deep water,
outer space explorations, etc. [2]. In WSNs, sensor nodes are
deployed over a monitored region to acquire some physical
data about the environment, such as temperature, pressure,
humidity, wind speed, etc. The collected information, together
with the object’s position information, enables us to develop
intelligent systems. Such systems offer improved safety and
efficiency in everyday life, since each individual device in
the network can respond faster and better to the changes
in the environment (e.g., location-aware vehicles and asset
management in warehouses) [3]. The idea of wireless posi-
tioning was initially conceived for cellular networks, since
it invokes many innovative applications and services for its
users. Nowadays, rapid increase in heterogeneous smart de-
vices (mobile phones and tablets), which offer self-sustained
applications and seamless interfaces to various wireless net-
works, is pushing the role of the location information to
become a crucial component for mobile context-aware ap-
plications [1].

Location information in WSNs is usually obtained by range-
based or range-free measurements. In this paper, we focus only
on the former, since they provide higher estimation accuracy
in general. In the range-based localization process, the main
concern is to accomplish good estimation accuracy from in-
accurate position-bearing measurements collected inside the
network. To obtain the information of interest, it is necessary
to enable node communication, which can be noncooperative
or cooperative. The former approach allows source nodes to
communicate only with the anchor nodes, whereas the latter
approach allows source nodes to communicate with all nodes
inside their communication range, whether they are anchor
or source nodes [1]. Algorithmically, both approaches can
be executed in a distributed (self-positioning) or centralized
(network-centric positioning) mode. Although the distributed
approach has, in general, low complexity and high scalability,
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it is sensitive to error propagation and may require long con-
vergence time. Therefore, in this paper, we concentrate only on
the centralized approach. To establish an accurate estimate of
the source position, the processor must have prior knowledge
about the anchor nodes’ positions. In cellular networks, the base
stations can be seen as anchor nodes, and the mobile stations
can be seen as source nodes.

Depending on the available hardware, current distance-
based localization techniques exploit different measurements
of the radio signal transmitted between nodes [received signal
strength (RSS), time-difference-of-arrival (TDOA), time-of-
arrival (TOA), roundtrip-time (RTT), or angle-of-arrival (AOA)
measurements]. The tradeoff between the localization accu-
racy and the implementation complexity of each technique
is a very important factor when deciding which method to
employ. For example, localization based on TOA or TDOA
[including the Global Positioning System (GPS)] gives high
estimation accuracy, but it requires a very complex process
of timing and synchronization, thus making the localization
cost expensive [4]. Although less accurate than the localization
using TOA, TDOA, or AOA information, localization based
on the RSS measurements requires no specialized hardware,
less processing, and communication (and, consequently, lower
energy), thus making it an attractive low-cost solution for
the localization problem [2], [5]. Another attractive low-cost
approach might be exploiting RTT measurements, which are
easily obtained in wireless local area network (WLAN) sys-
tems by using a simple device such as a printed circuit board
[6]. Although RTT systems circumvent the problem of clock
synchronization between nodes, the major drawback of this
approach is the need for double signal transmission to perform
a single measurement [7]. Recently, hybrid methods that fuse
two measurements of the radio signal (e.g., RSS-RTT) attracted
considerable attention in the research society [6], [8], [9]. These
methods try to improve the estimation accuracy in node posi-
tions by exploiting the benefits of the combined measurements,
together with minimizing their drawbacks. In this paper, we
focus on providing a good localization accuracy by using RSS
measurements exclusively.

A. Related Work

Source localization based on the RSS measurements has
recently attracted much attention in the wireless communica-
tions community [10]-[18]. The most popular estimator used
in practice is the maximum likelihood (ML) estimator, since
it is asymptotically efficient (for large enough data records)
[19]. However, solving the ML estimator of the RSS-based
localization problem is a very difficult task, because it is
highly nonlinear and noncovex [5]; hence, it may have multiple
local optima. In this case, search for the globally optimal
solution is very hard via iterative algorithms, since they may
converge to a local minimum or a saddle point resulting in a
large estimation error. To overcome this difficulty and possibly
provide a good initial point (close to the global minimum)
for the iterative algorithms, approaches such as grid search
methods, linear estimators, and convex relaxation techniques
have been introduced to address the ML problem [10]-[18].
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The grid search methods are time consuming and require a
huge amount of memory when the number of unknown pa-
rameters is too large. Linear estimators are very efficient in
the sense of time consumption, but they are derived based
on many approximations that may affect their performance,
particularly in the case when the noise is large [14]. In convex
relaxation techniques such as those in [12]-[18], the difficulties
in the ML problem are overcome by transforming the original
nonconvex and nonlinear problem into a convex problem. The
advantage of this approach is that convergence to the globally
optimal solution is guaranteed. However, due to the use of
relaxation techniques, the solution of a convex problem does
not necessarily correspond to the solution of the original ML
problem [20].

In [10], different weighting schemes for the multidimen-
sional scaling (MDS) formulation were presented and com-
pared. It was shown that the solution of the MDS can be
used as the initial value for iterative algorithms, which then
converge faster and attain higher accuracy when compared with
random initial values. Convex semidefinite programming (SDP)
estimators were proposed in [12] to address the nonconvexity
of the ML estimator, for both noncooperative and coopera-
tive localization problems with known source transmit power,
i.e., Pp. Ouyang et al. in [12] reformulated the localization
problem by eliminating the logarithms in the ML formulation
and approaching the localization problem as a minimax opti-
mization problem, which is then relaxed as SDP. Although the
approach described in [12] provides good estimation results,
particularly for the case of cooperative localization, it has high
computational complexity, which might restrict its applica-
tion in large-scale WSNs. In [13], the RSS-based localization
problem for known Pr was formulated as the weighted least
squares (WLS) problem, based on the unscented transformation
(UT). It was shown that for the cooperative localization, the
WLS formulation can be relaxed as a mixed semidefinite and
second-order cone programming problem (SD/SOCP), whereas
for the noncooperative localization, the WLS problem can be
solved by the bisection method. In [16], Wang et al. addressed
the noncooperative RSS localization problem for the case of
unknown Pr and the path loss exponent (PLE). For the case
of unknown Pr, based on the UT, a WLS formulation of the
problem is derived, which was solved by the bisection method.
When both Pr and PLE are not known, an alternating esti-
mation procedure is introduced. However, both [13] and [16]
have the assumption of perfect knowledge of the noise stan-
dard deviation (STD). This might not be the case in practice,
particularly in low-cost systems such as RSS where calibration
is avoided due to maintaining low system costs [2], [5]. In
[18], Vaghefi et al. addressed the RSS cooperative localization
problem for unknown Pp. The case where the source nodes
have different Pr (e.g., due to different antenna gains) was
considered in [18]. The authors solved the localization problem
by applying an SDP relaxation technique and converting the
original ML problem into a convex problem. Furthermore, in
[18], the authors examined the effect of imperfect knowledge
of the PLE on the performance of the SDP algorithm and used
an iterative procedure to solve the problem when Pr and PLE
are simultaneously unknown.
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B. Contributions

In this paper, the RSS-based source localization problem for
both noncooperative and cooperative scenarios is considered.
Instead of solving the ML problem, which is highly nonconvex
and computationally exhausting to solve globally, we propose a
suboptimal approach that provides an efficient solution. Hence,
we introduce a new nonconvex least squares (LS) estimator that
tightly approximates the ML estimator for small noise. This
estimator represents a smoother and simpler localization prob-
lem in comparison to the ML problem. Applying appropriate
convex relaxations to the derived nonconvex estimator, novel
SOCP and novel mixed SDP/SOCP estimators are proposed for
noncooperative and cooperative localization cases, respectively.

The proposed approach offers an advantage over the existing
approaches as it allows straightforward adaptation to different
scenarios of the RSS localization problem, thereby signifi-
cantly reducing the estimation error. In both noncooperative
and cooperative scenarios, we first consider the simplest case
of the localization problem where Pr is known at the anchor
nodes. Next, we consider a more realistic scenario in which we
assume that Pr is an unknown parameter, and we generalize
our approaches for this setting. Finally, we investigate the most
challenging scenario of the localization problem when Pr and
PLE are simultaneously unknown at the anchor nodes. In this
case, for the noncooperative localization, we apply an iterative
procedure based on the proposed SOCP method to estimate
all unknown parameters. We also provide details about the
computational complexity of the considered algorithms.

In contrast to [12] and [13] where the authors considered the
localization problem for the case when Pr is known, here, we
address a more challenging scenario when both Pr and PLE are
not known. In [13] and [16], Wang and Yang and Wang et al.,
respectively, assumed that accurate knowledge of the noise
STD is available, which might not be a valid assumption in
some practical scenarios. Hence, we consider a more realistic
scenario in which the noise STD is not available. In contrast to
[18] where an SDP estimator is derived for the case of unknown
Pr, we derive our estimators by using SOCP relaxation for the
noncooperative case and mixed SDP/SOCP relaxation for the
cooperative case.

The remainder of this paper is structured as follows. In
Section II, the RSS measurement model for locating a single
source node is introduced, the source localization problem is
formulated for the case of known source transmit power, and
the development of the proposed SOCP estimator is presented.
We then extend this approach for the case where Pr, and Pr
and PLE are simultaneously unknown. Section III introduces
the RSS measurement model for the cooperative localization
where multiple source nodes are simultaneously located. We
give the formulation of the cooperative localization problem
and provide details on the development of the proposed SDP es-
timators for both cases of known and unknown source transmit
power. The complexity analysis is summarized in Section IV.
In Section V, we provide both the complexity and simulation
results to compare the performance of the newly proposed
estimators with the existing estimators. Finally, in Section VI,
we summarize the main conclusions.

2039

II. NONCOOPERATIVE LOCALIZATION VIA
SECOND-ORDER CONE PROGRAMMING RELAXATION

Let us consider a WSN with N anchors and one source,
where the locations of the anchors are respectively denoted
by si1,82,...,sn, and the location of the unknown source is
denoted by x. Without loss of generality, this paper focuses on
the 2-D scenario, i.e., &, S1, 83, . .., sy € R? (the extension for
a 3-D scenario is straightforward). For the sake of simplicity, we
assume that all anchors are equipped with omnidirectional an-
tennas and connected to the source. Furthermore, it is assumed
that the anchor positions are known. Under the lognormal
shadowing and log-distance path loss model, the path loss
between the ith anchor and the unknown source, i.e., L;, can
be modeled according to the following radio propagation path
loss model (in decibels) [22]-[25], i.e.,

& — sl

L; = Lo+ 10vlogyg ——— + vi,

=1,
do !

N (D

where Ly denotes the path loss value at a short reference
distance dy (|| — s;|| > do), 7 is the PLE, and v; is the
lognormal shadowing term modeled as a zero-mean Gaussian
random variable with variance o7, i.e., v; ~ N(0,07). The
model has been validated by a variety of measurement results
[23]-[28].

From the relationship L; (dB) = 10log,o(Pr/P;), where
P; is the RSS measured by the ¢th anchor, and Pr is the
transmission power of the unknown source, it is easy to see
that the localization problem can be formulated by the path
loss instead of the RSS. Hence, as in [12] and [13], the path-
loss-based approach is adopted in this paper. Based on the
measurements in (1), the ML estimator is found by solving the
nonlinear and nonconvex LS problem, i.e.,

1 x— 5|1
T = arg min ZZ:; s {(Ll — Lo) — 10y 1log;, Iz = s .
2
To solve (2), recursive methods such as Newton’s method, com-
bined with the gradient descent method, are often used [19].
However, the objective function may have many local optima,
and local search methods may easily get trapped in a local
optimum. Hence, in this paper, we employ convex relaxation
to address the nonconvexity of the localization problem.

The remainder of this section is organized as follows.
Section II-A deals with the case where Pr is known, whereas
Section II-B deals with the case where Pr is considered to
be an unknown parameter that needs to be estimated. Finally,
Section II-C addresses the more general problem when Pr and
PLE are simultaneously unknown.

A. Noncooperative Scenario With Known Pr

The source might be designed to measure and report its own
calibration data to the anchors, in which case it is reasonable to
assume that the source transmission power is known [5]. This
corresponds to the case when the reference path loss Ly, which
depends on Pr [22], is known.
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For the sake of simplicity, in the rest of this paper, we assume
that 02 = 02, for i = 1,..., N. When the noise is sufficiently
small, from (1), we get

ol — ;|| = do 3)

where a; = 10Zo~Li)/ 107 One way for estimating the source
location « is via the minimization of the LS criterion.
Thus, according to (3), the LS estimation problem can be
formulated as!

N
T = arg min Z(ain—siH —dy)?. 4

x i=1

Although the problem in (4) is nonconvex, when «; = dy, for
i=1,..., N, it can be accurately solved by the SCLP method
presented in [30].2 In the following text, we will present a novel
approach to solve the problem defined in (4).

Defining auxiliary variables z = [z1, ..., 2x]7, where z; =
a;g; — do, and g; = ||& — s;]|, from (4), we get

minimize | z|
®,9,%

subject to
gi:||cc—sl-||,zi:aigi—dOJ:l,.‘.,N. (5)

Introducing an epigraph variable ¢ and relaxing the nonconvex
constraint g; = || — s;|| as g; > ||@ — s;|| yield the following
SOCP problem:

minimize ¢
x,g,2,t

subject to

IRzt 1]l <t + 1, [l — sl < g,
zi:aigi—dmi:l,...,N. (6)

Problem (6) can be efficiently solved by [21], and we will refer
to it as “SOCP1” in the following text.?

B. Noncooperative Scenario With Unknown Pr

The assumption that the anchors know the actual source
transmission power may be too strong in practice since it would
require additional hardware in both source and anchors [5].

'A justification for dropping the shadowing term in the propagation
path loss model is provided in the following text. We can rewrite (1) as
(Li — Lo)/10y = log (||l — sil|/do) + (vi/107), which corresponds to
aill@ — si|| = do10vi/ 10+ For sufficiently small noise, the first-order Taylor
series expansion to the right-hand side of the previous expression is given by
aille — sl = do(1 + (In 10/10y)v;), ie., ai||l® — s;|| = do + €;, where
€; = do(In10/10)v; is the zero-mean Gaussian random variable with the
variance d3 ((In10)2/100v2)o2. Clearly, the corresponding LS estimator is
given by (4). The same has been done in [18].

2It is possible to generalize the SCLP method to the weighted case, i.e., to
the case when «; # dp for some 7. However, the algorithm in [30] yields a
meaningless solution. This is due to the fact that the almost convexity property
of the resulting constraints is not preserved.

31t is worth noting that the “SOCP1” approach can be modified to solve the
localization problem in a distributed fashion.
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Here, a more realistic and challenging scenario where the
anchor nodes are not aware of the source transmission power
is considered; thus, L is assumed to be unknown and has to
be estimated. The joint ML estimation of « and L can be
formulated as

N

6= arg min
0=[x;Lo]

2
1 T |AT6 — 5|
2 = [(Ll —1"0) — 10v1log,, T
(7
where | = [0241; 1], and A = [I3; 01x3].
In (3), we assumed that Pr, i.e., Ly is known. Assuming that
L is unknown, we can rewrite (3) as

Vi ||z — ;|| = ndo (8

where 1; = IO_Li/IO'V, and n = 10~ Lo/107, By following a
procedure similar to that in Section II-A, we obtain the SOCP
problem, i.e.,

minimize t
x,g,z,1,t

subject to

IRzt -1 <t 41, o - sl < g
ZZ:ng17nd077’:15aN (9)

Although the approach in (9) efficiently solves (7), we can
further improve its pAerformance. To do so, we will exploit the
estimate of Ly, i.e., Lo, which we get by solving (9), and solve
another SOCP problem. This SOCP approach will be described
in the following text.

Introducing auxiliary variables 7; = ||z — s;|| and v; = 72,
expanding (4), and dropping the term d2, which has no effect
on the minimization, yield

N
L. ~92 ~
2 0BT
minimize 1;:1 (0%7; — 2dodi;r; )
subjecttoy; =72, 7= |z —si||, i=1,...,N (10)

where a; = IO(L”’LU)/IOA’. One can relax (10) to a convex
optimization problem as follows. The nonconvex constraint
~v; = r? will be replaced by the second-order cone constraint
(SOCC) r? < ;. In fact, the inequality constraint 77 < ; will
be satisfied as an equality since ~; and r; will decrease and
increase in the minimization, respectively. Furthermore, define
an auxiliary variable y = ||z||2. The constraint y = ||z||? is
relaxed to a convex constraint y > ||2||?, which is evidently an
SOCC. With the use of all developed constraints, problem (10)
is approximated as a convex, SOCP, optimization problem, i.e.,

N

minimize » _ (677; — 2dodir;)
.7,y 1
p

subject to

[2z;y =1 <y+ 1, [|2ri;vi = 1| < v+ 1
vi=y—2s] @+ |sif”, i=1,...,N. (D)



