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Abstract— We consider the combined problem of frontier
exploration in a complex environment while seeking a radio
source. To do this in an efficient manner, we incorporate
radio signal strength (RSS) information into the exploration
algorithm by locally sampling the RSS and estimating the 2-D
RSS gradient. The algorithm adapts the local motion to collect
RSS samples for gradient estimation and seeks to explore in a
way that brings the robot to the signal source in an efficient
manner, avoiding random or exhaustive exploration. An indoor
experiment demonstrates the exploration algorithm that uses
this information to dynamically prioritize candidate frontiers
and traverse to a radio source. Simulations, including radio
propagation modeling with a ray-tracing algorithm, enable
study of control algorithm tradeoffs and statistical performance.

I. INTRODUCTION

We consider the combined problem of frontier exploration
in a complex environment while seeking a radio source. To
do this in an efficient manner, we incorporate radio signal
strength (RSS) information into the exploration algorithm by
locally sampling the RSS and estimating the RSS gradient.
With sufficient average signal-to-noise ratio (SNR) at the
receiver, the RSS gradient will provide information about
the source direction and the magnitude of the RSS gradient
will increase as the range to the source decreases. We demon-
strate an exploration algorithm that uses this information to
dynamically prioritize candidate frontiers and traverse to the
radio source.

Radio connectivity in a complex environment is severely
challenged by the rapid fading fluctuation induced by mul-
tipath propagation, resulting in dramatic RSS change with
relatively small movements [1]. Mobility can be exploited
to improve RSS and therefore enhance connectivity in net-
worked teams [2]. The radio propagation environment can be
characterized using fading models [3], although a complex
environment results in significant spatial variation in the fad-
ing model parameters. A nonparameteric approach for RSS
mapping using Gaussian processes is given by Fink, et al.,
where mobile agents learn the environment with a fixed radio
source [4]. Here we assume a complex environment creates
substantial small scale fading, but we study exploration of a
new environment and so do not assume a propagation map is
available. We assume the robot the robot can localize itself
and can build a map, and that RSS measurements relative
to a fixed radio source can only be performed onboard the
robot.

In many problems there is a compelling need to maintain
communications with other robots or base stations, such as
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providing sensor information, or maintaining collaborative
control. Connectivity may be enhanced by local movement
to overcome small scale fading, and with larger movements
that generally decrease the propagation distance and enhance
average RSS. Local spatial RSS samples can be used to
estimate the RSS gradient in two dimensions, providing
information about the direction to the source [5], and the
RSS gradient can generally be exploited when attempting to
localize and navigate to a radio source [6], [7], [5], [8].

In this paper, we advance the ideas of [5] and consider how
the 2-D RSS gradient may be used with frontier exploration
to robustly guide a robot through an indoor environment
to a radio signal source. A frontier is a region which is
bordered by explored and unknown space. We assume the
robot can sense its immediate environment and determine
frontiers available for further autonomous exploration by
identifying frontier edge segments [9]. The k-means algo-
rithm is used to identify centers of frontier points. The robot
then dynamically selects the next frontier for exploration by
incorporating the RSS gradient information as well as the
distance to each point. This algorithm incorporates the local
motion to collect RSS samples for gradient estimation, and
seeks to explore in a way that brings the robot to the signal
source in an efficient manner, avoiding random or exhaustive
exploration.

II. RSS GRADIENT-ASSISTED EXPLORATION

The goal of the robot is to move to a region with
sufficiently high signal-to-noise (SNR) ratio. As the SNR
requirement increases, the goal can be interpreted as moving
towards and eventually arriving at the signal source. The
algorithm described below is outlined in Fig. 1.

To start, the robot has no prior knowledge of the RSS
environment, and thus has no directional preference for its
movements. Instead, it begins by making RSS measurements
as it explores the immediate area. After this initial explo-
ration, it calculates the gradient of the RSS (Appendix I) to
determine in which direction the signal strength is increasing
the fastest. If the RSS gradient is sufficiently strong, the robot
moves in the specified direction to exploit this knowledge;
otherwise, the robot continues to explore the local area. In
Appendix II, we discuss how to efficiently sample RSS for
robust gradient estimates.

After it obtains a preliminary RSS gradient estimate,
the robot alternates between navigation (selecting the best
waypoint from the identified frontiers) and advancement
(moving towards the current waypoint).



A. Navigation

The robot identifies candidate frontiers on its map, based
on explored and unexplored regions. Next, it ranks these
frontiers based on RSS gradient, average RSS, and distance
and selects the highest ranking frontier as its waypoint.
As the robot moves toward the waypoint, it continually
re-evaluates the ranking of the frontiers. Frontiers are re-
selected when either (i) the robot reaches original waypoint,
or (ii) the ranking of the waypoint drops.

Fig. 1. Flow diagram of the frontier exploration algorithm.

1) Frontier Identification: A frontier is defined by cells
in an occupancy-grid map that border known free-space
and unknown regions. Frontier segments are identified by
a k-means algorithm [10]. This algorithm calculates the
centroids of clustered groups based on known boundary cells
in the map. We assume that large groups of frontier points
correspond to frontier segments that can be pursued during
exploration. An example situation is presented in Fig. 2. In
this figure, a robot has traversed a subset of the environment.
It has cleared an area and identified the known boundary. By
clustering with the k-means algorithm, eight frontiers have
been identified.

2) Rank Frontiers: Once the set of frontiers is determined,
the algorithm ranks them based on three criteria: distance
from the current robot position, agreement with RSS gradi-
ent, and average RSS magnitude. Fig. 3 depicts an example
scenario where these criteria are evaluated.

The distance from the robot’s current position to a frontier
represents a greedy metric that can be used for exploration.
By driving to the closest frontier, unknown space is explored

Fig. 2. Illustration of frontier identification for a particular configuration.
Points on the boundary of known and unknown space are clustered to
identify likely frontiers that can be explored.

with minimum cost. Conversely, this criteria decreases the
possibility that a distant frontier is explored without a rea-
sonable expectation to increase the SNR.

Fig. 3. Example of frontier ranking. Because frontiers 1 and 2 are closely
located, they use the same n closest RSS measurements for calculating RSS
gradient and average. Frontier 1 is ranked highest because, though distance
and RSS are similar to Frontier 2, its direction is closest to the gradient.
Frontier 3 is ranked lowest because it is far away, disagrees with the gradient
direction, and has the lowest RSS value.

The evaluation of RSS-based metrics requires that a subset
of the collected RSS samples be associated with each can-
didate frontier. This association is computed according to
the geodesic or path-distance rather than Euclidean distance
such that the n closest samples are associated with each
frontier. The RSS gradient and average RSS magnitude
is then computed for each subset of RSS samples. When
frontiers are far from each other (e.g., at opposite ends
of a hallway), the gradient and RSS average tend to be
different, and thus lead to easy decisions of which frontier to
explore. However, when frontiers are close, the calculations
can share many of the same RSS measurements and hence
lead to similar results. In this case, though the average RSS



magnitude may be very close, the deviation from the gradient
information can be used to identify one frontier over the rest.

3) Select waypoint: After computing the above criteria for
each candidate frontier, the highest-ranked frontier is chosen
as the next waypoint for exploration.

B. Advancement
In typical scenarios, the robot would take the shortest

straight-line path to reach the selected frontier. However,
this leads to unsuitable RSS gradient estimates because
the sampling locations cannot be co-linear, as discussed in
Appendix II. Therefore, rather than travel in straight-line
trajectories, the robot introduces gentle oscillations to its path
(see Fig. 4). This makes the gradient estimate more robust
at the cost of greater distance traveled.

Fig. 4. Moving left to right, the sampling strategies yield more RSS
gradient confidence in the vertical direction at the expense of lower
confidence in the horizontal direction. In each case, the distance between
sampling locations is identical.

As the robot moves towards the current waypoint, it
periodically updates its ranking of the set of frontiers based
on newly acquired RSS samples. Because it is approaching
the waypoint, it collects more accurate gradient data about
that particular frontier. When the new RSS measurement cor-
roborate the choice of waypoint (e.g., gradient points towards
waypoint, RSS average continues to increase), the robot will
continue to the waypoint. Upon reaching the waypoint, if the
SNR condition indicating sufficient proximity to the source
has not been met, the robot will resume frontier exploration
by identifying new frontiers from its current position.

If, in the course of movement towards a waypoint, the
gradient becomes contradictory and/or the RSS drops, the
robot is able to halt progress before reaching the waypoint
and resume frontier exploration by identifying new frontiers
from its current position. This capability is particularly useful
to avoid exploring large rooms where exploration time can
be significant. In order to avoid too many false alarms, we do
not halt movement until the current waypoint drops a certain
number of ranks in the overall list of candidate frontiers.

III. EXPERIMENT AND RESULTS

The robot used in the experiments are shown in Fig. 5. The
Scarab is a small indoor ground platform equipped with a

differential drive system, onboard computation, and 802.11a
wireless communication in addition to its Zigbee radio which
is used for experimental measurements. It is also equipped
with a scanning laser range finder which is leveraged to yield
accurate self-localization.

Fig. 5. Scarab robot used in experiments. It is capable of self-localization
and point-to-point radio signal strength measurements with an off-the-shelf
Zigbee radio.

The robot has ability to record the RSSI (RSS indicator)
reported by the Zigbee radio whenever it receives a packet
from the fixed source. To smooth the effects of channel noise,
the robot averages the RSSI at locations within distance d
of each other. We chose d = 12.5cm = 1λ at 2.4 GHz,
a distance that has been experimentally shown to result
in approximately decorrelated signals [11]. Other testing
parameters are shown in Table I.

TABLE I
TABLE OF PARAMETERS

Parameter Value
number of frontiers (k) 12

number of points to average (n) 10
exploration radius 2.5 m

oscillation amplitude 0.375 m
independent sampling distance 0.125 m

Experimental implementation leads to some modifications
to the algorithm described above. To mitigate the limitation
that the Scarab cannot autonomously identify safe vs. unsafe
regions of the environment, we assume an a priori map by
which it navigates. The number of possible frontiers was set
at k = 12 because frontiers would inevitably be identified in
unsafe regions that could not be explored. The large number
of frontiers help ensure the robot will be able to consider all
frontiers as well as ones the robot is not capable of exploring.

In this trial, the Scarab starts at one end of the hallway.
It randomly explores the local area until it makes a reliable
RSS gradient estimate and is able to intelligently select a
frontier for exploration. As it oscillates about a path between
frontiers, the robot collects RSSI points. However, there are
some areas where the robot is not able to receive a signal.
In this particular experiment the robot starts exploring away



Fig. 6. Trajectory taken in an experimental trial with the Scarab mobile
robot. Received signal strength at each point is indicated by the intensity.
Physical locations (A)–(E) correspond to the points labeled in Fig. 7

from the source, but turns around after exploring its first
frontier. Afterwards it moves up the hallway, past several
offices and collects data near the room with the source. The
robot detects the higher RSSI average and gradient pointing
towards and successfully explores the room containing the
source. Once the average RSSI exceeds the threshold, the
robot stops.

The average RSSI is plotted in Fig. 7 over the distance
covered by the robot. We consider highlight the behavior of
the algorithm as the robot explores the environment (see Fig.
6 for a helpful map). In epoch (A), the time until A in the
figure, the robot observes weak RSSI while performing area
exploration. The robot is able to extract gradient information
to steer it down the hallway towards the source. In epoch
(B), the robot observes steadily increasing gradient, thus
corroborating the decision to move down the hallway. Note
that though the average RSSI shows the effect of strong
fading, the gradient estimate is able to detect the gradual
trend of the RSSI. The robot nears the entrance to the source
room by epoch (C), but in epoch (D), it continues down the
hallway. However, before it makes it too far, the waypoint
drops in ranking sufficiently for it to turn around and reach
the goal state in epoch (E).

Fig. 7. Received signal strength during the experimental trial depicted in
Fig 6. Note that RSS is variable over small distances but generally increases
throughout the trial.

IV. SIMULATION AND RESULTS

We also explore aspects of the proposed RSS gradient
tracking algorithm through the use of the EMCUBE ray-
tracer [12] over a representative office layout shown in
Fig. 8. This simulator provides a realistic model of RSS
for an indoor space and allows for many tests of the same
environment. This allows us to investigate how specific
parameters affect the performance of the algorithm.

The simulated signal source transmits at 2.4 GHz. Because
we are considering a fixed signal source, RSS is calculated
off-line for each point on a grid with wavelength spacing,
λ = 12.5 cm at 2.4 GHz – a distance that has been experi-
mentally shown to result in roughly decorrelated signals [11].

Fig. 8. Map of simulated RSS for a typical indoor environment. Note that
the EMCUBE simulation models complex multi-path phenomena

In order to accelerate simulations, the robot is confined
to move on the grid and looks up the RSS value for
each location based on the offline EMCUBE calculations.
Consequently, we assume that RSS is deterministic and takes
on one value at each position on the grid. It is further
assumed that the robot will exactly calculate its position and
the positions of obstacles. As a result, the path-distance to



frontiers can always be accurately calculated and continuous
evaluation of frontiers is precise. It is also assumed that the
robot can explore every identified frontier so only k = 8
potential frontiers need to be considered for each calculation.
An example of one simulation trial is depicted in Fig. 9.

Fig. 9. Physical environment with simulated test result trajectory

The robot first explores its immediate surroundings (the
upper hallway), to obtain a good RSS gradient estimate. Then
it transitions to RSS frontier exploration. Its exploration leads
it to sample the RSS in several rooms. Though it enters the
rooms, it quickly decides to leave because the RSS gradient
points back to the hallway. The controller ultimately leads
the robot to the signal source in the large lower room. Once
the robot observes a sufficiently high average RSS, the goal
condition is reached.

In order to further examine certain parameters, several
tests were performed. The first involved changing the oscil-
lation amplitude (i.e., amount of deviation from the straight
path) of the robot as it tracked waypoints. The second
involved removing the gradient and RSS average components
to determine their effects on efficiency/capability on the
controller.

The RSS exploration algorithm has a number of variables
which affect how it executes. One such value is the number
of frontiers to consider. As the number of frontiers increases,
calculation time increases as well. In addition, the number
of frontiers should be limited such that small cleared areas
are not calculated as frontiers. This variable is also strongly
tied to which approach is used for the k-means portion of
frontier identification. Values between 4 and 10 work well
in simulation.

Finally, we examine the number of collected RSS points
required to form a subset for frontier evaluation. This pa-
rameter is related to how how constricted the environment
is in contrast with the distance for assumed independence of
points. In a very constricted environment where points are
independent at larger distances, only a few points should be
averaged together. In open environment with small distances
required for independence, it is advisable to average 10
to 20 RSS samples together. The parameters used for the
experiments and simulations are enumerated in Table I.

A. Effect of Oscillation

We investigate how much the robot should deviate from
the straight-line path as it moves towards each waypoint.
Figure 10 shows the results of these tests. This plot shows
the total distance traveled to reach the robots goal condition
as well as how often these path distances occurred.

.

Fig. 10. Path length to source with different deformation amplitudes. This
total distance frequency is depicted by sorting the values into bins. The
width of each bar is directly correlated with the number of occurrences.

In this set of simulations, there is a greater concentration
of shorter total path distances than longer path distances.
However, the robot was able to improve its sampled RSS and
move towards the source without exploring a large portion
of the environment.

As the oscillation increases from 0 to 0.375 m, the average
distance traveled decreases. This improvement in efficiency
is due to more accurate gradient estimates from spatially sep-
arated RSS measurements (see Section II). As the oscillation
increases beyond 0.375 m, we see that the improved gradient
estimates become offset by the increase in distance traveled.

B. Effects of RSS Gradient and RSS Average

Determining the how the RSS gradient and average magni-
tude contribute to the efficiency of the control is the objective
of this test. In Fig. 11, the algorithm is tested with an
oscillation amplitude of 0.375 m while changing the method
for choosing frontiers.

This figure show the results from three different tests with
ten trials each. In the first test, the algorithm was tested using
both RSS average magnitude and gradient information. In
the two subsequent tests, either the gradient or the average



Fig. 11. (A) Test using both RSS gradient and average (B) Test using
average only (C) Test using gradient only

magnitude was used along with the distance weight to choose
frontiers. These results show that while it is possible to
weight frontiers with only RSS average magnitude or RSS
gradients, better efficiency can be obtained by using both.
Both sets of tests for RSS average magnitude and gradient
have similar means and standard variations.

V. CONCLUSIONS

We have developed and demonstrated a new algorithm that
seeks a radio source in an indoor environment. Our approach
uses RSS gradient estimation to prioritize the frontier ex-
ploration options. Several metrics for RSS spatial sampling
while approaching the signal source were developed and
implemented. The resulting control algorithm is applicable
to a wide variety of scenarios because it does not require
knowledge of the propagation environment beyond basic
fading assumptions and does not require a map a priori.

Interesting directions for further study include multiple
agents, and moving sources. Collaborative agents could lead
to increased exploration efficiency, and these agents can also
exploit RSS amongst themselves to maintain connectivity.
Similarly, adapting to a moving source leads to control
algorithms that can be exploited to maintain or enhance
connectivity in a mobile ad hoc network (MANET).

APPENDIX I
RSS GRADIENT ESTIMATION

We assume that a mobile sensor makes RSS measurements
Zi at locations (Xi,1, Xi,2) for 1 ≤ i ≤ n. We center the
locations so

n∑
i

Xi,1 =

n∑
i

Xi,2 = 0 . (1)

We are interested in finding the gradient of the RSS measure-
ments. We perform a 2-dimensional least-squares estimation,
i.e., we fit a plane to the measurements. Z is a random n×1
column vector and X is a n× 2 matrix. The gradient β is a

2 × 1 column vector that indicates the direction of steepest
gradient ascent,

Xβ = Z (2)
β = (XTX)−1XTZ (3)

Equation (3) is the least-squares solution with 2 parameters
with centered data [13]. This centering of the locations allows
us to disregard any constant offset in the RSS measurements,
because from (1) and (3) we see that

XTZ = XT (Z+ c1n×1)

for some scalar c.
The estimated gradient direction and slope magnitude is

θ̂S = tan−1 β2
β1

(4)

|β| =
√
β2
1 + β2

2 (5)

From (3) we observe that XTX must be non-singular for
a unique solution of β. Geometrically, the sampling locations
must not be co-linear. We use singular value decomposition
(SVD) to write X = USVT where U,V are unitary and S
is diagonal. We note that XTX is symmetric and therefore
its eigenvectors (columns of V) are orthogonal. We can then
rotate the coordinate system so that the eigenvectors are <
1, 0 > and < 0, 1 >, i.e., V = I and so X = US.

When XTX is non-singular, (3) can be written

β = (STS)−1(STUT )Z (6)
= S+UTZ (7)
= X+Z (8)

where (·)+ indicates psuedo-inverse, e.g., X+X = I. The
diagonal elements of S+ are the inverse root eigenvalues of
XTX, i.e., 1/

√
λ1, 1/

√
λ2.

APPENDIX II
EFFICIENT SAMPLING FOR RSS GRADIENT

Successful estimation of RSS gradient requires a strategy
for sampling inside a physical environment. In particular,
straight-line trajectories lead to degenerate gradient esti-
mates, as discussed in Section I. We discuss how the we
perturb the paths in order to improve the accuracy of our
gradient estimates.

The ranking of the frontiers relies on the accuracy of the
RSS gradient estimate, which in turn depends on where the
RSS measurements are taken. That is, the RSS sampling
strategy strongly affects the reliability of the RSS gradient
estimates β, which we quantify by its variance[

Var[β1]
Var[β2]

]
= X+2

 Var[Z1]
...

Var[Zn]

 (9)

where we define X+2
ij = (X+

i,j)
2. We do not make any

assumptions on the variance of the observations Z, but
instead focus on reducing the variance by modifying our
sampling strategy, dictated by the sampling locations X.



As discussed in Section I, the measurement locations
should not be co-linear, otherwise the gradient calculation
is degenerate.

For an idea of how the variance of the RSS gradient
depends on X, consider the situation when Var[Zi] = Var[Z]
for 1 ≤ i ≤ n. It follows from (7) and (9) that[

Var[β1]
Var[β2]

]
=

[
1/λ1
1/λ2

]
Var[Z] (10)

where λ1, λ2 are the eigenvalues of XTX. Thus the variance
of the gradient decreases as the eigenvalues of the locations
matrix X increase. Geometrically, this guides us to consider
sampling locations are spread further apart rather than con-
fined to a small region.

Fig. 12 plots (λ1 + λ2)/2 for simple sampling strategies
(regular polygon, square, rectangular spiral), for a fixed
distance traveled. The regular polygon and square have
comparatively large confidence because measurements are
well separated spatially, but the spiral takes measurements in
a more confined manner. We note that these strategies are ap-
proximately rotationally symmetric and thus the eigenvalues
in either direction are roughly equal. Thus these strategies are
well-suited for RSS gradient estimation in low-SNR regimes,
where no prior gradient information is known.
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Fig. 12. Eigenvalues of simple sampling strategies

When prior gradient estimates are available, a different
sampling strategy can be employed to make more efficient
movements. For example, suppose that the previous gradient
estimate guides the movement in direction θ. Rather than
traversing a regular polygon, a zig-zag or gently oscillating
path in direction θ can be taken instead (see Fig. 4). Equation
(9) indicates that this directional strategy leads to high
quality (lower variance) gradient estimates in the direction
of travel θ, but low quality (higher variance) estimates
perpendicular to θ. The disparity of the variance depends on
how elongated the strategy is. If the movement is over a thin
strip, confirmation of the RSS gradient will be reliable in the

direction of travel, but the decision to change trajectory will
be less reliable. Thus unless we are extremely confident that
θ is correct, we want the sampling strategy have reasonable
spatial separation in both dimensions.
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