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Fig. 6. BER performances according to M = 1/2/4 as a function of γSR =

γSD when ω = 1.

VI. CONCLUSION

In this paper, we have presented the channel estimations for AF

multiple-relay networks, particularly over frequency-selective fading

channels. First, we have proposed the repeated known sequence con-

sisting of Chu sequences, of which length depends on the number of re-

lays and the maximum channel length of max(Lh0
, Lc). It was shown

that the structure provides the complete precoding between relays

without the IBI and the efficient frequency-domain channel estimation.

Second, we have a simple signed precoding at relays by exploiting the

extended orthogonal codes. It was shown that the precoding does not

limit the number of relays and completely decouples the CIRs between

links directly at D. Third, we have investigated various properties

of the proposed channel estimations through the analysis of effective

MSE in terms of link parameters, i.e., ω, γSR, and γSD . Moreover,

it was verified that the combination of the repeated known sequence

and precoding provides the minimum channel estimation performance

(in the LS sense). Finally, the performance evaluations have been

accomplished to verify the analysis results.

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity.
Part I. System description,” IEEE Trans. Commun., vol. 51, no. 11,
pp. 1927–1938, Nov. 2003.

[2] J. Choi, “MMSE-based distributed beamforming in cooperative relay net-
works,” IEEE Trans. Commun., vol. 59, no. 5, pp. 1346–1356, May 2011.

[3] S. Zhang, X. Xia, and J. Wang, “Cooperative performance and diversity
gain of wireless relay networks,” IEEE J. Sel. Areas Commun., vol. 30,
no. 9, pp. 1623–1632, Oct. 2012.

[4] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal
training design for amplify and forward relay networks,” IEEE Trans.

Wireless Commun., vol. 7, no. 5, pp. 1907–1916, May 2008.
[5] J. Coon, M. Beach, and J. McGeehan, “Optimal training sequences

for channel estimation in cyclic-prefix-based single-carrier systems with
transmit diversity,” IEEE Signal Process. Lett., vol. 11, no. 9, pp. 729–
733, Sep. 2004.

[6] M. G. Song, D. S. Kim, and G. H. Im, “Recursive channel estimation
method for OFDM-based cooperative systems,” IEEE Commun. Lett.,
vol. 14, no. 11, pp. 1029–1031, Nov. 2010.

[7] A. S. Lalos, A. A. Rontogiannis, and K. Berberidis, “Frequency do-
main channel estimation for cooperative communication networks,” IEEE

Trans. Signal Process., vol. 58, no. 6, pp. 3400–3405, Jun. 2010.

[8] J. Coon, M. Beach, and J. McGeehan, “Channel and noise variance
estimation and tracking algorithms for unique-word based single-carrier
systems,” IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1488–1496,
Jun. 2006.

[9] H. Mheidat, M. Uysal, and N. Al-Dhahir, “Equalization techniques for
distributed space-time block codes with amplify-and-forward relaying,”
IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1839–1852, May 2007.

[10] D. C. Chu, “Polyphase codes with good periodic correlation properties,”
IEEE Trans. Inf. Theory, vol. IT-18, no. 4, pp. 531–532, Jul. 1972.

[11] J. S. Baek and J. S. Seo, “Performance analysis of power control effects
in channel estimation for AF relaying network,” IEEE Commun. Lett.,
vol. 16, no. 6, pp. 886–888, Feb. 2012.

RSSI-Fingerprinting-Based Mobile Phone
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Abstract—Accurate positioning of a moving vehicle along a route en-

ables various applications, such as travel-time estimation, in transporta-
tion. Global Positioning System (GPS)-based localization algorithms suffer
from low availability and high energy consumption. A received signal
strength indicator (RSSI) measured in the course of the normal opera-

tion of Global System for Mobile Communications (GSM)-based mobile
phones, on the other hand, consumes minimal energy in addition to the
standard cell-phone operation with high availability but very low accuracy.
In this paper, we incorporate the fact that the motion of vehicles satisfies

route constraints to improve the accuracy of the RSSI-based localization
by using a hidden Markov model (HMM), where the states are segments
on the road, and the observation at each state is the RSSI vector contain-
ing the detected power levels of the pilot signals sent by the associated

and neighboring cellular base stations. In contrast to prior HMM-based
models, we train the HMM based on the statistics of the average driver’s
behavior on the road and the probabilistic distribution of the RSSI vectors

observed in each road segment. We demonstrate that this training consid-
erably improves the accuracy of the localization and provides localization
performance robust over different road segment lengths by using extensive
cellular data collected in Istanbul, Turkey; Berkeley, CA, USA; and New

Delhi, India.

Index Terms—Fingerprinting, localization, mobile phone, route
constraints.

I. INTRODUCTION

The accurate positioning of a moving vehicle along a route enables

various applications, such as travel-time and pattern estimation, in

transportation. Travel-time estimates are used to alleviate congestion

by informing the drivers of the roads with large travel time, by finding

better paths with smaller expected travel time in traffic-aware routing
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algorithms, and by improving traffic operations such as traffic-light cy-

cle control. Travel pattern estimation in the form of origin–destination

matrices, on the other hand, is an essential component in enabling

administrative authorities to plan and manage infrastructure improve-

ments. Using vehicles as probes to collect these data, rather than

deploying fixed sensors, such as wireless magnetic sensors on the road

[1], or using household questionnaires, allows efficient coverage of

large areas of the road network.

Current proposals for accurate positioning heavily rely on using

GPS-enabled devices that are periodically recording the current time

and position, and sending these data to a central server over a wireless

network for further processing [2]. The GPS, however, is not avail-

able in a large percentage of today’s mobile phones, particularly in

developing regions, leaving their users out of the many location-based

applications. Moreover, GPS has poor performance in urban areas near

high-rise buildings and consumes much energy by quickly draining

the battery of mobile devices, which may not necessarily be connected

to a charger within the vehicle. Other alternatives, such as Wi-Fi [3]

and augmented-sensor-based localization [4] in the cell phones, suffer

from the low availability, which is similar to GPS. GSM on the other

hand is available on all GSM-based cell phones and consumes minimal

energy in addition to the standard cell-phone operation. Among the

GSM-based localization algorithms, including time of arrival, time

difference of arrival, angle of arrival, and received signal strength

indicator (RSSI)-based methods, RSSI-based localization algorithms

are mostly preferred since an RSSI is measured in the course of the

normal operation of GSM-based mobile phones; therefore, they do not

require any specialized hardware [5].

According to GSM standards, each cell-phone records a vector of

the detected power levels of the pilot signals from at most seven

cellular base stations, one of which the cell phone is associated with.

Positioning algorithms using this RSSI vector follow two approaches:

triangulation and fingerprinting. In triangulation, first, the RSSI read-

ing from each base station is matched to a distance based on an

experimentally determined path-loss model, and then, the position of

the mobile phone is estimated based on the location of each base

station and the distances to them. The accuracy of triangulation-based

approaches, however, has been shown to be very low due to the inac-

curacy of the path-loss models [6], [7]. In the fingerprinting approach,

RSSI measurements from the cellular base stations are recorded along

with the GPS measurements during the database construction phase.

The position is then determined by comparing the measured RSSI

vector to those in the database identifying the GPS location of the

closest RSSI matches, which are determined by minimizing a cost

function [8]. The accuracy of fingerprinting has been also shown to

be very poor, requiring stochastic postprocessing such as Kalman

filtering [9]. Recently proposed trajectory-based methods using the

RSSI readings of the neighboring base stations apply hidden Markov

models (HMMs) to improve the localization accuracy by taking into

account route constraints; however, they employ a completely random

behavior of the vehicles in each direction, such as an equal probability

of moving to each of the adjacent cells in a grid-based map without any

training [10]–[12]. None of the previously proposed HMM techniques

developed for GSM RSSI-based localization derives the statistics of

the driver’s behavior on the road and analyzes the effect of including

these statistics on the localization accuracy. Furthermore, these tech-

niques mostly use deterministic approaches to estimate the location of

the mobile phones without analyzing the probabilistic distribution of

the observed RSSI vectors on the road segments as a function of the

amount of the training data nor comparing this probabilistic-model-

based approach to the commonly used cost functions in the literature

[10], [11]. The only probabilistic fingerprinting approaches in the

literature, on the other hand, either consider the associated base station

only [12] or do not take the route constraints into account [13].

There has been an extensive amount of work on RSSI-based lo-

calization systems employing HMMs using indoor wireless local area

network (WLAN) base stations [14], [15]. The movement models used

for the indoor environments considering the building’s floor plan and

expected pedestrian speeds, however, are not suitable for modeling

the movement of the vehicles. HMM- and RSSI-based localization

algorithms using outdoor WLAN base stations [3] and sensor networks

[16], again, cannot be used in GSM-based vehicle localization since

they assume a completely random behavior of the nodes in the net-

work, and the propagation characteristics of the short-range WLAN

and sensor node communications are very different from those of the

long-range GSM communications.

In this paper, we propose an HMM-based localization algorithm

exploiting GSM RSSI data of the mobile phones located within the

vehicles, which is trained by the statistics of the average driver’s

behavior on the road and the probabilistic distribution of the RSSI

vectors in each road segment. The original contributions of this paper

are as follows.

1) We derive the statistics of the average driver’s behavior and

the probabilistic distribution of the RSSI vectors in each road

segment of urban and suburban roads in Istanbul, Turkey;

Berkeley, CA, USA; and New Delhi, India, for the first time in

the literature.

2) We demonstrate that the proposed HMM trained by these statis-

tics significantly improves the accuracy of the previous HMM

techniques and provides a localization performance robust over

different road segment lengths based on extensive cellular

data collected in Istanbul, Turkey; Berkeley, CA, USA; and

New Delhi, India.

II. SYSTEM OVERVIEW

A. Localization Using HMM

We assume that the vehicle follows the same road. We divide the

road into segments representing the hidden states of the HMM. Transi-

tion among these hidden states is governed by transition probabilities.

Given the segment of the road, the RSSI vector has a particular

conditional probability distribution called the emission probability

distribution of the observable events in the HMM. The HMM then

traverses its states to produce its outputs, which are the observable

events emitted at each state.

The algorithm has offline training and online tracking phases. In the

offline training phase, both GPS measurements and RSSI vectors are

periodically recorded while the vehicle is moving on the road. These

data are then transmitted via any available wireless network to the

central server. The collected data from multiple users are used to esti-

mate the transition probability and emission probability of the HMM.

During the online tracking phase, a sequence of periodically recorded

RSSI vectors are sent to the central server and input to the HMM to

estimate the most probable sequence of states of road segments.

B. Mathematical Model of HMM

The HMM can be mathematically represented as λ =
(S, V,A,B, π), with the following variables.

1) S = {s1, s2, . . . , sN} is the set of states, with each state rep-

resenting a road segment on the road and N = |S| being the

number of road segments on the road.

2) V = {v1, v2, . . . , vM} is the set of observation vectors, where

M = |V | is the total number of possible observation vectors on

the road. vk is a Z × 1 vector for k ∈ [1,M ] such that the ith

element of vk, which is denoted vk,i, is the received power from

the ith base station represented by an integer value in the range
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Fig. 1. (a) Urban road with a length of 12 km between Sariyer and 4. Levent, Istanbul, Turkey. (b) Suburban road with a length of 4 km between Koç University
and Sariyer, Istanbul, Turkey. (c) Suburban road with a length of 8.2 km between the University of California, Berkeley, CA, USA and Temescal, Oakland, CA,
USA, (d) Suburban road with a length of 2.9 km in New Delhi, India.

of [−110,−40] dBm if the ith base station is one of the seven

strongest base stations and 0, otherwise, where Z is the total

number of base stations observed on the road.

3) A is an N ×N matrix such that the element in the ith row and

the jth column of A, which is denoted aij , is the probability

of the transition from state si to state sj , i.e., aij = P (qn+1 =
sj |qn = si), where qn is the state at time nτ , and τ is the sam-

pling period. First, we assume that the vehicle follows the same

road and that the training of the HMM is performed by using

the data collected from the vehicles following that same road.

This assumption eliminates the requirement for considering the

effect of the variation of the routes of different drivers to their

destination. Second, we assume that the vehicles move with the

same average speed in the same direction along the road used

in the training and tracking phases, meaning that the transition

probability aij is independent of the segment i but only depends

on the difference between i and j, i.e., aij = ak, where k =
j − i and ak = 0 for k < 0. Matrix A needs to be derived for

each road satisfying these conditions. This approach can be

generalized to general vehicle tracking, where different drivers

have different routes to their destination by dividing the road

into multiple segments where these assumptions hold. The first

novelty of this paper is the derivation of ak values based on the

training data summarizing the statistics of the average driver’s

behavior on the road. The previous HMM RSSI-based GSM lo-

calization algorithms allow the transitions only to the current or

following road segments, i.e., a0 = 1/2 and a1 = 1/2 [10]–[12].

4) B is an N ×M matrix such that the element in the jth row

and the kth column of B, which is denoted bjk, is the emission

probability of vk on the jth road segment corresponding to state

sj , i.e., bjk = P (vk|sj). The emission probability distributions

derived for WLAN systems [3], [14], [15] and sensor networks

[16] cannot be used for GSM systems due to their different

propagation characteristics. The HMM techniques developed for

GSM RSSI-based localization, on the other hand, use either a

deterministic function of the Euclidean distance and the number

of matching base stations between the observed vector and

each RSSI vector in the training database as the cost of the

observed RSSI vector [11] or the histogram of the RSSI readings

of the associated base station in each road segment [12]. The

second novelty of this paper is proving that the histogram of the

RSSI readings of each base station within each road segment

converges to the Gaussian distribution if enough RSSI samples

are collected.

5) π is an N × 1 vector such that the ith element of π, which

is denoted πi, is the probability of state si initially, i.e., πi =
P (q1 = si).

III. DATA COLLECTION

We collected data over four different roads shown in Fig. 1. The first

road between Sariyer and 4. Levent, Istanbul, Turkey, with a length of

12 km, shown in Fig. 1(a), represents an urban road in Istanbul. The

second road between Koç University and Sariyer, Istanbul, Turkey,

with a length of 4 km, shown in Fig. 1(b), represents a suburban

road in Istanbul. The third road between the University of California,

Berkeley, CA, USA, and Temescal, Oakland, CA, USA, with a length

of 8.2 km, shown in Fig. 1(c), represents a suburban road in the U.S.

The fourth road in New Delhi, India, with a length of 2.9 km, shown

in Fig. 1(d), represents a suburban road in India.

The monitoring device for collecting RSSI signatures was a standard

Nokia handset operating in the 900-MHz band and connected to a

laptop that runs network monitoring software. A sample of the RSSI

signature containing the power levels and identifiers of the seven

strongest base stations is reported once every 2 s along with the GPS

latitude and longitude information, i.e., τ = 2 s. Twenty test runs

are performed at low-, medium-, and high-traffic conditions on the

urban road in Istanbul, Turkey, shown in Fig. 1(a), whereas 20 test

runs are performed on the suburban roads shown in Fig. 1(b)–(d)

since the traffic conditions do not significantly change during the

day, i.e., ten runs are used for training, and ten runs are used for

tracking.

IV. ESTIMATION AND USAGE OF HIDDEN

MARKOV MODEL STATISTICS

A. Training Phase

During the training phase, GPS and RSSI vector data observed

from the cell phones are collected at the central server to create the

database. The parameters of the HMM are then estimated using this

database.

Figs. 2 and 3 show the probability of the transition to the following

road segments, i.e., ak, for the urban road and suburban roads of

different segment lengths, respectively. L denotes the length of the

segment. The calculation of ak given the training database including

the sequence of states recorded by GPS, i.e., Qr = (qr1 , q
r
2 , . . . , q

r
Tr
)

for r ∈ [1, R], where qri is the ith state in the rth run, R is the number
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Fig. 2. Probability of the transition to the following road segments at low-,
medium-, and high-traffic conditions for the urban road of different segment
lengths.

Fig. 3. Probability of the transition to the following road segments for the
suburban roads of different segment lengths.

of runs in the training data, and Tr is the number of data points

corresponding to the rth run in the training data, is given as

ak =

∑R

r=1

∑Tr−1

j=1
δqr

j+1
−qr

j
,k

∑R

r=1

∑Tr−1

j=1
1

(1)

where δqr
j+1

−qr
j
,k is the Kronecker delta function that takes the value

of 1 if qrj+1 − qrj = k and 0, otherwise; the numerator is the number of

transitions of magnitude k; and the denominator is the total number

of transitions. We observe that the transition probability significantly

varies depending on the location and traffic conditions of the roads,

contradicting the common assumption of the HMM-based localization

literature that the mobiles move only to the adjacent grid cells or

adjacent road segments.

The analysis of many histograms of the observed RSSI values from

many base stations shows that the histogram has a Gaussian shape

if enough RSSI samples are collected from the base station in the

corresponding road segment. The number of RSSI samples required

for the Kolmogorov–Smirnov test, with a 95% confidence interval to

decide for the Gaussian distribution of these RSSI samples, is less than

30 in all the segments of different lengths over all the roads used for

the evaluation. (The Kolmogorov–Smirnov test is a nonparametric test

for the equality of continuous 1-D probability distributions comparing

a sample distribution with a reference probability distribution).The

number of samples required to estimate the mean and variance of

the Gaussian distribution of the RSSI samples with 90% accuracy

is around 30. Given that the number of samples collected from the

segment lengths that are greater than or equal to 10 m, which are used

in the evaluation of the algorithm, in each run of the training data is

more than 4, the total number of samples from ten runs of the training

data, i.e., 40 samples, will be enough to estimate the mean and variance

of the Gaussian distribution with 90% accuracy.

Let us denote the mean and variance of the best Gaussian fit to

the RSSI histogram of the ith base station at the jth road segment

corresponding to state sj by mj,i and σ2
j,i, respectively. Recall that

bjk is the emission probability of an observation vector vk in state sj .

Let us define the cost of observing vk in state sj , which is denoted cjk,

as the normalized logarithm of bjk. Based on the assumption that the

samples from different base stations are independent, cjk is given by

cjk=
1

Zp

Z
∑

i=1,mj,i<0,vk,i>0

(

−
1

2
ln(2π)−ln(σj,i)−

(vk,i−mj,i)
2

2σ2
j,i

)

(2)

where Zp is the number of base stations for which both mj,i and

vk,i are negative. This is very similar to the previously proposed cost

functions defined as the distance between RSSI vectors, as in [3] and

[11], except the weighting factor as a function of the variance, giving

less weight to the observation with high variance.

The sampling period τ , the segment length L, the road, and traffic

conditions on the road affect the values of both the transition and

emission probabilities, but the algorithm works as long as the same

τ and L values, the same road, and the same traffic conditions are used

in both the training and tracking phases.

B. Tracking Phase

During the tracking phase, the mobile phone only sends the RSSI

vector information to the central server so that the server identifies

the most likely sequence of the road segments traveled by the user,

i.e., states Q = (q1, q2, . . . , qT ), given the sequence of the observed

RSSI vectors, i.e., observations O = (O1, O2, . . . , OT ), where T is

the number of observations. Since the parameters of the HMM are

estimated during the training phase, the Viterbi algorithm is used to

estimate the most likely sequence of the road segments [17].

V. PERFORMANCE EVALUATION

A. Localization Error Comparison at Different Traffic Conditions

in Different Locations

Figs. 4 and 5 compare the accuracy of the proposed HMM-based

technique using the statistics of the driver and RSSI measurements

at each road segment, which is denoted S-HMM, with the previously

proposed HMM technique called Ctrack [11] for urban and suburban

roads, respectively. Ctrack is actually developed as a two-pass HMM,

which first determines a sequence of grid cells corresponding to an

input sequence of GSM fingerprints and then matches the grid cells to

a road. The cost of the observed RSSI vector is a weighted function

of the Euclidean distance and the number of matching base stations

between the observed vector and each RSSI vector in the training

database. Ctrack assumes uniform transition probability from the

current grid cell to each of the adjacent cells and is adapted here for the

localization on the road. We observe that the median localization error

for Ctrack is very large for small and large segment lengths, whereas

S-HMM has a stable localization error due to the inclusion of the driver

and RSSI statistics. Moreover, the median error of S-HMM is smaller

than that of Ctrack for all segment lengths.

Fig. 6 shows the cumulative distribution function (cdf) of the local-

ization error on the suburban road in Berkeley, CA, USA, for S-HMM,
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Fig. 4. Comparison of the median error of the proposed S-HMM algorithm
with the previously proposed HMM technique called Ctrack at low-, medium-,
and high-traffic conditions for the urban road.

Fig. 5. Comparison of the median error of the proposed S-HMM algorithm
with the previously proposed HMM technique called Ctrack for the suburban
roads in different locations: Istanbul, Turkey, Berkeley, CA, USA, and New
Delhi, India.

Ctrack, and a deterministic algorithm called K-nearest neighbor

(KNN) [18]. In the KNN algorithm, all the collected RSSI vectors and

the corresponding GPS locations are stored during the training phase.

During the tracking phase, the received RSSI vector at an unknown

location is compared with all the RSSI vectors stored in the database,

and its location is estimated as the average of the GPS locations of the

K-closest RSSI vectors in terms of Euclidean distance. We observe

that the localization error for S-HMM is always to the left of the

Ctrack and KNN algorithms for all the segment lengths. The cdf of the

localization error for the urban road and suburban roads in Istanbul,

Turkey, and in New Delhi, India exhibits a similar behavior.

B. Effect of Including Driver and RSSI Statistics

Fig. 7 shows the effect of including the driver and RSSI statistics

on the localization error by comparing the performance of S-HMM

to variations of S-HMM, including different transition probabilities

and different cost functions for the urban road at medium traffic in

Istanbul, Turkey. Since the behavior is similar for the other traffic

conditions and locations, we did not include separate graphs for them.

S-HMM uses driver and RSSI statistics to determine the transition

probability matrix and emission probability of the HMM, respectively.

“S-HMM w/ Ctrack cost” and “S-HMM w/ Manhattan cost” use

Fig. 6. CDF of the localization error of S-HMM, Ctrack, and KNN algorithms
for the suburban road in Berkeley, CA, USA.

Fig. 7. Analysis of the effect of including the driver and RSSI statistics on the
localization error for the urban road at medium traffic.

driver statistics to determine the transition probability matrix but use

the Ctrack cost function and the Manhattan cost for emission score,

respectively. The Manhattan cost of the observed RSSI vector is

defined as the Manhattan distance between the observed vector and

each RSSI vector in the training database [8]. “S-HMM w/ equal

trans.prob.,” on the other hand, uses RSSI statistics to determine the

emission probability but uses uniform transition probability to the

adjacent segments. We observe that the Ctrack cost performs worst

as the segment length increases, whereas the Manhattan cost is more

stable but still performs worse than S-HMM. The cost function is

the main reason for the increase in the localization error of Ctrack

as the segment length increases. When we compare S-HMM with

“S-HMM w/ equal trans.prob.,” we see that the assumption of uniform

distribution for the transition probability is the main reason for the

steep increase in the localization error of Ctrack as the segment length

decreases. However, interestingly, the localization error of “S-HMM

w/ equal trans.prob.” is smaller than that of S-HMM when the segment

length is above 40 m. The main reason is that our implicit assumption

of memoryless transitions between road segments in determining the

statistics of the driver’s behavior loses validity as the segment length

increases. As the segment length increases, we may need to include the

state duration density in the HMM [19].
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C. Energy Consumption Comparison

The cell phone is expected to operate in the tracking phase after

a short training period. The training can be also done by using some

voluntary mobile phones only. Since cell phones continuously track

base stations as part of their normal operation, the marginal energy cost

of the tracking phase is driven by the CPU load to process base station

signatures and to send this information to the central server. Processing

a cell tower signature might require at most 100 000 instructions,

which costs at most 30 µJ on an ARM Cortex-A8 processor. The

energy required to send the packets depends on how frequently the data

are uploaded to the central server. A negligible amount of additional

power is consumed if the collected data are compressed using simple

gzip compression and are sent every minute [11]. Acquiring cell-phone

signatures with a period of 2 s therefore results in power consumption

of 15 µW. The power consumption of GPS on the other hand is

measured to be around 400 mW [11], which is several orders larger

than that of the GSM-based localization.

VI. CONCLUSION

In this paper, we have proposed a statistical fingerprinting approach

to position a mobile device that follows any predetermined route

by using RSSI measurements recorded from at most seven cellular

base stations in the course of the normal operation of GSM-based

mobile phones with minimal energy consumption. We incorporate the

route constraint for the motion of the vehicles by using an HMM.

We demonstrate that training the HMM based on the average driver

statistics on the road and the probabilistic distribution of the RSSI vec-

tors in each road segment considerably improves the accuracy of the

previously proposed HMM-based techniques and provides localization

performance robust over different segment lengths by using extensive

cellular data collected in Istanbul, Turkey; Berkeley, CA, USA; and

New Delhi, India.
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Energy-Efficient Water-Filling with Order Statistics

Ismael Gomez-Miguelez, Vuk Marojevic, and Antoni Gelonch

Abstract—This paper proposes a methodology based on order statistics

to study the energy-efficient (EE) power allocation for wireless communi-
cation transmitters. Water-filling power allocation maximizes the EE when
transmitting and processing power consumption is considered. Solutions

are typically presented in an iterative form, which complicates analysis
and adaptive implementation. Time-consuming simulations are rather
required to assess their performance. Order statistics allows analyzing
the solution without knowledge of the channel realization. We analytically

show how the EE depends on the system parameters. The computing effi-
ciency of our proposal, which is executing one or two orders of magnitude
faster than the state-of-the-art algorithms with a performance loss of less
than 1 dB, facilitates its applicability in vehicular environments.

Index Terms—Energy efficiency (EE), link adaptation, ordered statis-
tics, water-filling.

I. INTRODUCTION

The energy consumption of wireless communications networks

contributes to the escalation of the greenhouse effect, which has

been recognized as a major threat to environmental protection and

sustainable development. Sophisticated data services and the always-

on concept of battery-operated systems impose significant energy man-

agement challenges. Energy-efficient (EE) transmission architectures

and technologies are therefore needed for mobile terminals and base

stations alike.
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