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ABSTRACT In urban vehicular ad hoc networks (VANETs), the high mobility of vehicles along street roads

poses daunting challenges to routing protocols and has a great impact on network performance. In addition,

the frequent network partition caused by an uneven distribution of vehicles in an urban environment further

places higher requirements on the routing protocols in VANETs. More importantly, the high vehicle density

during the traffic peak hours and a variety of natural obstacles, such as tall buildings, other vehicles

and trees, greatly increase the difficulty of protocol design for high quality communications. Considering

these issues, in this paper, we introduce a novel routing protocol for urban VANETs called RSU-assisted

Q-learning-based Traffic-Aware Routing (QTAR). Combining the advantages of geographic routing with

the static road map information, QTAR learns the road segment traffic information based on the Q-learning

algorithm. In QTAR, a routing path consists of multiple dynamically selected high reliability connection

road segments that enable packets to reach their destination effectively. For packet forwarding within a road

segment, distributedV2VQ-learning (Q-learning occurs between vehicles) integratedwith QGGF (Q-greedy

geographical forwarding) is adopted to reduce delivery delay and the effect of fast vehicle movements on

path sensitivity, while distributed R2R Q-learning (Q-learning occurs between RSU units) is designed for

packet forwarding at each intermediate intersection. In the case of a local optimum occurring in QGGF,

SCF (store-carry-forward) is used to reduce the possibility of packet loss. Detailed simulation experimental

results demonstrate that QTAR outperforms the existing traffic-aware routing protocols, in terms of 7.9% and

16.38% higher average packet delivery ratios than those of reliable traffic-aware routing (RTAR) and greedy

traffic-aware routing (GyTAR) in high vehicular density scenarios and 30.96% and 46.19% lower average

end-to-end delays with respect to RTAR and GyTAR in low vehicular density scenarios, respectively.

INDEX TERMS Mobile ad hoc networks (MANETs), vehicular ad hoc networks (VANETs), adaptive

routing, reinforcement learning, Q-learning.

I. INTRODUCTION

With the rapid development of wireless communication tech-

nology, vehicular ad hoc networks (VANETs) have emerged

as one of the most prospective solutions to enhance road

traffic efficiency and decrease road traffic accidents in an

intelligent transportation system (ITS). In addition, the sig-

nificant progress in wireless communications technology

and widespread use of mobile electronic terminal equip-

ment have migrated VANETs from the realm of theory to a
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practical technology. However, message transmission in

VANETs faces difficult challenges such as frequent changes

of the network topology, intermittent connection, and nonuni-

formity of vehicle density [1]. These new challenges may

greatly affect the experience of VANET-based applications

that have a wide variety of quality of service (QoS) require-

ments such as low delay and high accessibility.

A considerable number of traditional routing protocols

designed for MANETs have been proposed, among which

previous studies have shown that they are not suitable for the

VANETs environment. In addition, some conventional geo-

graphical routing protocols [2]–[4] are considered promising

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 5733

https://orcid.org/0000-0003-3266-2554
https://orcid.org/0000-0001-6428-0345
https://orcid.org/0000-0003-3827-6910
https://orcid.org/0000-0003-4865-3441
https://orcid.org/0000-0002-4618-0698


J. Wu et al.: RSU-Assisted Traffic-Aware Routing Based on Reinforcement Learning for Urban Vanets

approaches to forward packets in dynamic network environ-

ment. Despite routing simplicity and scalability, geographical

greedy forwarding is still unable to achieve better perfor-

mance in urban VANETs. Furthermore, the recovery strate-

gies, such as perimeter forwarding, are also shown to be

ineffective in urban VANETs due to the limits of the radio

range, tall building obstacles and high vehicle mobility. More

importantly, conventional geographical routing protocols do

not take into account the real-time road traffic information

which can help predict the occurrence of a local optimum and

avoid unnecessary entry into the unreachable next forwarder.

To overcome the limitations of conventional geographi-

cal routing, a variety of traffic-aware routing protocols [5]

have been proposed to improve the routing adaptability to

urban VANETs. Unfortunately, many of the existing traffic-

aware routing protocols select the next forwarder based on

the greedy method both within road segments and in the

intersection areas, neglecting the road structure and therefore

obtaining lower routing performance. In addition, vehicles

passing through intersections often change their speed and

direction unexpectedly, which leads to high mobility and

further results in poor forwarding performance. For this rea-

son, a number of intersection-based traffic-aware routing

protocols [6]–[11] have been proposed to make forward-

ing decisions at intersections. Nevertheless, these protocols

strongly rely on accurate location information especially in

the intersection areas. Therefore, a novel high mobility adap-

tive traffic-aware routing protocol suitable for urbanVANETs

based on the Q-learning algorithm is proposed, in which a

routing path consisting of a succession of road segments

and intersections is learned with high connection reliability

and low average end-to-end delay in dense and sparse traffic

cases, respectively. Combining the advantage of Q-learning-

based geographic routing with the information of the static

topology of road networks, the real-time road traffic infor-

mation between two adjacent intersections is dynamically

learned.

Reinforcement learning is increasingly being applied to

solve dynamic routing problems [10]. The Q-learning [12]

algorithm is one of the most common algorithms of reinforce-

ment learning [13], which achieves optimal decisions through

interaction with the environment without prior knowledge of

the environment model. Through frequent exploration of the

environment, the agents will continually attain and update the

mapping from a set of environment states to a set of actions

available in these states. In VANETs, the entire VANETs can

be modeled as the environment. Each vehicle and packet in

the VANETs can be regarded as a state and an agent, respec-

tively. The packet forwarding process can be considered as

the interaction between the agent and the environment. Each

packet exchange, whether routing control packet or applica-

tion data packet, means the learning of the newest state of the

network.

The remainder of this paper is organized as fol-

lows. Section II presents an overview of the related

works. Section III introduces the problem background and

motivations of QTAR and is followed by a comprehensive

presentation of QTAR in Section IV. In Section V, we eval-

uate QTAR with a detailed presentation of the simulation

results. Finally, Section VI contains our concluding remarks

and future works.

II. RELATED WORK

Traffic-aware routing is considered to be the most promis-

ing forwarding strategy in the urban VANETs environment.

Many traffic-aware routing protocols have been proposed

that make routing decisions by considering multiple traffic

awareness-related metrics. Anchor-based street-traffic-aware

routing (A-STAR [14]) was proposed based on GSR by

assigning different weights to adjoining streets according to

the probability of keeping vehicular connection within road

streets. However, in the urban environment, only parts of the

streets are for bus routes; thus, it may take a long forwarding

delay for packets to reach their destination due to the lower

density of anchor vehicles. Vehicle-assisted data delivery

(VADD [15]) was proposed for sparse VANETs and aims

to address delay-insensitive applications. However, when the

vehicle density is sparse, the optimal next street may not be

available. Thus, in this case, the packet should be forwarded

through detoured streets. Furthermore, the estimation of the

packet forwarding delay is based on statistical data such as

the vehicle density. Since the vehicle density varies with

time, the least-delay path selected based on the non-real-

time statistical data cannot truly reflect the real situation. The

static node-assisted data-dissemination protocol for vehicular

networks (SADV [16]) was proposed based on VADD, where

static nodes are arranged at intersections to deal with cases in

which vehicle nodes are very sparse. SADV has three mod-

ules, namely, static node-assisted routing (SNAR), link delay

update (LDU) and multi-path data dissemination (MPDD).

Connectivity-aware routing (CAR [17]) was proposed which

adapts the beaconing interval according to the number of one-

hop neighbors of a node. However, the overhead introduced

by the dynamic beaconing mechanism in the high vehicular

density case is considerable.

Improved greedy traffic-aware routing (GyTAR [18]) is a

vehicular traffic-adapted routing protocol designed for urban

VANETs. In GyTAR, the cell data packet (CDP) is used to

collect the real-time vehicular density information between

adjacent intersections. However, the CDP may suffer from

network partition of the inner street, resulting in difficulties

in updating traffic information in a timely manner. This could

lead to further inaccurate calculation of the score for the

neighbor intersections. In addition, the CDP also introduces

excessive extra overhead to the network. Road-based routing

using vehicular traffic (RBVT [19]) was proposed to compute

street-based routing paths by collecting real-time vehicular

traffic information through proactive and reactive strategies,

which is distinct from the traditional strategies adopted in

most of the existing literature. Similar to A-STAR, the spatial

and traffic-aware routing (STAR [20]) protocol was proposed

to collect real-time vehicle traffic information on the street
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and dynamically forward packets with the help of rated

digital maps in a distributed manner. The intersection-based

geographical routing protocol (IGRP [6]) was proposed to

forward packets to the nearest fixed gateway station while

satisfying specific quality of service (QoS) requirements.

Zhang et al. [21] introduced a street-centric opportunistic

routing protocol for urban VANETs combining a novel link

correlation model with street-centric opportunistic routing.

Zhang et al. [22] also proposed a spatial distribution-based

connectivity-aware routing protocol that utilizes the uneven

position distribution of vehicles moving on small-length road

segments.Wu et al. [23] presented a vehicle-to-roadside com-

munication protocol integrated with distributed clustering

based on a coalitional game approach and a route selection

strategy based on reinforcement learning. However, these

protocols cannot take full advantage of combining dynamic

traffic information within road segments with the global

static road topology information to further improve network

performance.

Intersection-based traffic-aware routing (iCar-II [7], [8])

was proposed to enable infotainment applications for urban

VANETs and aims to improve the packet delivery ratio and

reduce the end-to-end delay via LTE networks. However,

iCar-II needs a real-time update of locations and mobility

information at location centers. Furthermore, running the

shortest-path algorithm between two arbitrary vehicles in a

connected weighted graph is impossible since it involves

unlimited unknown intermediate intersections, especially in

large urban VANETs. A street-centric routing protocol based

on the novel concept of microtopology (SRPMT [24]) was

proposed for urban VANETs scenarios. However, the collec-

tion of dynamic characteristics of road segments for building

the packet transfer graph in an MT can easily become invalid,

especially for a long road segment. In [25], the authors

proposed a reliable traffic-aware routing (RTAR) protocol,

which introduces a reliable next-hop selection scheme within

road segments and at intersections through road area reli-

able routing and intersection area reliable routing algorithms,

respectively. However the real-time traffic and network status

measurement (RTNSM) process for adjacent road evaluation

only considers the adjacent road segments and ignores the

segments from the adjacent roads to the destination roads.

In addition, the extra overhead introduced in the different

phases of RTNSM cannot be neglected, especially in the

result announcement phase.

Many routing protocols based on reinforcement learn-

ing have been proposed in recent years [10]. Boyan and

Littman proposed QRouting [26] for a wired network. Dowl-

ing et al. introduced a routing protocol called SAMPLE [27]

for MANETs based on reinforcement learning. Celimuge

WU et al. proposed QLAODV [28] and PFQ-AODV [29] to

address adaptive routing in a highly dynamic network envi-

ronment. However, the learning process is triggered based on

the route discovery process, which cannot sense the dynamic

changes of the network in time and introduces more over-

head. The authors in [11], [30] proposed a Q-learning and

grid-based routing protocol–QGrid. However, QGrid only

focuses on the forwarding issue from the source vehicle to

the fixed destination. In addition, it is difficult to determine

the size of each grid for different network scenarios, and the

greedy selection strategy for intragrid forwarding is ineffi-

cient, especially near or within the intersection areas. More

importantly, the Q-table for intergrid forwarding is learned

offline, which cannot adapt well to the dynamic character-

istics of urban VANETs. To the best of our knowledge, this

is the first work that studies traffic-aware routing based on

reinforcement learning in urban VANETs. Table 1 presents

the summary of routing strategy comparison between related

existing routing protocols and our proposed work from the

context of routing strategy perspective.

III. PROBLEM BACKGROUND AND MOTIVATIONS

Classical topology-based routing protocols [32]–[34]

designed for MANETs depend on the distribution of network

topology information between network nodes and are not

suitable for VANETs due to the frequent topology changes.

Geographic routing (GR) [2]–[4] is a promising alternative

routing paradigm that utilizes only position information.

Unfortunately, many of the existing GR protocols adopt the

greedy forwarding strategy based on vehicle location infor-

mation, which does not fully consider urban road network

information. To overcome the shortcomings of GR, a vari-

ety of intersection-based traffic-aware routing protocols [5]

have been proposed to further improve the adaptability to

highly dynamic traffic conditions. Nevertheless, such traffic-

aware approaches have no reliable next forwarder selection

in urban intersection areas. Some related works [10] based on

Q-learning exist that can learn and adapt to the dynamics

of networks very well. However, Q-learning-based routing

encounters scalability limitations for large highly dynamic

networks because of the slow convergence of the learning

algorithm; therefore, the forwarding decisions cannot keep

up with the road traffic and network topology changes.

To this end, in this paper, we propose a novel RSU-assisted

Q-learning-based Traffic Aware Routing (QTAR) protocol

designed for urban VANETs to enhance the awareness of

road traffic conditions and reduce the impact of the rapid

mobility of vehicles on the network performance by provid-

ing an efficient packet forwarding mechanism for a variety

of applications in scalable urban VANETs. The high-rate but

short-range V2V communications within the road segments

through the V2V channel are guided by low-rate but long-

range R2R communications through the R2R channel. More

specifically, the next forwarding vehicle selection within

the road segments is implemented according to Q-greedy

geographical forwarding based on V2V Q-learning, while

at each intersection, it is completed according to Q-greedy

intersection forwarding based on R2R Q-learning. In the case

of a network fragment, store-carry-forward is adopted. The

main contributions of this paper are as follows:

1) A novel high mobility adaptive traffic-aware routing

protocol suitable for urban VANETs based on the
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TABLE 1. Summary of routing strategy comparison between related existing routing protocols and QTAR.

multilevel Q-learning algorithm is proposed, in which

a routing path consists of a succession of road segments

and intersections are learned with high connection reli-

ability and low average end-to-end delay in dense and

sparse traffic cases, respectively.

2) For packet forwarding within road segments, a novel

distributed V2V Q-learning-based traffic-aware learn-

ing approach is proposed through exchange of V2V

HELLO packets, which underlies the forwarding pro-

cess at dynamic intersections.

3) For packet forwarding at intersections, an RSU-assisted

dynamic adjacent intersection selection strategy based

on distributed R2RQ-learning is proposed to reduce the

possibility of packet loss and the effect of fast vehicle

movements on routing sensitivity.

In the following sections, we first provide an elaborated

description of QTAR and then present comprehensive experi-

mental results compared with other existing related protocols.

IV. THE PROPOSED PROTOCOL

In this section, we first describe the network model and

hypothesis. Then, we present the main functionality of

QTAR, which mainly consists of the following components:

first, deciding the first intersection to which packets are

forwarded from the source vehicle Vs; second, packet for-

warding at each intermediate intersection to the next adjacent

intersection until reaching the last intersection that connects

the road segment on which the destination vehicle Vd is mov-

ing; and finally, packet forwarding within the road segment

from the last intersection to Vd .

A. NETWORK MODEL AND ASSUMPTIONS

We consider the urban road network as a directed graph

G = (V ,E), in which V is the set of intersections and E

is the set of road segments RSij, i, j ∈ V . An RSij begins at

the intersection Ii, ends at Ij and has two lanes in each driving

direction. The routing path in G from Vs to Vd consists of

a sequence of road segments and intersections that connect

these road segments.

In QTAR, we assume that each intersection Ii owns a static

RSU nodeVRSUi to assist packet forwarding. Therefore, in the

context of QTAR, the terms Ii and VRSUi are often used inter-

changeably to represent an intersection or an RSU node that

resides on Ii statically. Each VRSUi provides partial coverage

to road segments, and multihop forwarding is required to

communicate with vehicle nodes that are not in range.

Each Vi knows its real-time position, direction and speed

using a pre-installed GPS device, and vehicles communicate
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with each other or with a radio-in-range RSU node through a

pure V2V wireless channel. Furthermore, each Vi also knows

its entered and upcoming intersection and the coordinates of

each VRSUi in advance. Each Vi also maintains a table where

each neighbor vehicle’s mobility information, such as posi-

tion, direction and velocity, is recorded and updated through

the periodic exchange of V2V HELLO packets. Meanwhile,

each VRSUi knows the real-time entered intersection I
Vd
enter

and corresponding upcoming intersection I
Vd
upcoming of the Vd

through GLS [35], and it communicates with vehicle nodes in

its radio range through a V2V wireless channel and neighbor

RSU nodes through an R2Rwireless channel. Finally, each Vi
maintains only oneV2VQ-table for packet forwardingwithin

the road segment to whichVi belongs, while eachVRSUi stores

a neighbor RSU’s table and two Q-tables, in which one is

a V2V Q-table for road segment traffic-aware forwarding

and the other is an R2R Q-table for dynamic intersection

forwarding.

B. QTAR OVERVIEW

Considering the specific characteristics of urban VANETs,

QTAR is designed to deal with routing issues by combin-

ing the advantages of QGGF within road segments and

Q-learning-based dynamic selection of the intermediate inter-

sections through which packets will pass to reach their desti-

nations. To forward packets effectively from Vs to Vd , QTAR

includes three efficient steps:

1) Packet forwarding from Vs to the first intersection

based onV2VQ-learning through exchange of HELLO

packets between vehicles moving in the same road

segment as Vs;

2) Packet forwarding in each intermediate intersection

based on R2RQ-learning through exchange of HELLO

packets between RSU nodes;

3) Packet forwarding from the last intersection to Vd
based on V2V Q-learning.

Store-carry-forward is adopted to improve the forwarding

reliability in the case of a local optimum to minimize the

possibility of packet loss. Hence, in QTAR, packets can reach

their destinations as fast as possible when there are enough

vehicles providing connection. An example of the packet

forwarding process from Vs to Vd through a routing path

Vs → I2 → I5 → I6 → I9 → Vd is shown in Fig. 1.

As mentioned above, the routing process in QTAR can be

mainly divided into three steps, whereVs→ I2 is the first step

while I2 → I5 → I6 → I9 is the second step and I9 → Vd
is the third step. It is worth noting that at I2, I2→ I5→ I6 is

selected instead of I2 → I3 → I6 as the next forwarding

path. This is because the road segment RS23 is already in

a congested state, and RS25 will have less delay than RS23
because of the channel collisions that occurred in the MAC

layer. At I5, the path I5 → I6 → I9 is selected due to the

shorter time of store-carry-forward caused by the network

partition that occurs from Vi to Vd in Step 3 compared with

FIGURE 1. An example scenario of packet forwarding in QTAR.

that of RS58 from Vj to I8 in Step 2 and then from I8 to Vd in

Step 3.

In the following sections, we first describe in detail the

basic principles underlying the functions of QTAR; then,

we elaborate the main novel packet forwarding mechanisms

of QTAR.

C. ROUTING BASED ON Q-LEARNING

According to Q-learning [13], [29], [36], the unicast routing

problem can be modeled and solved as follows. The entire

VANETs can be considered as the environment in Q-learning.

Each packet can be modeled as an agent, with the neighbors

of Vi or VRSUi as the agent’s available states. Specifically, for

a Vi in V2V Q-learning, the set of its neighbor vehicles can

be mapped to the available actions for Vi to be executed in

the form of forwarding of packets to one of Vi’s neighbors.

For a VRSUi node in R2R Q-learning, the set of neighbor

intersections of VRSUi is the available actions for VRSUi . The

process of packet forwarding can be modeled as the inter-

action process in Q-learning. Therefore, the routing problem

can be intuitively formalized as Eq. (1):

Qc (d, x) ← (1− α)Qc (d, x)

+ α

[

Rewardc,x + γ max Qx (d, y)
y∈N (x)

]

(1)

where for V2V Q-learning,Qc (d, x) is the Q value of current

vehicle node c for destination vehicle node d through one of

c’s neighbor vehicle nodes x. N (x) is the one-hop neighbors

of x. Rewardc,x is the obtained reward of c from the action of

packet forwarding to x. In R2R Q-learning, for current RSU

node VRSUc residing at Ic, c denotes VRSUc , while d and x

denote the destination intersection and one of the neighbor
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intersections of Ic, respectively. α is the learning rate that

determines the Q value update rate in each step. In other

words, it reflects the adaptability ability of the Q-learning

algorithm to the dynamic environment. The larger the value

of α is, the stronger the learning ability, and the more suitable

it is for the environment with severe dynamic characteristics.

However, if α is too high, small fluctuations can cause large

deviations in Q values, which cannot reflect the real state

of the network. If α is too small, Q values cannot keep up

with the change of the network. γ is the discount factor that

determines the importance of multistep Q values. A larger

value of γ means that more future steps are considered.

For scenarios with less dynamics, a larger γ is reasonable,

while for frequently changing scenarios, a smaller γ is more

advisable due to the fast failure of multistep Q values.

D. HELLO PACKET FORMAT FOR V2V AND R2R

Q-LEARNING

In QTAR for V2V Q-learning, each vehicle Vi moving in

a road segment RSij maintains a Q-table reflecting the cur-

rent traffic state of RSij via exchange of HELLO packets.

Each HELLO packet in V2V Q-learning contains the follow-

ing fields: the unique identifier vehicle/RSU ID, the broad-

cast timestamp, the coordinates X and Y , the velocity Vel,

the entered intersection Ienter along with the corresponding

optimal Q value QMAX to reach Ienter through the next hop

vehicle NH , and the upcoming intersection Iupcoming along

with the corresponding optimal Q value QMAX to reach

Iupcoming through the next hop vehicleNH , as shown in Fig. 2.

It is worth noting that each of the HELLO packets broadcast

from an RSU node only includes the RSU ID and timestamp

fields to reduce overheads and collisions in the intersection

area. A vehicle node receiving the HELLO packet will update

the Ienter or Iupcoming Q value according to the driving direc-

tion relative to the RSU node.

FIGURE 2. HELLO packet format for V2V Q-learning.

For R2R Q-learning, each HELLO packet consists of the

fields as depicted in Fig. 3. As shown in Fig. 3, these fields

include the sender RSU ID and the broadcast timestamp,

the total number of QMax items and their corresponding

content. Each QMax item includes three parts: the destination

RSU – Dest RSU – and the corresponding optimal Q value to

reach it through one of its neighbor RSUs – Next RSU.

FIGURE 3. HELLO packet format for R2R Q-learning.

Algorithm 1 Packet FORWARDINGWithin Road Segments

Require:

Pk : A packet that is transmitting in the network.

VRSUi : The RSU node deployed at Ii.

Vi: A vehicle node.

Vs: The source vehicle of Pk .

Vd : The destination vehicle of Pk .

Vc: The current vehicle that is processing Pk .

Ii: An intersection that connects two or more road seg-

ments.

Ix : A set of Ii.

Itemp: The temporary destination intersection of Pk .

N (Vi): The set of neighbor nodes of Vi.

RS(Vi): The road segment on which Vi is moving.

RSU (Vi): The two end-side intersections of RS(Vi) or the

RSU within radio range of Vi .

Upon Vi having a packet Pk to SEND/FORWARD to Vd
1: Vc← Vi;

2: Ix ← RSU (Vc)

3: Itemp← Obtain the temporary destination intersection of

Vc according to Eq. (2);

4: if Vc == Vd then

5: Deliver Pk to the upper layer;

6: else if Vd ∈ N (Vc) then

7: Send Pk directly to Vd ;

8: else if Itemp ∈ N (Vc) then

9: Send Pk directly to Itemp;

10: else

11: Forward Pk to Itemp based on QGGF and SCF;

12: end if

E. V2V Q-LEARNING FORWARDING WITHIN ROAD

SEGMENTS

When the source vehicle Vs has a packet Pk to send or an

intermediate vehicle Vi receives Pk , it forwards Pk to the next

hop based on V2V Q-learning until Pk reaches Itemp or its

final destination vehicle Vd . For the sake of simplicity, here,

we denote Vs or Vi as the current vehicle Vc that is processing

Pk for further forwarding work if needed. Without loss of
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FIGURE 4. An example scenario of V2V Q-learning within RS12.

generality, the current vehicle Vc (corresponding to vehicle

Vp marked in red in Fig. 4) moving within a road segment RSij
(referring to RS12 in Fig. 4) with two end-side intersections

Ii and Ij (referring to I1 and I2 in Fig. 4) will forward its

received packets Pk to the temporary destination intersection

Itemp (referring to I2 for VP in Fig. 4), which is one of the end-

side intersections of RSij. The first intersection in the routing

path, denoted as If = Itemp, is determined as shown in Eq. (2):

Itemp← argmax
Ix

QVc (Ix ,Vn), Vn ∈ N (Vc) (2)

where Ix specifically denotes the I
Vc
enter (referring to I1 for Vp

in Fig. 4) or I
Vc
upcoming (referring to I2 for Vp in Fig. 4). Vn is

one of the neighbors of Vc (referring to V3 or V4 in Fig. 4),

and QVc (Ix ,Vn) indicates the V2V Q-table of Vc (referring

to the V2V Q-table of Vp, shown at the middle bottom of

RS12). For the vehicles moving on the same road segment as

Vc, QGGF or SCF is used until Itemp or Vd is reached.

The pseudocode of the forwarding process within road seg-

ments is given in Algorithm 1. As illustrated in Algorithm 1,

Lines 4-5 mean that packet Pk is successfully forwarded to its

destination Vd . The two lines 6 and 7 indicate that Vd is Vc’s

neighbor. Lines 8 and 9 indicate that Pk has arrived at Itemp.

Lines 10 and 11 indicate that Pk needs to be forwarded to the

temporary destination intersection Itemp.

To better understand the packet forwarding process within

a specific road segment based on V2V Q-learning, Fig. 4

shows an example scenario that includes some local optimum

cases in RS12. As shown in Fig. 4, network partition has

occurred in the V2V routing path from I1 to I2. In this case,

the V2V packet forwarding process within RS12 consists

of two parts: QGGF is employed when the next hop link

exists, and SCF is employed when local optimum is reached.

Take V3 as an example. Its Q-table at the current moment

in Fig. 4 is shown at the middle top of RS12 (indicated

by the red cell in the upper left corner of the Q-table).

From the Q-table of V3, we can see that the next hop to

I2 is VP = argmax
Vn

QV3 (I2,Vn), while that to I1 is Me =

argmax
Vn

QV3 (I1,Vn), as indicated in the last yellow column,

which means that the next hop to I1 from V3 does not exist

according to QGGF, and SCF is adopted in this case. Each

optimal next hop for each intersection is marked in green

in the Q-table cell. When there is a packet at I2 that needs

to be forwarded to I1, V6 is selected, and then, the QGGF

forwarding path (denoted as V6 → V5 → V4 → VP → V3)

is selected based on V2V Q-learning. At V3, the local opti-

mum has occurred, and SCF is adopted to complete the final

forwarding process from V3 to I1.

More generally, for the current vehicle Vc, its Q-table is

initialized to 0 and updated based on the V2V Q-learning

algorithm. When receiving a HELLO packet from Vn ∈

N (Vc), the Q value QVc (Ix ,Vn) is updated as Eq. (3):

QVc (Ix ,Vn)←(1− α)QVc (Ix ,Vn)

+ α

[

RewardVc,Vn+γ ·max QVn(Ix ,Vn′)
Vn′∈N (Vn)

]

(3)

where Ix represents one of the two end-side intersections of

road segment RSij on which Vc is moving, and the instant

reward value RewardVc,Vn is defined as Eq. (4):

RewardVc,Vn

= ω1 · LQVc,Vn + ω2 · LETVc,Vn + ω3 · DelayVc,Vn (4)

in which ω1, ω2 and ω3 are weight factors that satisfy ω1 +

ω2+ω3 = 1 for corresponding parts of LQ (link quality), LET

(link expiration time) andDelay, respectively. It can be found

from Eq. (4) that if the next hop link selected by an action

has good quality, a long survival time and a short delay, then
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the reward is high, and vice versa. ω1, ω2 and ω3 represent

different QoS requirements for different applications. If the

application requires high reliability, the values of ω1 and

ω2 can each be 0.5. If the application is sensitive to delay,

the value of ω3 can be set to 1. If the application requires

good overall performance, the values of ω1, ω2 and ω3 can

each be 0.333. LQVc,Vn denotes the link quality in the form of

the distance between the sender and receiver and is defined

as Eq. (5):

LQVc,Vn = 100 ·

(

1− abs(
dis(Vc,Vn)

R
− κ)

)

(5)

Here, dis(Vc,Vn) means the two-dimensional Euclidean dis-

tance between Vc and Vn. R represents the wireless radio

line-of-sight transmission range. The parameter κ represents

the optimal normalized distance position with respect to R.

The function abs( ) takes the absolute value of its parameter.

LETVc,Vn denotes the link expiration time [37] and is defined

as Eq. (6):

LETVc,Vn

=















100 a = 0, b = 0

min



100,
−(ab+ cd)+

√

(

a2+c2
)

R2−(ad − bc)2

a2 + b2





(6)

where

a = vc cos
(

θvc
)

− vn cos(θvn )

b = xc − xn

c = vc sin
(

θvc
)

− vn sin(θvn )

d = yc − yn

in which vc and vn represent the speeds of Vc and Vn with the

velocity angles of θvc and θvn and the coordinates (xc, yc) and

(xn, yn), respectively. DelayVc,Vn is defined as Eq. (7):

DelayVc,Vn = 100 ·
lp
/

BW +
dis(Vc,Vn)

/

C

trecvVc
− tsendVn

(7)

Here, lp is the HELLO packet length. BW is the link available

bandwidth. C is the electromagnetic radiation propagation

speed. trecvVc
and tsendVn

represent the sending and receiving

timestamp of the HELLO packet at Vc and Vn, respectively.

There are two situations that need to be considered specifi-

cally in V2V Q-learning. One is the local optimum, as shown

in Fig. 4 from V3 and V8 (the cars marked in yellow in Fig. 4)

to I1 and I2, respectively. In this case, the next hop does not

existing and SCF is used. At this point, let Ix denote a virtual

vehicle node Vn in Eq. (3). Obviously, we have LQVc,Ix = 0

and LETVc,Ix = 0 in Eq. (4), and finally the RewardVc,Ix can

be calculated as Eq. (8):

RewardVc,Ix = DelayVc,Ix

= 100 ·

(

1−
dis (Vc, Ix)

L

)

(8)

Algorithm 2 Packet FORWARDING at Intersections

Require:

Pk : A packet that is transmitting in the network.

VRSUi : The RSU node deployed at Ii.

Vd : The destination vehicle of Pk .

Ii: An intersection that connects two or more road seg-

ments.

Ic: The intersection where Pk is processing.

Id : The destination intersection of Vd for Pk .

Ix : A set of Ii.

Itemp: The temporary destination intersection of Pk .

N (Vi): The set of neighbor nodes of Vi.

RS(Vi): The road segment on which Vi is moving.

RSU (Vi): The two end-side intersections of RS(Vi) or the

RSU within radio range of Vi.

Upon VRSUi receiving a packet Pk
1: Ic← VRSUi ;

2: if Vd ∈ N (Ic) then

3: Send Pk directly to Vd ;

4: else

5: Ix ← RSU (Vd )

6: Id ← Obtain the destination intersection according to

Eq. (10);

7: if Id == Ic then

8: Itemp← {Ii| Ii 6= Id , Ii ∈ Ix}

9: else

10: Itemp ← Select the next intersection according to

Eq. (9);

11: end if

12: Forward Pk to Itemp based on V2V Q-learning;

13: end if

where L represents the length of RSij. The other situation

involves those vehicles that are within the coverage of the

RSU node, such as V1 and V7 in I1 and V5 and V6 in I2. In this

circumstance, Eq. (3) is optimized by setting α = 1 to boost

the convergence of the V2V Q-learning algorithm.

F. R2R Q-LEARNING FORWARDING AT INTERSECTIONS

R2R Q-learning is adopted for each intermediate temporary

destination intersection Itemp selection except for If , which is

selected as described in section IV-E. Each Itemp is dynami-

cally selected if needed based on Eq. (9):

Itemp← argmax
In

QIc (Id , In), In ∈ N (Ic) (9)

where

Id ← argmax
Ix

QIc (Ix , In) (10)

in which Ix ∈
[

I
Vd
upcoming, I

Vd
enter

]

and Ic is the current intersec-

tion where the packets are processing and will be forwarded

to one neighbor intersection of Ic. When receiving a HELLO
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FIGURE 5. An example scenario of R2R Q-learning.

packet from In, Ic updates QIc (IVd , In) as Eq. (11):

QIc(Id , In)←(1−α)QIc (Id , In)

+ α

{

RewardIc,In+γ ·max QIn(Id , In′)
In′∈N (In)

}

(11)

in which RewardIc,In is defined as Eq.(12):

RewardIc,In =

{

maxQVn (In,Vn′ ), In = Ix

0, otherwise
(12)

Here, Vn ∈ N (Ic) ,Vn′ ∈ N (Vn).

The pseudocode of the forwarding process at each interme-

diate intersection is given in Algorithm 2. Lines 2-3 indicate

that Vd is within the coverage of Ic. Lines 4-13 represent the

forwarding process based on R2R Q-learning. In this case,

lines 5-6 obtain the destination intersection Id of Pk , while

lines 7-11 select the next hop intersection, denoted as Itemp,

from the adjacent intersections of Ic according to the R2R

Q-table of Ic in the row indexed by Id . The last step is to

forward Pk to Itemp, as indicated in line 12.

Fig. 5 shows an example scenario of R2R Q-learning.

In Fig. 5, we assume that the source vehicle Vs located in the

west road segment of I1 and the destination vehicleVd located

in the north road segment of I4. For brevity, we focus only

on the packet forwarding process from the assumed source

intersection I1 (marked as a green RSU node) to the assumed

destination intersection I4 (marked as a red RSU node). The

main goal of R2R Q-learning is to choose the optimal next

adjacent intersection (which denotes the intersection with the

maximum Q value) to the destination intersection. As shown

in Fig. 5, there are two paths from I1 to I4 (denoted as I1 →

I2 → I4 and I1 → I3 → I4), and when a packet Pk arrives

at intersection I1, I1 compares the Q values (QI1 (I4, I2) and

QI1 (I4, I3)) at row I4 in its R2R Q-table, where QI1 (I4, I2)

and QI1 (I4, I3) are learned and updated from those of I2
and I3 (denoted QI2 (I4, I4) and QI3 (I4, I4)) through the

R2R links I1 ↔ I2 and I1 ↔ I3, respectively, which are

marked by directional arc lines as shown in Fig. 5. Obviously,

QI2 (I4, I4) andQI3 (I4, I4) are learned and updated by I2 and

I3 through V2V Q-learning in RS24 and RS34, respectively.

More specifically, for I2, QI2 (I4, I4) is updated based on the

Q value QV3 (I4, V4) from one of its neighbor vehicles V3,

while for I3, QI3 (I4, I4) is updated based on the Q value

QV1 (I4, V2) from its neighbor vehicle V1.

V. EXPERIMENTAL RESULTS

In this section, we present simulation-based evaluation results

of QTAR. The performance of QTAR is compared with
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those of existing protocols such as GPSR [2], LAR [31],

GyTAR [18], iCar-II [7], [8] and RTAR [25]. GPSR and

LAR are the classic position-based ad hoc routing protocols

commonly employed as performance benchmarks. GyTAR,

iCar-II and RTAR are intersection-based traffic aware routing

protocols designed for urban VANETs. iCar-II is the closest

to our work and is modified to have the same network infras-

tructure hierarchy as QTAR for a fair comparison. Therefore,

the LTE eNBs in iCar-II are ignored, while the location cen-

ters are replaced by the corresponding mobility-related APIs

provided in QualNet [38] to obtain the real-time coordination

of all vehicle nodes. We choose QualNet as our network per-

formance simulation platform and VanetMobiSim [39], [40]

as the urban traffic generator, for which the first 1000s of

output of the mobility trace were ignored to reflect real

movements of vehicles.

The performance of QTAR and the corresponding com-

parative protocols are evaluated based on the commonly

used metrics of Average Packet Delivery Ratio (APDR) and

Average End-to-End Delay (AEED). In addition, we have

conducted a comprehensive performance evaluation through

multiple group experiments to study the impact of different

parameters on these protocols. In each group experiment, all

of the vehicle’s movements are randomly generated through

VanetMobiSim. Each of the data points presented is the aver-

age value of five experiments, with error bars indicating the

95% confidence interval. In the following, we first present

simulation settings and then analyze the simulation results.

A. SIMULATION SETTINGS

The simulation urban environment scenario map is config-

ured as in [8], the vehicles’ mobility traces are generated

FIGURE 6. The simulation map of the urban VANET environment.

with VanetMobiSim, but only 4-lane roads remain, as shown

in Fig. 6.

The initial location and destination of each vehicle is ran-

domly selected, and the vehicle speed is uniformly set within

the maximum allowable velocity. The data traffic patterns are

generated by 20 randomly selected CBRflows. TheMAC and

PHY layer are configured according to the WAVE (wireless

access in vehicular environments) protocol [41]. The other

key simulation parameters are summarized in Table 2.

TABLE 2. Simulation parameters.

B. PERFORMANCE FOR VARYING α AND γ

In this section, we evaluated the performance sensitivity of

the learning rate α and discount factor γ to obtain a good

trade-off between them. We varied α and γ from 0.1 to 1 at a

step size of 0.1 while fixing κ at 0.7. We also set the number

of vehicles to 300, themaximum allowable velocity to 10m/s,

the number of CBR connections to 20, and the data generation

interval to 1 s.

Fig. 7 shows the correlation between α and γ values and

the QTAR routing performance. FromFig. 7a, we can observe

that the APDR increases when α and γ increase from 0.1 to

0.8 and from 0.1 to 0.9, respectively, and then decreases as

α and γ further increase to 1. This is expected because a

suitable value of α can not only ensure the learning awareness

of the dynamic characteristics of the urban VANETs but also

achieve resistance to some local small fluctuations that can

result in learning Q values with large deviations. It is worth

noting that for γ = 1, the APDR drops drastically regardless

of the value of α. This is because the largest value of γ = 1

denotes that future steps is considered equally and many

redundant loops are learned.

Fig. 7b shows the trend of theAEEDofQTARwith varying

α and γ from 0.1 to 1.0. From Fig. 7b, we can see that the
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FIGURE 7. The effect of α and γ on the performance of QTAR. (a) Average packet delivery ratio. (b) Average end-to-end delay.

FIGURE 8. The effect of parameter κ on the performance of QTAR. (a) Average packet delivery ratio. (b) Average end-to-end delay.

AEED increases as α and γ increase in most cases. Moreover,

it is interesting that APDR begins to decrease but AEED

begins to increase when α increases from 0.8 to 1.0. This is

because the unique characteristics of urban VANETs, such as

tall concrete buildings, various trees, and vehicles of different

sizes, further increase the uncertainty of learning, and a high

value of α will result in a drastic change in the learning

process that will further increase the likelihood of network

loops occurring.

C. PERFORMANCE FOR VARYING κ

In this section, we evaluated the effect of parameter κ on the

performance of QTAR. We varied κ from 0.1 to 1 at a step

size of 0.1 while fixing α and γ to 0.8 and 0.9, respectively.

We also set the number of vehicles to 300, the maximum

allowable velocity to 10 m/s, the number of CBR connections

to 20, and the data generation interval to 1. Fig. 8 depicts the

trend of the QTAR routing performance with variation of the

parameter κ from 0.1 to 1.0.

Fig. 8a shows the variation of APDR with κ . From Fig. 8a,

we can see that the APDR increases in most cases as κ

increases from 0.1 to 0.7. This is because the larger the

value of κ is, the longer the optimal reward distance while

the stability of the link can still be guaranteed. However,

the APDR decreases to a minimum value as κ increases from

0.7 to 1.0. This means that the optimal reward distance has

an increasingly significant impact on the APDR as κ varies

from 0.7 to 1.0. When κ = 1, the optimal reward distance
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FIGURE 9. Performance of QTAR, RTAR, iCar-II, GyTAR, GPSR and LAR as the number of vehicles is varied from 50 to 500. (a) Average packet delivery ratio.
(b) Average end-to-end delay.

is equal to the wireless communication range R, and the

learned optimal next hop always preferentially selects the

node whose distance is close to R, which will result in lower

link reliability. Furthermore, κ = 0.7 improves the APDR by

19.5% (as shown in Fig. 8a) and reduces the AEED by 3.3%

(as shown in Fig. 8b) compared with κ = 1. Therefore, we set

κ to 0.7 in the subsequent experiments.

D. PERFORMANCE FOR VARYING DENSITY OF VEHICLES

To study the performance of the proposed QTAR and corre-

sponding compared protocols under different node densities,

in this section, we vary the number of vehicles in the network

from 50 to 500 at a step size of 50. We also randomly select

20 CBR flows with the data generation interval of 1 s and the

maximum allowable velocity fixed to 20 m/s, while α, γ and

κ are set to 0.8, 0.9 and 0.7, respectively.

Fig. 9 demonstrates the performances of each routing pro-

tocol for the different densities of vehicles. Fig. 9a shows

the APDR performance of each protocol as the number of

vehicles is varied from 50 to 500. From Fig. 9a, it can be

observed that the trend of the APDR of all five protocols

increases in a zigzag manner as the number of vehicles

increases from 50 to 450 and decreases as the number of

vehicles increases from 450 to 500. This can be interpreted

by the fact that the probability of the network connectivity

increases with increasing number of vehicles, and the zigzag

change is mainly caused by the complicated channel environ-

ment at the intersections in urban VANETs. In more detail,

however, the APDR begins to decrease when the vehicle

density is sufficiently high (450 or more). This is because

the higher the vehicle density is, the higher the probability

that a packet collision occurs in the MAC layer. In general,

QTAR has a higher APDR than the other four protocols in

all situations. The reason is that SCF is adopted to reduce

the possibility of packet loss in the sparse vehicle density

case, while QGGF is adopted in the high vehicle density

case. In addition, QTAR achieves better performance in terms

of APDR than that achieved by RTAR, especially in low

and high vehicular density cases. This is due to the full

consideration of the road traffic for each road segment in

the path in QTAR. Furthermore, the RSU nodes deployed

at each intersection can stably learn and distribute the traffic

flow information of each road segment throughV2V andR2R

Q-learning, respectively. LAR and GPSR have the lowest

APDR in most cases. This is because the local area flooding

used by LAR cannot find an optimal path whether the vehicle

density is sparse or dense, while GPSR only depends on

the location information of the destination and its one-hop

neighbors to find the path, which very easily falls into a local

optimum, especially in the environment of urban VANETs.

Overall, QTAR improves the APDR by 7.9%, 10.74% and

16.38% compared with that of RTAR, iCar-II and GyTAR,

respectively.

Fig. 9b depicts the AEED performance of each protocol as

the number of vehicles is varied from 50 to 500. From Fig. 9b,

it can be observed that LAR has the highest AEED in all cases

compared with the others because of the increasing degree of

collisions and the consequent number of re-transmissions of

the MAC layer incurred by the local flooding route discovery

mechanism. Furthermore, the AEED of the LAR protocol

also varies severely as the vehicle density increases. This

is attributed to the instability of the channel condition in

complex urban VANETs and the rapid fading of the signals
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FIGURE 10. Performance of QTAR, RTAR, iCar-II, GyTAR, GPSR and LAR for varying maximum allowable velocity from 5 m/s to 35 m/s. (a) Average packet
delivery ratio. (b) Average end-to-end delay.

caused by tall buildings, as well as the rapid movement of

vehicles, which leads to high latency and a low delivery

rate of the LAR protocol. GPSR achieves the lowest AEED

at the expense of the lowest PDR because of the frequent

occurrence of local optima. Regarding iCar-II and GyTAR,

they have a much lower AEED than LAR in all cases. This

is because packets are forwarded through intersections one

by one and are dynamically selected according to the real-

time traffic information on each adjacent road. In more detail,

iCar-II has lower AEED than GyTAR in most configurations.

This is due to the minimum one-hop transmission delay

record in the CP packet of iCar-II, while only roads with

higher vehicle density are preferred in GyTAR. Furthermore,

RTAR achieves lower AEED in low and medium vehicular

density cases than that of iCar-II because of the reliable

next-hop selection scheme in the road and intersection area

reliable routing. In general, QTAR achieves 30.96%, 34.78%

and 46.19% lower AEED with respect to RTAR, iCar-II and

GyTAR, respectively. This is mainly because QTAR not only

considers the road segment forwarding delay when selecting

the next hop adjacent intersection but also considers the delay

from the next hop intersection to the destination intersection

that the destination vehicle has just entered or is upcoming to

through the R2R learning process.

E. PERFORMANCE FOR VARYING MAXIMUM ALLOWABLE

VELOCITY

In this section, to evaluate the performance under different

degrees of vehicle mobility, we vary the maximum allowable

velocity from 5 to 35 m/s at a step size of 5 m/s while

fixing the number of vehicles to 300, the number of CBR

connections to 20, and the data generation interval to 1 s. α,

γ and κ are set to 0.8, 0.9 and 0.7, respectively.

Fig. 10 demonstrates the performances of each protocol

for varying MAV (maximum allowable velocity) from 5 m/s

to 35 m/s. As shown in Fig. 10a, the APDR decreases

as the MAV increases in most configurations for all six

protocols. This is because an increase of the MAV will

causes frequent network topology changes and increased

instability of wireless link connections. In more detail, QTAR

shows the best APDR performance, while LAR achieves the

worst. The reason is that the R2R learning-based dynamic

intersection forwarding strategy and V2V learning-based

road segment forwarding in QTAR can effectively allevi-

ate the impact of vehicle mobility on the APDR perfor-

mance, while local flooding with poor mobility adaptability

is the main cause of the lowest APDR performance of LAR.

Moreover, RTAR shows slightly higher APDR than that of

iCar-II in the high mobility case. This is mainly because

RTAR selects the next forwarder based on multiple improved

criteria and utilizes the traffic and network status measure-

ment scheme for adjacent roads. Furthermore, iCar-II shows

higher APDR than GyTAR and GPSR, especially when the

MAV is less than 20 m/s. This is because iCar-II has global

network connectivity awareness, while GyTAR and GPSR

are not acutely aware of the full connected path. In gen-

eral, QTAR improves the APDR by 7.92%, 14.44% and

24.24% compared with that of RTAR, iCar-II and GyTAR,

respectively.

Fig. 10b depicts the AEED performance of each protocol

for varyingMAV from 5 m/s to 35 m/s. As shown in Fig. 10b,

the AEED of each protocol basically remains constant as the

MAV increases except for that of GyTAR. This is because
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FIGURE 11. Performance of QTAR, RTAR, iCar-II, GyTAR, GPSR and LAR for varying CBR packet transmission interval from 0.1 s to 10 s. (a) Average packet
delivery ratio. (b) Average end-to-end delay.

GyTAR cannot obtain the vehicle density information in time

through the generation of CDP messages when the MAV

exceeds 15 m/s, which will further lead to the possibility

of adopting the storage-carry-forward strategy, and hence,

the AEED of GyTAR increases with increasing MAV in the

case of high-speed mobility. It is worth noting that GPSR

shows the lowest AEED at the expense of a lower APDR

because of the local optimum due to the frequency void

occurrence in the complicated urban VANET environment.

Furthermore, LAR has the highest AEED but still has the

lowest APDR, as shown in Fig. 10a, because of the inefficient

flood-based broadcast strategy. In more detail, in the case

of low mobility, QTAR shows lower AEED than that of

GyTAR in high mobility cases and slightly lower AEED than

that of RTAR in high mobility cases. This is because the

V2V learning algorithm deployed within each road segment

can obtain the traffic information in a more timely manner

compared with the generation of CP messages of RTAR and

CDP messages of GyTAR while considering the experienced

transmission delay in both the V2V and R2R learning pro-

cesses. However, in the case of high mobility, the routing

loop is still not completely avoided, which is why the delay of

QTAR is slightly increased. On average, QTAR reduces the

AEED by 4.22%, 18.68% and 45.94% compared with that of

iCar-II, RTAR and GyTAR, respectively.

F. PERFORMANCE FOR VARYING CBR PACKET SEND

INTERVAL

In this section, to evaluate the performance under different

network payloads, we vary the data generation interval from

0.1 s to 10 s while fixing the number of vehicles to 300,

the number of CBR flows to 20, and the maximum allowable

velocity to 20 m/s. α, γ and κ are set to 0.8, 0.9 and 0.7,

respectively.

Fig. 11 demonstrates the performance of each protocol for

the different CBR transmission intervals. Fig. 11a shows the

APDR performance of each protocol for varying CBR packet

transmission interval from 0.1 s to 10 s. From Fig. 11a, we can

see that the APDR of QTAR, RTAR and GyTAR increases

as the data traffic load increases (the shorter the packet

transmission interval is, the higher the data traffic load).

This is because the packet delivery efficiency is improved

with the increased data traffic loads. Moreover, the APDR

of iCar-II increases and then decreases while that of RTAR

remains almost constant (when the data transmission interval

is less than 0.4 s) as the data traffic load increases. This

is mainly because a large number of CP and CBR pack-

ets gradually cause channel congestion. On the other hand,

the APDR of GPSR remains almost the same as the data traf-

fic increases, while, unlike the other five protocols, the LAR

APDR decreases as the data traffic load increases. This is

expected because the frequency of route discovery based

on flooding increases as the frequency of data transmission

increases. In more detail, QTAR has a higher APDR than that

of the other four protocols in all configurations. The reason

is that the LET (link expired time) is considered while the

R2R and V2V learning strategies jointly alleviate the effects

of vehicle mobility on the APDR performance. In summary,

QTAR improves the APDR by 9.85%, 12.8% and 21.14%

compared with that of RTAR, iCar-II and GyTAR, respec-

tively.

Fig. 11b shows the AEED performance of each protocol

for varying CBR packet transmission interval from 0.1 s

to 10 s. Since the delay of LAR is too different from the

other five protocols, we considered the double Y-axis scale to
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more clearly distinguish the AEED difference between them.

LAR uses the Y-axis scale on the right, while the others the

one on the left. From Fig. 11b, we can see that the AEED

of LAR, GyTAR, iCar-II and RTAR increases as the data

traffic load decreases (the shorter the packet transmission

interval is, the higher the data traffic load). For LAR, this

is because the longer the interval is, the more times route

discovery is required, which increases the latency of the

packet. For RTAR, GyTAR and iCar-II, this can be explained

by the fact that most of the data packets are transmitted to

their destination with a relatively low delay in the high data

traffic load case in contrast to most of the packets having a

relatively high delay in the low data traffic load case because

of the contention of the MAC layer. The AEED of GPSR and

QTAR remains the same in all configurations because routing

information is updated by periodically broadcasting HELLO

packets, and therefore, they are independent of data traffic

conditions. In particular, QTAR achieves lower AEED than

that of RTAR, GyTAR and iCar-II, especially in low data traf-

fic load cases. This is because the road traffic learning process

in QTAR is more adaptable to the dynamic urban environ-

ment. In more detail, QTAR integrates the traffic information

into Q values by combining the V2V learning strategy within

the road segments and the R2R learning strategy between

the intersections, while iCar-II and GyTAR only consider the

adjacent road segment traffic. In summary, QTAR reduces the

AEED by 28.54%, 29.41% and 50.25% compared with that

of RTAR, iCar-II and GyTAR, respectively.

VI. CONCLUSION AND FUTURE WORK

We have proposed a novel RSU-assisted Q-learning-based

Traffic-Aware Routing (QTAR) protocol that improves the

urban VANETs comprehensive routing performance through

optimized Q-greedy geographical forwarding based on V2V

Q-learning within the road segments and intersection for-

warding based on R2R Q-learning. Simulation evaluation

results have demonstrated that QTAR outperforms other

existing related routing protocols in terms of a higher packet

delivery ratio in sparse and dense traffic cases and a reduced

packet delivery delay, with a negligible communication over-

head in moderate traffic cases.

To further refine QTAR, our future work will mainly

focus on the following aspects. First, an in-depth analysis of

some key protocol parameters for adaption to more complex

VANETs scenarios will be considered. Second, dynamically

selecting anchor vehicle nodes at each intersection to remove

the dependence on RSUs for packet forwarding at intersec-

tions can also be considered. Finally, in order to better adapt to

the inconsistency of the length of the road segments in urban

VANETs, we will consider merging multiple shorter and nar-

rower road segments and deploying RSU nodes only at cer-

tain critical intersections for these crowded roads. At the same

time, for long-length and spacious road segments, we will

consider splitting these long and wide road segments into

multiple shorter ones to adapt to the rapidly changing cases

when traffic is sparse and the congestion cases when traffic

is dense.
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