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RSVP: A NEW RESOURCE RESERVATION PROTOCOL 
Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala 

Originally published i n  

IEEE Network Magazine 

September zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 9 9 3  - Volume 7, Number 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
he origin of the RSVP protocol can be traced 
back  t o  1991, when a team of ne twork  
researchers, including myself, started playing 
with a number  of packet  schedul ing algo- 
rithms on the DARTNET (DARPA Testbed 

NETwork) ,  a network testbed made of open source, 
workstat ion-based routers.  Because scheduling algo- 
rithms simply shuffle packet processing orders accord- 
ing to some established rates or priorities for different 
data flows, to test a scheduling algorithm requires set- 
t ing up  the  appropr ia te contro l  s ta te  a t  each rou te r  
along the data flow paths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI was challenged to design a 
set -up protocol  that  could suppor t  both unicast and  
many-to-many multicast applications. That effort led to 
the birth of RSVP. 

As a signaling protocol designed specifically to run over 
IP, RSVP distinguishes itself from previous signaling pro- 
tocols in several fundamental ways. The most profound 
ones include a soft-state approach, two-way signaling mes- 
sage exchanges, receiver-based resource reservation, and 
being independent from all other related components in a 
QOS support  architecture, such as flow-specification, 
admission control, scheduling algorithm, and routing. As 
stated in the article, “RSVP is primarily a vehicle used by 
applications to communicate their requirements to the net- 
work in a robust and efficient way, independent of the spe- 
cific requirements.” 

It has been more than 10 years since the original idea 

was first conceived. Over this time period many people 
contributed to the effort that has evolved RSVP from a lab 
toy to a Proposed Internet Standard Protocol. Other more 
recent protocol developments, such as MPLS (Multi-Pro- 
tocol Label Switching), VPN (Virtual Private Network), 
and OTN (Optical Transport Network), to name a few, 
have adopted or considered RSVP for their own signaling 
use. I was stunned by RSVP’s rapid adoption and develop- 
ment of usage. The protocol has moved on with a life of its 
own. I have learned many lessons from observing which 
features in the original design worked and which didn’t. 
Among these lessons, I noticed that the proposal of sup- 
porting flexible resource reservations by individual users is 
yet to prove useful, and that the decision to make RSVP a 
generic messenger, which simply carries “a bag of bits” to 
pass to routers along the way, has proven to be a right one, 
which promoted the adoption of RSVP for various purpos- 
es other than QOS support. 

The effort that started RSVP design is but the first step 
in developing signaling protocols for  the  In te rne t .  
Although the debate on which kinds of QOS support the 
Internet would need continues, various signaling needs 
demand a generic signaling protocol. Independent from 
whether RSVP would be the lasting one to  fulfill that  
important role, I believe the basic principles and lessons 
we have gained from RSVP development will extend 
beyond the protocol itself into new protocol designs for 
the future Internet. 

AUTHOR‘S INTRODUCTION 
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he current Internet architecture, 
embodied in the Internet Protocol (IP) 
network protocol, offers a very simple 
service model: point-to-point best-effort 
service. In recent years, several new 
classes of distributed applications have 
been developed, such as remote video, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT multimedia conferencing, data fusion, 

visualization, and virtual reality. It is becoming 
increasingly clear that the Internet’s primitive 
service model is inadequate for these new appli- 
cations. This inadequacy stems from the failure 
of the point-to-point best-effort service model 
to address two application requirements. First, 
many of these applications are very sensitive to 
the quality of service their packets receive. For 
a network to deliver the appropriate quality of 
service, it must go beyond the best-effort service 
model and allow flows (which is the generic 
term we will use to identify data traffic streams 
in the network) to reserve network resources. 
Second, these new applications are not solely 
point-to-point, with a single sender and a single 
receiver of data; instead, they are often multi- 
point-to-multipoint, with several senders and 
receivers of data. Multipoint-to-multipoint com- 
munication occurs, for example, in multiparty 
conferencing where each participant is both a 
sender and a receiver of data,  and also in 
remote learning applications, although in the 
lat ter  case there are typically many more 
receivers than senders. 

In recent years there has been a flurry of 
research activity devoted to the development of 
new network architectures and service models to 
accommodate these new application require- 
ments. Even though fundamental differences 
exist between the proposed architectures, there 
is widespread agreement that any new architec- 
ture capable of accommodating multicast and a 
variety of qualities of service can be divided into 
five distinct components, which we identify and 
describe below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Flow Specification: The network and the vari- 
ous data flows need a common language, so a 
source can tell the network about the traffic 
characteristics of its flow and, in turn, the net- 
work can specify the quality of service to be 
delivered to that flow. Thus, the first component 
of this new architecture is a flow specification, or 
“flowspec,” which describes both the characteris- 
tics of the traffic stream sent by the source, and 
the service requirements of the application. In 
some sense, the flowspec is the central compo- 
nent of the architecture, since it embodies the 
service interface that applications interact with; 
the details of all of the other components of the 
architecture are hidden from applications. Two 
proposals for a flowspec are described in the lit- 
erature [l, 21. 

Routing: The network must decide how to 
t ransport  packets f rom the source to  the 
receiver of the flow (or receivers of the flow, 
in the case of multicast). Thus, the second 
component of the architecture is a routing 
protocol that provides quality unicast and mul- 
ticast paths. There are many approaches to  
unicast rout ing,  and several d i f ferent 
approaches to multicast routing exist as well 
[2-41. None of the current proposals have yet 

dealt sufficiently with the interaction between 
routing and quality of service constraints; that 
is the subject of future research. 

Resource Reservation: For the network to 
deliver a quantitatively specified quality of ser- 
vice (e.g., a bound on delay) to a particular flow, 
it is usually necessary to set aside certain 
resources, such as a share of bandwidth or  a 
number of buffers, for that flow. This ability to 
create and maintain resource reservations on 
each link along the transport path is the third 
component of the architecture. Two approaches 
to resource reservation are described elsewhere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[2,  51; in this article, we describe another. 

Admission Control: Because a network’s re- 
sources are finite, it cannot grant all resource 
reservation requests. In order to maintain the 
network load at a level where all quality of ser- 
vice commitments can be met, the network archi- 
tecture must contain an admission control 
algorithm that determines which reservation 
requests to grant and which to deny, thereby 
maintaining the network load at an appropriate 
level. Two such admission control algorithms are 
described in the literature [6, 71. 

Packet Scheduling: After every packet trans- 
mission, a network switch must decide whether 
or not to transmit the next packet, and which is 
next. These decisions are controlled by the pack- 
et scheduling algorithm, which lies at the heart 
of any network architecture because it deter- 
mines the qualities of service the network can 
provide. There are many proposed packet 
scheduling algorithms. A few examples are cited 
here [S-121. 

In this article, we present our proposal for the 
third component of the architecture, a new 
resource Reservation Protocol (RSVP). Similar 
to previous work on resource reservation proto- 
cols, e.g., ST-I1 [ 2 ] ,  RSVP is a simplex protocol, 
Le., it reserves resources in one direction. How- 
ever, several novel features in the RSVP design 
lead to the unique flexibility and scalability of the 
protocol. RSVP is receiver-oriented: the receiver 
of the data flow is responsible for the initiation 
of the resource reservation. This design decision 
enables RSVP to accommodate heterogeneous 
receivers in a multicast group. Specifically, each 
receiver may reserve a different amount of 
resources, may receive different data streams 
sent to the same multicast group, and may 
“switch channels” from time to time (Le., change 
which data streams it wishes to receive) without 
changing its reservation. RSVP also provides sev- 
eral reservation styles that allow applications to 
specify how reservations for the same multicast 
group should be aggregated at the intermediate 
switches. This feature results in more efficient 
utilization of network resources. Finally, by using 
“soft-state” in the switches, RSVP supports 
dynamic membership changes and automatically 
adapts to routing changes. These features enable 
RSVP to deal gracefully and efficiently with large 
multicast groups. While the motivation for RSVP 
arose within the Internet context, our design is 
intended to be fully general. 

This article is organized as follows. We first 
list our design goals, and then discuss the basic 
design principles used to meet these goals. A 
more detailed description of the protocol opera- 
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The strawman 

proposal here is 

incapable of  dealing 

w i th  the receivers 

individually, and so 

cannot address these 

heterogeneous 

needs. Therefore, 

our f i rs t  design goal 

for RSVP is t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApro- 
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receivers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto make 
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specifically tai lored 

t o  their own needs. 

tion is then given, followed by a simple example 
of how the protocol would work. Next, the cur- 
rent state of our RSVP implementation is 
described. We delay consideration of related 
work until later, and follow that with a discus- 
sion of unresolved issues. Finally, we conclude 
with a brief summary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RSVP DESIGN GOALS 
In the traditional point-to-point case, one obvi- 
ous reservation paradigm would have the sender 
transmit a reservation request toward the receiv- 
er, with the switches along the path either admit- 
ting or  rejecting the flow. For the point-to- 
multipoint case, one may trivially extend this 
paradigm to have the sender transmit the reser- 
vation request along a multicast routing tree to 
each of the receivers. When we have multipoint- 
to-multipoint data transmissions, the straightfor- 
ward extension of this paradigm would be to 
have each sender transmit a reservation request 
along its own multicast tree to each receiver. 
However, the special properties of having multi- 
ple, heterogeneous receivers and/or multiple 
senders pose serious challenges that are not 
addressed by this simple extension of the basic 
reservation paradigm. We outline these various 
challenges below and detail how they are not 
met by the strawman proposal of straightfor- 
wardly extending the basic paradigm. In the pro- 
cess, we identify the seven goals that guided the 
design of RSVP. 

In a wide-area internetwork such as the Inter- 
net, receivers and paths to reach receivers can have 
very different properties from one another. In par- 
ticular, one must not assume that all the receivers 
of a multicast group possess the same capacity for 
processing incoming data, nor even necessarily 
desire or require the same quality of service from 
the network. For instance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa source may be sending 
a layered encoding of a video signal. Certain 
receivers decoding in software would only have 
sufficient processing power to decode the low-reso- 
lution signal, while those receivers with hardware 
decoding, or more processing power, could decode 
the entire signal. Furthermore, the paths to reach 
the receivers may not have the same capacity. In 
the layered encoding example above, certain 
receivers might only have low-bandwidth paths 
between them and the source and so could only 
receive the low-resolution signal. The strawman 
proposal above is incapable of dealing with the 
receivers individually, and so cannot address these 
heterogeneous needs. Therefore, our first design 
goal for RSVP is to provide the ability for hetero- 
geneous receivers to make reservations specifically 
tailored to their own needs. 

The presence of multiple receivers raises 
another issue: the membership in a multicast 
group can be dynamic. The strawman proposal 
would have to reinitiate the reservation protocol 
every time a new member joined or an existing 
member left the multicast group. Reinitiation of 
the reservation protocol is particularly burden- 
some for large groups because the larger the 
group size, the more frequent are changes in 
group membership. So our second design goal 
for RSVP is to deal gracefully with changes in 
the multicast group membership. 

The strawman proposal deals with multiple 
senders by having each sender make an indepen- 
dent resource reservation along its own multicast 
routing tree. This approach results in resources 
being reserved along multiple, independent 
trees, even though the branches of different 
trees often share common links. Although appro- 
priate for some applications, in other cases this 
duplication can lead to a significant wasting of 
resources. For example, in an audio conference 
with several people, usually only one person, or 
at most a few people, talk a t  any one time 
because of the normal dynamics of human con- 
versation. Thus, instead of reserving enough 
bandwidth for every potential speaker to speak 
simultaneously, in many circumstances it is ade- 
quate to reserve only enough network resources 
to handle a few simultaneous audio channels. 
Our third design goal for RSVP is to allow end 
users to specify their application needs, so the 
aggregate resources reserved for a multicast 
group can more accurately reflect the resources 
actually needed by that group. 

Furthermore, in a multiparty conference a 
receiver may only wish to (or be able to) watch 
one or  a few other participants at a time but 
would like the possibility of switching among 
various participants. The simple approach of 
delivering the data streams from all the sources 
and then dropping the undesired ones at the 
receiver does not address network resource 
usage considerations (e.g., efficient use of limit- 
ed bandwidth, or reducing the charges incurred 
for bandwidth usage). A receiver should be able 
to control which packets are carried on its 
reserved resources, not only what gets displayed 
on its local screen. Moreover, a receiver should 
be able to switch among sources without the risk 
of having the change request denied, as could 
occur if a new reservation request had to be sub- 
mitted in order to “switch channels.” Our fourth 
design goal for RSVP is to enable this channel- 
changing feature. 

RSVP is not a routing protocol and should 
avoid replicating any routing functions. RSVP’s 
task is to establish and maintain resource reser- 
vations over a path or a distribution tree, inde- 
pendent of how the path or tree was created. In 
a large internetwork with a volatile topology and 
load, these routes may change from time to  
time. Adapting to such changes in topology and 
load is the explicit job of the routing protocol; it 
would be expensive and complicated to replicate 
such functions in RSVP. At the same time, how- 
ever, RSVP should be able to cope with the 
resulting routing changes. Our fifth design goal 
is that RSVP should deal gracefully with such 
changes in routes, automatically reestablishing 
the resource reservations along the new paths as 
long as adequate resources are available. 

The strawman proposal does not deal grace- 
fully with changes in routes, because there is no 
mechanism to discover the change and trigger a 
new resource reservation request. One could 
introduce such a mechanism by having each 
source periodically refresh its reservation over 
the multicast routing tree. However, in large 
multicast groups such refreshing would lead to S 
messages arriving at every receiver during every 
refresh period, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is the number of sources. 
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Our sixth design goal is to control protocol over- 
head. By this we mean both avoiding the explo- 
sion in protocol overhead when group size gets 
large, and also incorporating tunable parameters 
so that the amount of protocol overhead can be 
adjusted. 

Our  last design goal is not specific to the 
problem at hand hut rather is a general matter 
of modular design. We hope to make the gen- 
eral design of RSVP relatively independent of 
the architectural components listed in the first 
section of this article. Clearly a part icular 
implementation of RSVP will be tied quite 
closely to the flowspec and interfaces used by’ 
the routing and admission control algorithms. 
However, the general protocol design should 
be independent of these. In particular, our pro- 
tocol should be capable of establishing reserva- 
tions across networks that implement different 
routing algorithms, such as IP unicast routing, 
1P multicast routing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(41, the recently proposed 
core-based tree (CBT) multicast routing [3], or 
some future routing protocols. This design goal 
makes RSVP deployable in many contexts. For 
optimally efficient routing decisions, however, 
routing selection and resource reservation 
should be integrated, so the choice of route 
can depend on the quality of service requested, 
and the  stabil ity of the route can he main- 
tained over the duration of the reservation. 
Such an integration would lead to more coordi- 
nation bctwccn the choice of which resources 
to reserve and the mechanics of establishing 
the reservation (which is RSVP’s main focus). 
This integration is something that requires fur- 
ther research. 

In summary, we have identified seven impor- 
tant design goals (see box this page). RSVP is 
primarily a vehicle used by applications to com- 
municate their requirements to the network in 
a robust and efficient way, independent of the 
specific requirements. RSVP delivers resource 
reservation requests to the relevant switches 
but plays no other role in providing network 
services. Thus, RSVP communicates require- 
ments for a wide range of network services but 
does not directly provide them. For instance, 
the synchronization requirements of flows or 
the need for reliable multicast delivery could be 
expressed in the flowspec that is distributed by 
RSVP and then realized by the switches. Simi- 
larly, the flowspec could also carry around 
information about advance reservations (reser- 
vations made for a future time) and preempt- 
able reservations (reservations that a receiver is 
willing to have preempted). RSVP is capable of 
supporting the delivery of these and other ser- 
vices, whenever these network services rely only 
on the state being established at the individual 
switches along the paths determined by the 
routing algorithm. Thus, although we described 
RSVP as a resource reservation protocol, it can 
he seen more generally as a “switch-state estab- 
lishment” protocol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BASIC, DESIGN PRINClPlfS 
To achieve the seven design goals, we used six 
basic design principles (see box this page). These 
principles are now described. 

The Seven Design Goals of RSVP 
* Accommodate heterogeneous receivers. 

* Exploit the resource needs of different applications in order to use 

* M o w  receivers to switch channels. 
Adapt to changes in the underlying unicast and multicast routes. 

Adapt to changing multicast group membership. 

network resources efficiently. 

Controlprotocol overhead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that it does not grow linearly (or worse) 
with the number of participants. - Make the design modular to accommodate heterogeneous underlying 
technologies. 

The Six Design Principles of RSVP 
Receiver-initiated reservation. 
Sepaiating reservation from packet filtering. . Providing different reservation styles. 

* Maintaining “soft-state” in the network. - Protocol overhead control. - Modularity. 

RECEIVER-INITIATED RESERVAIIDN 

The strawman proposal discussed in the previous 
section - and all existing resource reservation 
protocols - are designed around the principle 
that the data source initiates the reservation 
request. In contrast, RSVP adopts a novel receiv- 
er-initiated design principle. Receivers choose 
the level of resources reserved and are reSpOnSi- 
hle for  initiating and keeping the reservation 
active as long as they want to receive the data. 
We describe the motivation for this receiver-ini- 
tiated approach below. 

A source can always transmit data, whether 
or not adequate resources exist in the network 
to deliver the data. The receiver knows its own 
capacity limitations. Furthermore, the receiver is 
the only one who experiences, and thus is direct- 
ly concerned with, the quality of service of the 
incoming packets. Additionally, if network charg- 
ing is deployed in the future, the receiver would 
likely be the party paying for the requested qual- 
ity of service. Thus, it should be the receiver who 
decides which resources should be reserved. 

One could imagine the receivers send this 
information to the source, which would use this 
information in sending out the reservation 
request. To handle heterogeneous requests, 
however, the sender would have to bundle all 
requests together and pass them to the network, 
and the network would determine how much 
resource to reserve on which links, according to 
the location of individual receivers. For large 
multicast groups, this will likely cause a multicast 
implosion at the sender. This implosion problem 
becomes more serious when the multicast group 
membership changes dynamically and the reser- 
vation has to he periodically renewed. Consider, 
as an extreme example, a cable TV firm broad- 
casting several channels of programs. While 
there are relatively few sources, there are per- 
haps hundreds of thousands of receivers, each 
watching only one or a few channels at a time. 
In the strawman proposal, whenever any individ- 
ual receiver wants to switch between channels, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
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sends a message to the source. In this case, 
where there are many receivers and frequent 
switching between channels, each source has to 
accommodate a deluge of change requests. This 
overhead is superfluous, however, since the 
resulting broadcast pattern changes relatively 
slowly (because the resulting multicast trees are 
likely to be relatively stable except near the leaf 
nodes). Later in this article we show how our 
receiver-initiated design accommodates hetero- 
geneity among group members yet avoids such 
multicast implosion. 

The idea of the receiver-initiated approach 
was inspired by Deering’s work on IP multicast 
routing [4]. The IP multicast routing protocol 
treats senders and receivers separately. A sender 
sends to a multicast group in exactly the same 
way as it sends to a single receiver, it merely 
puts in each packet a multicast group address in 
place of a host address. The multicast group 
membership is defined as the group of receivers. 
Deering’s multicast routing design can be con- 
sidered a receiver-initiated approach: each 
receiver individually joins or leaves the group 
without affecting other receivers in the group, or 
affecting sources that send to the group. The 
routing protocol takes the responsibility of for- 
warding all multicast data packets to all the cur- 
rent members in the group. Analogous to our 
argument that a sender does not care whether 
adequate resources are available, a sender to a 
multicast group does not necessarily know who 
is currently a member of the multicast group 
(i.e., receiving the data). In particular, it may not 
be a member of the multicast group itself. 

SEPARATING RESERVATION FROM PACKET FILTERING 
A resource reservation at a switch assigns cer- 

tain resources (buffers, bandwidth, etc.) to the 
entity making the reservation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA distinction that 
is rarely made that will be crucial to our ability 
to meet our design goals is that the resource 
reservation does not determine which packets 
can use the resources, but merely specifies what 
amount of resources are reserved for whom. 
Here, “whom” does not refer to “which packets” 
can use the reserved resources; rather, it refers 
to “which entity” controls the resources. 

A separate function, called a packet filter, 
selects those packets that can use the resources; 
it is set by the reserving entity. Moreover, it can 
be changed without changing the amount of 
reserved resources. One of the important design 
principles in RSVP is that we allow this filter to 
be dynamic; that is, the receiver can change it 
during the course of the reservation. This dis- 
tinction between the reservation and the filter 
enables us to offer several different reservation 
styles, which we now describe. 

PROVIDING DIFFERENT RESERVATION STYLES 
As we discussed briefly above, the service 
requirements of multicast applications dictate 
how the reservation requests from individual 
receivers should be aggregated inside the net- 
work. For example, the typical dynamics of 
human verbal interaction results in only one or a 
few people talking at  any one time. Thus, in 
many conferencing situations it is feasible to 
have all senders of audio signals to a conference 

share the same set of reserved resources, where 
these resources were sufficient for a small num- 
ber of simultaneous audio streams. In contrast, 
there are no analogous limitations on video sig- 
nals. Therefore, if the conferencing application 
also includes video, then enough resources must 
be reserved for the number of video streams one 
desires to watch simultaneously. As in the usual 
multicast paradigm, if two receivers downstream 
of a particular link are watching the same video 
stream for the lifetime of the application (e.g., 
when attending a remote lecture), only a single 
reservation need be made on this link to accom- 
modate their needs. However, if these two 
receivers wish to occasionally switch among the 
senders during the application lifetime (e.g., 
when participating in a distributed group meet- 
ing), then separate reservations must be main- 
tained. To support different needs of various 
applications, while making the most efficient use 
of network resources, RSVP defines different 
reservation styles which indicate how intermedi- 
a te switches should aggregate reservation 
requests from receivers in the same multicast 
group. Currently there are three reservation 
styles: no-filter, fixed-filter, and dynamic-filter. 
We now describe these filter styles. For the sake 
of brevity we identify applications only by their 
multicast address, although in the current Inter- 
net context a multicast application may be iden- 
tified by the IP multicast address plus destination 
port number. 

When a receiver makes a resource reserva- 
tion for a multicast application, it can specify 
whether or not a data source filter is to be used. 
If no filter is used, then any packets destined for 
that  multicast group may use the reserved 
resources. (Although some enforcement mecha- 
nism is needed to ensure that the aggregate 
stream does not use more than the reserved 
amount, we will not discuss enforcement mecha- 
nisms here.) For example, the audio conference 
described above would use a no-filter reserva- 
tion, so that a single reserved pipe can be used 
by whoever is speaking at the moment. If source 
filtering is needed, the filter is specified by a list 
of sources. (Again, in the Internet context a data 
source can be specified by the source host 
address plus source port number. We only refer 
to the source host address here.) Only the pack- 
ets from the specified sources can use the 
reserved resources. Filtered reservations are 
used to forward individual images in video con- 
ferencing, enabling participants to reserve 
resources for particular video streams. 

A filtered reservation can be either fixed or 
dynamic. A “fixed-filter” reservation allows a 
receiver to receive data only from the sources 
listed in the original reservation request, for the 
duration of the reservation. A “dynamic-filter” 
reservation allows a receiver to change its filter 
to different sources over time. 

To illustrate how intermediate,nodes use 
these reservation styles to aggregate reservation 
requests, consider the case of several receivers in 
the same multicast group making fixed-filter 
reservations over a common link. These reserva- 
tions may be shared if the source lists overlap, 
because the reservation will never be changed. 
Thus, only a single pipe (with the largest amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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of resources from all the requests) is reserved 
for each source even when there are multiple 
requests. Such aggregation can occur when mem- 
bers of a multicast application all listen or watch 
the same audio or video signals, as in the case of 
a multicast lecture. Reservations using the no-fil- 
ter style can also be aggregated in this manner. 
If a receiver does not discriminate between indi- 
vidual sources, it cannot switch among the 
sources either. 

If a receiver expects to switch among differ- 
ent sources from time to time, it must make a 
dynamic-filter reservation to avoid affecting the 
reception of other receivers in the same multi- 
cast application. The intermediate nodes cannot 
aggregate this style of reservation because the 
receiver can change the list of sources in the fil- 
ter at any time during the course of the reserva- 
tion. In fact, this separation between the 
resource reservation and the filter is one of the 
key facets of RSVP. The resource reservation 
controls how much bandwidth is reserved, while 
the filter controls which packets can use that 
bandwidth. In the dynamic-filter reservation 
case, each receiver requests enough bandwidth 
for the maximum number of incoming streams it 
can handle at once and the network reserves 
enough resources to handle the worst case when 
all the receivers that requested dynamic-filter 
reservations take input from different sources, 
even though several receivers may actually tune 
to the same source(s) from time to time. Howev- 
er, note that the total amount of dynamic filter 
reservations made over any link should be limit- 
ed to the amount of bandwidth needed to for- 
ward data from all the upstream sources. 

In summary, having several different reserva- 
tion styles allows intermediate switches to decide 
how individual reservation requests for the same 
multicast group can be efficiently merged. The 
dynamic-filter reservation style allows receivers 
to change channels. Thus, we have met design 
goals 3 and 4. So far, RSVP has defined three 
reservation styles; other styles may be identified 
as new multicast applications with different 
needs are developed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

MAINTAINING ”SOFT-STATE” IN THE NETWORK 
The typical multipoint-to-multipoint applications 
we have considered are rather long-lived. Over 
the lifetime of such an application, new mem- 
bers may join, existing members may leave, and 
routes may change due to dynamic status 
changes at intermediate switches and links. To 
be able to adjust resource reservations accord- 
ingly, in a way transparenk to end applications, 
RSVP keeps soft-state at intermediate switches 
and leaves the responsibility of maintaining the 
reservation to end users. The term “soft-state” 
was first used by Clark [13]. In our context, it 
refers to a state maintained at network switches 
which, when lost, will be automatically reinstated 
by RSVP soon thereafter. Thus, soft-state is 
appropriate in our context where frequent mem- 
bership changes and occasional service outages 
would render a more brittle (Le., less self-stabi- 
lizing) state to become, and perhaps remain, 
obsolete or incorrect. 

More specifically, at each intermediate switch, 
RSVP distinguishes between state information of 

two kinds: path state and reservation state. Each 
data source periodically sends a path message 
that establishes or updates the path state, and 
each receiver periodically sends a reservation 
message that establishes or updates the reserva- 
tion state (which is attached to the path state). 

Path messages are forwarded using the 
switches’ existing routing table. In other words, 
the routing decision is made by the network’s 
routing protocol, not by RSVP. Each path mes- 
sage carries a flowspec given by the data source, 
as well as an F-flag indicating if the application 
wishes to all reservations. In process- 
ing each pa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, the switch updates its 
path state containing information about 1) the 
incoming link upstream to the source, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) the 
outgoing links downstream from that source to 
the receivers in the group (as indicated by the 
multicast routing table). In addition, if the F-flag 
in the path message is on, the switch also keeps 
the information about the source and the previ- 
ous hop upstream to reach the source. This 
information allows the switch to accommodate 
any style of reservation. If the F-flag is off, the 
switch does not maintain information about the 
specific source of the path message except for 
adding its incoming link to the path state; the 
state kept at the switch is thereby minimized. 
Consequently, only no-filter style reservations 
can be made for data streams from such sources. 
As we show later in an example, not maintaining 
per-source information can, in some topologies, 
result in over-reserving resources over certain 
links. 

Each reservation message carries a flowspec, 
a reservation style, and (if the reservation uses a 
fixed or dynamic filtered style) a packet filter. In 
processing each reservation message, the switch 
updates its reservation state (which contains 
information for the outgoing link the message 
came from) by recording 1) the amount of 
resources reserved, 2) the source filter for the 
reserved resource, 3) the reservation style, and 
4) if the style is dynamic-filtered, the reserver 
(who is the sender of this reservation message, 
and one of the receivers of this multicast group). 
We see that the only time we need to keep per- 
receiver information in the reservation table is 
when the reservations involve dynamic filters. 
When all reservations are either no-filter or 
fixed-filter, we can assign the reservation to the 
multicast group as a whole and then only keep 
track of the total resources reserved on each 
downstream link. 

Reservation messages are forwarded back 
toward the sources by reversing the paths of 
path messages. In fact, the path information is 
maintained solely for this reverse-path fonvard- 
ing of reservation messages. More specifically, 
reservation messages of the no-filter style are 
forwarded to all incoming links to the multicast 
group, and those of filtered styles are forwarded 
to the previous hops of the sources that are list- 
ed in the filters. 

Both path messages and reservation messages 
carry a timeout value used by intermediate 
switches to set corresponding timers; the timers 
get reset whenever new messages are received. 
Whenever a timer expires, the corresponding 
state is deleted. This timeout-driven deletion 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFIGURE 1. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsimple nehvork topology with the muiticast routin tr&s H I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H2 ore data sources, ond H3,  H4, and H5 are receiveis. T e sobd bnes 
depict the.routing tree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof H I ;  the dotted lines depict the routing tree of H2. 
In general, the set oi sources and the set oi receivers may oveiiap prtiolly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 

compietely. For the sake of clarity, here they are disioint. 

f : .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
prevents resources from being orphaned when a 
receiver fails to send an explicit Tear-down mes- 
sage or the underlying route changes. It is also 
the only way to release the resources of no-filter 
or fixed-filter reservations. In these cases, the 
switch cannot determine if the reservation is 
being shared by multiple receivers, so the reser- 
vation can only be deleted when it times ont. It 
is the responsibility of both senders and receivers 
to maintain the proper reservation state inside 
the network by periodically refreshing the path 
and reservation state. 

When a route or membership changes, the 
routing protocol running underneath RSVP for- 
wards future path messages along the new 
route(s) and reaches new members. As a result, 
the path state at switches is updated, causing 
future reservation messages to traverse the new 
routes or new route segments. Reservations 
along old routes, or  along routes to inactive 
senders o r  receivers, time out automatically. 
Because path and reservation messages are sent 
periodically, the protocol tolerates occasional 
corruption or loss of a few messages. This soft- 
state approach adds both adaptivity and robust- 
ness to RSW. 

The advantages of the soft-state approach, 
however, do not come for free. The periodic 
Refreshing messages add overhead to the proto- 
col operation. We next discuss how RSVP con- 
trols protocol overhead. 

PROTOCOL OVfRHEAD COIITROL 
The RSVP overhead is determined by three fac- 
tors: the number of RSVP messages sent, the 
size of these RSVP messages, and the refresh 
frequencies of both path and reservation mes- 
sages. As we describe in more detail in the RSVP 
overview section, RSVP merges path and reser- 
vation messages as they traverse the network. 
The merging of path messages means that, in 
general, each link carries no more than a single 
path message in each direction during each path- 
refresh period. Similarly, the merging of reserva- 
tion messages means that each link carries no 
more than a single reservation message in each 
direction during each reservation-refresh period. 

The maximum size of both the path and reserva- 
tion messages on a particular link is proportional 
to the number of data sources upstream. 

RSVP controls the third overhead factor, the 
refresh frequencies, by tuning the timeout values 
carried in path and reservation messages. The 
larger the timeout value, the less frequently the 
refresh messages have ta be sent. There exists, 
however, a tradeoff between the overhead one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
willing to tolerate and RSVP's responsiveness in 
adapting t o  dynamic changes. For instance, 
reservation messages are fonvarded according to 
the path state maintained at intermediate switch- 
es, which in turn gets synchronized with the  
routing protocol state every time a path message 
is processed. When a route changes, reservations 
along the new route (or new route,segments) are 
not established until a new path message i s  sent 
(causing the path state to he updated), and a 
new reservation message is sent along the new 
route. 

Our current RSVP implementation uses stat- 
ic timer values chosen on the hasis of engineer- 
ing judgment. In the future, we will investigate 
adaptive timeout algorithms to optimally adjust 
the timer values according to observed dynamics 
in routes and membership changes, and the loss 
probability of RSVP messages. 

MODU~ARITY 
In the context of real-time, multicast applica- 

tions, RSVP interfaces to three other compo- 
nents: 
* The flowspec, which is handed to RSVP by 

an application or some session-control pro- 
tocol on behalf of the application, when 
invoking RSVP. 

* The network routing protocol, which for- 
wards path messages toward all the 
receivers, causing the RSVP path state to 
he established at intermediate switch nodes. - The network admission control, which 
makes an acceptance decision hascd on the 
flowspec carried in the reservation mes- 
sages. 
We list modularity as one of RSVP's design 

goals because we would like to make RSVP as 
independent from the other components as pos- 
sible. We have attempted to make few assump- 
tions ahout these other components, and those 
assumptions we have made are described explic- 
itly. 

We make no assumptions about the flowspec 
to be carried by RSVP. RSVP treats the flowspec 
as a number of uninterpreted bytes of data that 
need to he exchanged among only the applica- 
tions and the network admission-control algo- 
rithm. We assume that the admission-control 
algorithm operates by having an RSVP reserva- 
tion packet containing a flowspec pass through 
the switches along the delivery path for that flow 
(hut obviously in the reverse direction), with 
each switch returning an admit or reject signal. 
The resource reservation is established only if all 
switches along the path admit the flow. We also 
assume that the packet-scheduling algorithm can 
change packet filters,without needing to cstab- 
lish a new reservation. 

The only assumptions about the underlying 
routing protocol(s) are tliat it provides both uni- 
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cast and multicast routing, and that a sender to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
multicast group can reach all group members 
under normal network conditions. Obviously, in 
thc case of a network partition, no routing pro- 
tocol can guarantee this reachahility. We do not 
assume that a sender to a multicast group is nec- 
essarily a member of the group, nor do  we 
assume that the route from a sender to a receiv- 
er is the same as the route from the receiver to 
the sender. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RSVP OPERATION OVERVIEW 
RSVP. and indeed any reservation protocol, is a 
vehicle for establishing and maintaining state in 
switches along the paths that each flow's data 
packets travel. Because reservation messages are 
initiated by each receiver, RSVP must make sure 
that thc reservation messages from a receiver 
follow exactly the reverse routes of the data 
streams from all the sources (that the receiver is 
interested in). In othcr words, RSVP must estah- 
lish a sink tree from each receiver to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l l  the 
sources to forward reservation messages. 

The sink tree for each receiver is formed by 
tracing the paths defined by the multicast rout- 
ing protocol - in the reverse direction - from 
the receiver to each of the sources (Figs. 1 and 
2). Periodic path messages are forwarded along 
the routing trees provided by the routing proto- 
col, and reservation refresh messages are for- 
warded along the sink trees to maintain current 
reservation state. A reservation message propa- 
gates only as far as the closest point on the sink 
tree where a reservation level greater than or 
equal to the reservation level being requested 
has already been made. 

Each switch uses the path states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto maintain a 
table of incoming and outgoing interfaces for 
each multicast group. Each incoming interface 
keeps the information about the flowspecs it has 
forwarded upstream. (This information is need- 
ed in merging reservation requests from multiple 
downstream links.) For each outgoing link, there 
is a list of senders; associated with each sender is 
the previous hop address from which data from 
that sender arrives at the current switch. There 
is also a set of reservations. Generally speaking, 
each reservation consists of a reserver, a filter, 
and the amount of resources reserved. For no- 
filter reservations, the first two fields are not 
needed; for fixed-filter reservations, the first 
field is not needed. 

We now review the process of creating and 
maintaining reservations in more detail. Before 
or when each data source starts transmitting, it 
sends a path message containing the flowspec of 
the data source. When a switch receives a path 
message, i t  first checks to see if it already has 
the path statc for the named target (which can 
he either a single host or a multicast group, plus 
the destination port number); if not. it creates 
the path state for that target. The switch then 
obtains the outgoing interface(s) of the path 
message from' the routing protocol in use, and 
updates its table of incoming and outgoing links 
accordingly. The source address (and port num- 
ber in the Internet context) carried in the path 
message is also recorded if the path message 
indicates that the application may require a fil- 
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W FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsimple network topology with the sink trees. H i  ond H 2  ore 
doto sources, ond H3, H4, ond H 5  ore receivers sinksJ. The dotted lines 
depici the sink tree of H3; the soiid lines deoict the sink iree of H4. For clori- 
h/ the sink tree oi H 5  is omitted. 

tered reservation. This path message is fonvard- 
ed immediately only if it is from a new source or 
indicates a change in routes. The switch can 
detect a change in routes by checking to see if 
the outgoing interfaces indicated by the routing 
protocol's routing table are different than the 
outgoing links maintained in the path state. Oth- 
erwise, the switch discards the incoming path 
message and instead periodically sends its own 
path messages which contain the path informa- 
tion carried in all the path messages that it has 
received so far. 

When a receiver receives a path message 
from a source for whose data i t  would like to 
create a reservation, the receiver sends a reser- 
vation message using the (possibly modified) 
flowspec that came in the incoming path mes- 
sage. As described earlier, the reservation mes- 
sage is guided along the reverse route of the 
path messages to reach the data source(s). Along 
the way i f  any switch rejects the reservation, an 
RSVP reject mcssage is sent hack to the receiver 
and the reservation message is discarded. Other- 
wise, if the reservation message requires a new 
reservation to be made, i t  propagates as far as 
the closest point along the way to the sender(s) 
where a reservation level equal to or greater 
than that being requested has been made. 

Once the reservation is established, the 
receiver periodically sends reservation refresh 
messages (which are identical in format to the 
original request). As the reservation requests are 
forwarded along the sink trees, the switches 
merge the requests for the same multicast group 
by pruning those that carry a request for reserv- 
ing a smaller, or  equal, amount of resources 
than some previous request. As an example, 
assume H1 is a video source, and H4 has 
reserved enough bandwidth to receive the full 
video data stream while H5 wants to receive only 
low-resolution video data (Fig. 2). In this case, 
when the reservation request from H5 reaches 
S4, S4 makes the requested reservation over the 
link from S4 to H5 and then drops the request 
(i.e., does not forward it upstream) because suf- 
ficient resources have been reserved already by 
H4's request. 

When a sender (receiver) wishes to terminate 

. 
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L6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFIGURE 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANetwork topology. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the connection, the sender (receiver) sends out a 
path (reservation) teardown messagc to release 
the path state or reserved resources. There is no 
retransmission timer for this teardown message. 
In cases where the teardown message is lost, the 
intermediate nodes will eventually time out the 
corresponding state. As we noted above, no-fil- 
ter or fixed-filter reservations cannot be explicit- 
ly torn down because the switches do not 
maintain sufficient state. 

EXAMPLE 
We consider a simple network configuration to 
illustrate in more detail how RSVP works. The 
network has five hosts connected by seven point- 
to-point links and three switches (Fig. 3). We 
assume that for links connecting hosts directly to 
a switch, the hosts act as switches in terms of 
reserving resources. To simplify the description, 
we assume adequate network resources exist for 
all reservation requests. Furthermorc, the exam- 
ple involves only a single multicast group, so we 
do not discuss the addressing used to distinguish 
reservations made for one multicast group from 
reservations made for other multicast groups. 

We describe the cases of no-filtcr and filtered 
reservations separately. We start with, the sim- 
pler case, no-filter reservations, and then discuss 
the case of filtered reservations. 

NO-FILTER RESERVATIONS 
Let us consider an audio conference among five 
participants, one at each of the five hosts (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 ) .  In this case, each host behaves both as a 
source and a receiver a t  the same time. We 
make the following assumptions: 
* The routing protocol has built a multicast 

routing tree so each sender can reach all 
the receivers. - Each switch has received RSVP path mes- 
sages (with the F-flag off from all the 
sources, so the switches do not record 
source information), and the complete path 
state for each switch has stored as described 
below, although i n  a real application 
sources may start at different times and the 
path state would he built up over time. - No reservations have been made yet. 

I ! 51 1 52 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53 I 
Incoming links L1, L2, L6 L5, L6, L7 L3, L4, L7 1 Outgoing links L1, L2. L! L5. L6. L7 L3, L4. L7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAll_l___- 

We now describe how reservations are creat- 
ed. H1 wants to receive data from all other 
senders to the multicast group hut only wants 
enough bandwidth reserved to carry one audio 
stream. Thus, it sends a reservation message R1 
(B, no-filter) to S1, where B is the amount of 
bandwidth needed to forward one audio stream. 
When S 1  receives R1 (B, no-filter), it f irst 
reserves resources over L1 (in the direction from 
SI toward Hl), then attaches the following reser- 
vation state to the path state to indicate the 
amount of the reservation made over L1. 

Outgoing links Ll(B) L2 L6 

Finally, S1 forwards R1 (B, no-filter) over all 
incoming links, in this case L2 and L6. Note that 
the switch never forwards any RSVP message 
over the link the message came from. 

The copy of R1 (B, no-filter) sent along L6 
reaches S2, which reserves B over Lh and for- 
wards the message to links 5 and 7.  When the 
copy of R1 (B, no-filter) that was sent along L7 
reaches S3, that switch reserves B over L7 and 
then fonvards R1 (B, no-filter) over links 3 and 4. 

When H2 wants to create a reservation, it 
sends a reservation message, R2 (B, no-filter), to 
S1. Upon receipt of R2 (B, no-filter), S1 first 
reserves B over L2, changing the path state to: _ .  . 

51 

Incoming links L1 L2 L6 

Outgoing links Ll(B) LZ(B) L6 

S1 then forwards R2 (B, no-filter) over L1 
only, because it has forwarded an identical 
request over L6 previously. 

After all the receiving hosts have scnt RSVP 
reservation messages, an amount B of resources 
have been reserved over each of the seven links 
in each of the two directions. 

Before leaving this example of no-filter reser- 
vation, consider the tradeoff between keeping 
extra state information and the possibility of 
over-reserving resources on certain links. In the 
above example, we assumed all the path mes- 
sages had the F-flag off, so no per-source infor- 
mation is kept at the switches. As a result, if 
each receiver requested 2B of bandwidth (is., an 
amount enough to carry two full audio streams), 
then 2 8  would he reserved on every link - even 
though on L1 (and similarly on L2, L3, L4, and 
L5) in the direction away from H1 we need only 
reserve B, since there is only a single source 
upstream on the link. In general, a no-filter 
reservation should indicate how much should be 
reserved as a function of the number of sources 
upstream. In this example i t  would be B units 
per upstream source. Unfortunately, one cannot 
know the number of sources upstream without 
keeping a list of the sourccs. If the F-flag was sct 
in all the path messages, the switches would have 
kept track of individual sources and, by paying 
this extra cost in increased state, only the 
required resources would have been rcserved 
along the links. 
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Not maintaining per-source information can 
lead to an ovcr-reserving of resources on some 
network links. However, in those applications 
involving many data sources with few resources 
required for each source (such as in a data-gath- 
ering application with many sensors), one may 
still choose to reduce the switch state at the pos- 
sible expcnse of over-rcscrving resourccs ovcr 
some links, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FILTERED RESERVATIONS 
Now consider the case where HZ, H3, H4, and 
H5 are receivers (i.c., members of the multicast 
group), and H1, H4, and H5 are sources. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll 
path message have the F-flag set, so each’switch 
needs to keep a list of sources associated with 
their previous hops. Assume that S1 has received 
path messages from all of the sources hut no 
reservations have yet been made. Thus, Sl’s path 
state contains the following entry: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 51 I 
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Outgoing-links : LS(S~C:HI.SI ~ 4 . 5 3 )  ~ L ~ ( s ~ c : H ~ . s ~  ~ 5 . ~ 5  [ L~(S~C:HI.SI ~ 5 . ~ 5 )  

I Outgoing-linkr.LZ(src:Hl.Hl H4.62 H5.52) .L6(rrc:H1.~1) 1 

ular, we have not 
described with any 
specificity the merging 
algorithm. We havc, 

The notation L2(src: H1, HI H4, S2 H5, S2) 
indicates that data from sources H1, H4, and H5 
are sent out along outgoing link L2. For each 
source, H I ,  S2, and S2 are the previous hop 
addresses from which data from that source 
arrives, respectively. H1 is not a receiver, so L1 
is not among the outgoing links of.Sl. 

Now assume that H2 sends a reservation mes- 
,sage denoted R2 (B, H4), that is, H2 wants to 
receive packets only from source H4 and is 
reserving an amount B, sufficient for one source. 
The reservation message R2(B, H4) reaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI 
via the LZ interface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS I  finds that H4 is indeed 
one of the sources it has heard, and that the 
packets from H4 come from S2. S1 reserves 
bandwidth B over L2, and forwards R2 (B, H4) 
over L6 to S2. 

j 53 

Outgoing-link ’ LB(rrc:Hl.SZ H4.H4) H5.52) L4(rrc:Hl,S2 H5.52 ! L7(src:H4.H4 

there is only one source going out L6. It there- 
fore reserves an amount B over L6 for R5 and 
then passes the reservation request on to H1. 
When S3 receives R5(2B, *), it finds out that 
there is only one source going out L7 and has a 
fixed-filter reservation already. S3 does not 
reserve any more, nor does it further forward 

[8,6,14]. I t  provides 
modules that imitate 
the actual behavior of 

the requcstto L4. 
Su~oose now that H4 terminates both receiv- 

ing a n i  sending without transmitting any tear- 
down messages. As H4 no longer sends path or 
reservation-refreshes, all H4-rclated state will 
time out, changing’the outgoing link entries in 
the varioub switches. 

51 LZ(rrc:Hl.HlH5.52) ’ L6(src:Hl,Hl) 

52 L5(ric:H1.51) L6krr:H5.H5) L7(rrc:Hl.S1 H5,H5) 

53 13(rrc:H1,52 H5.52) 

S1 stops forwarding R2 (B, H4) from H2 and 
returns an RSVP error message to H2. S2 for- 
wards future R5(2B, *) reservation refreshes to 
the L6 direction only since there are no more 
sources in thc L7 direction. 

For thc sake of simplicity, in the above exam- 
ple we assumed each data stream requires the 
same bandwidth to forward. RSVP is designed 
to handlc cases where cach source may demand 
different amounts of resources, and each receiv- 
cr may receive only a subset of the data from 
each source. In fixed-filter reservations, this 
requires each source filter be associated with a 
specific amount of resources. I n  dynamic-filter 
reservations, the receiver must receive the same 
amount of data when “switching channels.” 

lMPLEMENTATlON STATUS 
This article illustrates how RSVP works at a 
general level. For the sake of brevity and clarity, 

Our current 

simulations and 

tests deal only w i th  

reasonably smal l  

networks and smal l  

mult icast  groups. 

We do n o t  ye t  

understand how 

RSVP performs when 

the s ize of  the 

mult icast  groups 

gets very large. 
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Neither ST nor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAST-II 

provides a robust 

and eff icient 

solut ion to the 

mult ipoint-to- 

. mult ipo int  resource 

reservation problem. 

They share several 

of the l imitat ions of  

the strawman 

proposal described 

earlier. The RSVP 

design ef for t  was 

in i t ia ted to  fill 

. this vacuum. 

ARPA, linking roughly a dozen academic and 
industrial research institutions. Preliminary tests 
have been performed on this implementation, 
but no systematic performance studies have been 
done as yet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RELATED WORK 
In the course of exploring network algorithms 
that deliver quality of service guarantees, there 
have been several proposals and prototype 
implementations of network resource reservation 
algorithms over the last few years [9, 151. How- 
ever, almost all of these prototypes deal exclu- 
sively with unicast reservations. 

The Stream Protocol, ST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5], was a pioneer- 
ing work in multicast reservation protocol design. 
ST was designed specifically to support voice 
conferencing and was capable of making both 
unicast and multicast resource reservations. At 
the time ST was proposed, there was no work on 
sophisticated multicast routing, so ST would 
make resource reservations over a single, duplex 
distribution tree which was created by blending 
the paths from unicast routing. This was done 
with the assumptions that the routes were 
reversible and the application data traffic would 
travel in both directions. However, ST requires a 
centralized access controller to coordinate 
among all the participants and manage the tree 
establishment. 

The successor to ST, ST-I1 [2], continues to 
create its own multicast trees by blending the 
paths from unicast routing. However, ST-I1 
establishes multiple simplex reservations to elimi- 
nate the access controller. Each data source 
makes a resource reservation along a multicast 
tree that is rooted at the source and reaches out 
to all the receivers. The reservation made along 
the tree uses a single flowspec, so ST-I1 cannot 
accommodate heterogeneous receivers. Because 
each data source makes its reservation indepen- 
dently, a single pipe is reserved from every source 
to every receiver in the same multicast applica- 
tion group. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn analysis of ST-I1 implementation 
and design issues is provided elsewhere [16]. 

Thus, neither ST nor ST-I1 provides a robust 
and efficient solution to the multipoint-to-multi- 
point resource reservation problem. They share 
several of the limitations of the strawman pro- 
posal described earlier. The RSVP design effort 
was initiated to fill this vacuum. Recently, how- 
ever, there have been other proposals to fill this 
need. Pasquale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. have proposed a dissemina- 
tion-oriented approach in their work on multi- 
media multicast channels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[17]. They share with 
us these viewpoints: 

To  efficiently support heterogeneous 
receivers, each receiver must be able to 
specify a stream filter for the subset of the 
data it is interested in receiving. 
Furthermore, not to waste network 
resources, the filters from all the receivers 
should be propagated toward the sender, so 
the subset of the data in which no one is 
interested would be stopped at the earliest 
point along the source propagation tree. 
However, they only considered single-source 

applications (such as cable TV), as opposed to 
RSVP’s functionality of supporting multipoint- 

to-multipoint applications, and they have mainly 
focused on the programming interface to appli- 
cations, as opposed to our interest in designing a 
protocol that reserves resources inside the net- 
work and adjusts the reservation to dynamic 
environmental changes. 

UNRESOLVED lSSUES 
While RSVP has been simulated and tested to 
some extent, we fully expect that further incre- 
mental design changes will be made as we gain 
experience with RSVP, both on DARTnet and 
also through further simulation. Besides these 
incremental changes, however, several larger 
design issues remain unresolved, as detailed 
below. 

RSVP was designed with minimal expecta- 
tions of routing. Path states are used to essen- 
tially invert the routing tables, a function that 
routing could easily provide if it were so 
designed. If we were to design new routing algo- 
rithms, what routing support would we include 
to support resource reservation algorithms? 

In this design, we have associated filters with 
resource reservations. In fact, filters could be 
applied to flows even without reserved resources. 
Furthermore, there are filter styles besides the 
ones described here that might be useful. For 
remote lectures with several speakers at separate 
sites, one might want a dynamic filtered reserva- 
tion where the filter is the same for each receiv- 
er, as proposed by Jacobson [18]. This feature 
would allow the audience to switch (in unison) 
to different speakers with only one set of 
resources reserved. Thus, one unresolved issue is 
defining the general service model and interfaces 
for such filters, where these definitions are not 
specifically tied to the presence of resource 
reservations. 

Our current simulations and tests deal only 
with reasonably small networks and small multi- 
cast groups. We do not yet understand how RSVP 
performs when the size of the multicast groups 
gets very large. Can one use caching strategies to 
avoid the router state explosion when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS (the num- 
ber of senders) and/or R (the number of receivers) 
gets very large? This issue is particularly relevant 
to the case of cable TV, where every home would 
want a dynamic reservation but the switches obvi- 
ously would not want to keep an individual reser- 
vation state for each home. 

SUMMARY 
RSVP’s architecture is unique in that: 

It provides receiver-initiated reservations to 
accommodate heterogeneity among 
receivers as well’as dynamic membership 
changes. 
It separates the filter from the reservation, 
thus allowing channel changing behavior. 
I t  supports a dynamic and robust multi- 
point-to-multipoint communication model 
by taking a soft-state approach in maintain- 
ing resource reservations. 
It decouples the reservation and routing 
functions and thus can run on top of, and 
take advantage of, any multicast routing 
protocols. 
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We have verified the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSVP design by 
detailed simulation and a preliminary implemen- 
tation. Much testing remains to be done in the 
context of larger-scale simulations, as well as in 
real prototype networks such as DARTnet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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