
RT-Level Deviation-Based Grading of Functional Test Sequences
∗

Hongxia Fang1, Krishnendu Chakrabarty1, Abhijit Jas2, Srinivas Patil2 and Chandra Tirumurti2

1ECE Dept., Duke University, Durham, NC 2Intel Corporation, Austin, TX
{hf12, krish}@ee.duke.edu {abhijit.jas, srinivas.patil, chandra.tirumurti}@intel.com

Abstract—Functional test sequences are often used in man-
ufacturing testing to target defects that are not detected by
structural test. Therefore, it is necessary to evaluate the quality
of functional test sequences. However, it is very time-consuming to
evaluate the quality of functional test sequences by gate-level fault
simulation. Therefore, we propose output deviations as a metric
to grade functional test sequences at the register transfer (RT)-
level without explicit fault simulation. Experimental results for
the open-source Parwan processor and the Scheduler module of
the Illinois Verilog Model (IVM) show that the deviations metric
is computationally efficient and it correlates well with gate-level
coverage for stuck-at, transition-delay, and bridging faults. Results
also show that functional test sequences that are reordered based on
output deviations provide steeper gate-level fault coverage ramp-up
compared to other ordering methods.

I. Introduction

Structural test offers several advantages over functional test.
For example, it allows us to develop test generation and test
evaluation (e.g., fault simulation) algorithms based on selected
fault models [1]. However, functional test has not yet been
completely replaced by structural test. Instead, it is commonly
used in industry to target defects that are not detected by
structural tests [2]–[4]. An advantage of functional test is that
it avoids overtesting since it is performed in normal functional
mode. In contrast, structural test is accompanied by some degree
of yield loss [5]. Register transfer (RT)-level fault modeling,
test generation and test evaluation are therefore of considerable
interest [6]–[9].

Given a large pool of functional test sequences (for example,
design verification sequences), it is necessary to develop an ef-
ficient method to select a subset of sequences for manufacturing
testing. Since functional test sequences are much longer than
structural tests, it is time-consuming to grade functional test
sequences using traditional gate-level fault simulation methods.

To quickly estimate the quality of functional tests, a high-
level coverage metric for estimating the gate-level coverage of
functional tests is proposed in [10]. This metric is based on
event monitoring. First, gate-level fault activation and propaga-
tion conditions are translated to coverage objects at functional
level. Next, a functional simulator is used for monitoring the
“hit number” of the coverage objects, and estimating the fault
coverage. However, this approach requires considerable time and
resources for the extraction of the coverage objects. In particular,
experienced engineers and manual techniques are needed to
extract the best coverage objects.

In [11], another coverage metric is proposed to estimate the
gate-level fault coverage of functional test sequences. This metric
is based on logic simulation of the gate-level circuit, and on the
set of states that the circuit traverses. It relies on the observation

∗This work was supported in part by the Semiconductor Research Corporation
under Contract no. 1588, and by an equipment grant from Intel Corporation.

that a test sequence with high fault coverage also traverses a large
number of circuit states [12] [13]. The ratio of visited states to
the total number of possible states for each subset is used to
estimate fault coverage. However, this method does not take the
observability of flip-flops into consideration. The observability
of flip-flops affects the accuracy of the estimated fault coverage,
especially when state transitions in the circuit are caused by
changes in the contents of sequentially-deep flip-flops. Another
drawback of this method is that it is impractical for large designs
since it requires gate-level logic simulation.

In this paper, we propose output deviations as a metric at RT-
level to grade functional test sequences. The deviation metric
at the gate-level has been used in [14] to select effective test
patterns from a large repository of n-detect test patterns. It
has also been used in [15] to select appropriate LFSR seeds
for LFSR-reseeding-based test compression. Here, we define
the output deviations metric at RT-level and use it for grading
functional test sequences. We show that, compared to gate-level
fault simulation, an order of magnitude reduction in computation
time is achieved using the proposed method.

The remainder of this paper is organized as follows. Section
II introduces basic concepts and preliminaries. Section III de-
fines output deviations and describes the procedure used for
calculation. We present the experimental results on the open-
source Parwan processor and the Scheduler module in Section
IV. Section V concludes the paper.

II. Output Deviations at RT-level: Preliminaries

In this section, we present basic concepts needed to calculate
output deviations at RT-level. Our objective is to use deviations
as a surrogate metric for functional test grading.

First, we define the concept of transition count (TC) for a
register. Typically, there is dataflow between registers when an
instruction is executed and the dataflow affects the values of
registers. For any given bit of a register, if the dataflow causes
a change from 0 to 1, we record that there is a 0→1 transition.
Similarly, if the dataflow causes a change from 1 to 0, we record
that there is a 1→0 transition. If the dataflow makes no change
to this bit of the register, we record that there is a 0→0 transition
or a 1→1 transition, as the case may be.

After a transition occurs, the value of the bit of a register can
be correct or faulty (due to an error). With any transition of a
register bit, we associate a “confidence level” (CL) parameter,
which represents the probability that the correct transition occurs.
The CL is not associated with the test sequence; rather, it
provides a probabilistic measure of the correct operation of
instructions at the RT-level. It can be estimated from low-level
failure data or it can be provided by the designer based on the
types of faults of interest. Low CL values can be assigned to
registers that are to be especially targeted by functional test

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

271

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

271

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

271

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

271

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

271

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

264

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

264

2009 27th IEEE VLSI Test Symposium

1093-0167/09 $25.00 © 2009 IEEE

DOI 10.1109/VTS.2009.12

264

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 01:49:30 UTC from IEEE Xplore. Restrictions apply.

sequences for error observation and propagation. We show later
that small differences in the CL values have little impact on the
effectiveness of the proposed method for grading functional test
sequences.

Without loss of generality, we assume there that the CL values
for 0→0 and 1→1 are higher than that for the transitions 0→1
and 1→0 for a register bit. We also assume that the CL values
for 0→1 and 1→0 are identical. The CL for a register can
be described as a 4-tuple, e.g., < 0.998, 0.995, 0.995, 0.998 >,
where the elements in the tuple correspond to the transitions
0→0, 0→1, 1→0, and 1→1, respectively. While different CL
values can be used for the various registers in a design, we
assume here without loss of generality that all registers have
identical CL values.

When an instruction is executed, there may be several tran-
sitions for the bits of a register. Therefore, an error may be
manifested after the instruction is executed. We define the CL
for instruction Ii, Ci, as the probability that no error is produced
when Ii is executed. Its calculation is explained in Section III.

Similarly, since a functional test sequence is composed of
several instructions, we define the CL for a functional test
sequence to be the probability that no error is observed when
this functional test sequence is executed. For example, suppose a
functional test sequence, labeled T1, is composed of instructions
I1, I2, ..., IN , and let Ci be the CL for Ii, as defined above. The
CL value for T1, C(T1), is defined as: C(T1) =

∏N
i=1 Ci. This

corresponds to the probability that no error is produced when T1

is executed. We define the deviation for functional test sequence
T1, �(T1), as 1 − C(T1), i.e., �(T1) = 1 − ∏N

i=1 Ci.
Based on these definitions, output deviations can be calculated

at RT-level for functional test sequences for a given design. This
procedure is described in detail in the next section.

III. Deviation Calculation at RT-level

Since our objective is to use deviations as a surrogate metric to
grade functional test sequences, we expect test sequences with
higher deviation values to provide higher defect coverage. In
order to ensure this, we consider three contributors to output
deviations. The first is the TC of registers. Higher the TC
for a functional test sequence, the more likely is it that this
functional test sequence will detect defects. We therefore take
TC into consideration while calculating deviations. The second
contributor is the observability of a register. The TC of a register
will have little impact on defect detection if its observability is
so low that transitions cannot be propagated to primary outputs.
The third contributor is the amount of logic connected to a
register. In order to have a high correlation between RT-level
deviation and gate-level stuck-at fault coverage, we need to
consider the relationship between RT-level registers and gate-
level components.

In this section, the Parwan processor [16] is used as an
example to illustrate the calculation of output deviations.

A. Observability Vector

We first consider the observability of registers. The output of
each register is assigned an observability value. The observability
vector for a design at RT-level is composed of the observability
values of all its registers. Let us consider the calculation of the

IR

CONTROLLER

AC

SR

MEMORY

SHU

PC

 MAR

ALU

DATABUS

A B

ADDBUS

(a)
(b)

Figure 1. (a) Architecture of the Parwan processor; (b) Dataflow graph of the
Parwan processor (only the registers are shown).

observability vector for the Parwan processor [16]. The Parwan
is an accumulator-based 8-bit processor with a 12-bit address
bus. Its architectural block diagram is shown in Figure 1(a).

From the instruction-set architecture and RT-level description
of Parwan, we extract the dataflow diagram to represent all
possible functional paths. Figure 1(b) shows the dataflow graph
of Parwan. Each node represents a register. The IN and OUT
nodes represent memory. A directed edge between registers
represents a possible functional path between registers. For
example, there is an edge between the AC node and the OUT
node. This edge indicates that there exists a possible functional
path from register AC to memory.

From the dataflow diagram, we can calculate the observability
vector. First, we define the observability value for the OUT node.
The primary output OUT has the highest observability since it
is directly observable. Using sequential-depth-like measure for
observability [1], we define the observability value of OUT to
be 0, written as OUT obs = 0. For every other register node,
we define its observability parameter as 1 plus the minimum
of the observability parameters of all its fanout nodes. For
example, the fanout nodes of register AC are OUT, SR, and
AC itself. Thus the observability parameter of register AC is
1 plus the minimal observability parameter among OUT, SR,
AC. That is, the observability parameter of register AC is 1.
In the same way, we can obtain the observability parameters
for MAR, PC, IR and SR. We define the observability value
of a register as the reciprocal of its observability parame-
ter. Finally, we obtain the observability vector for Parwan.
It is simply (1

AC obs , 1
IR obs , 1

PC obs , 1
MAR obs , 1

SR obs), i.e.,
(1, 0.5, 1, 1, 0.5).
B. Weight Vector

The weight vector is used to model how much combinational
logic a register is connected to. Each register is assigned a weight
value, representing the relative sizes of its input cone and fanout
cone. The weight vector for a design is composed of the weight
values of all its registers. Obviously, if a register has a large input
cone and a large fanout cone, it will affect and be affected by
many lines and gates. Thus it is expected to contribute more to
defect detection. In order to accurately extract this information,
we need gate-level information to calculate the weight vector.
We only need to report the number of stuck-at faults for each
component based on the gate-level netlist. This can be easily
implemented without gate-level logic simulation by an automatic
test pattern generation (ATPG) tool or a design analysis tool.
Here we use Flextest to obtain the number of stuck-at faults for

272272272272272265265265

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 01:49:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I
WEIGHT VECTOR FOR

REGISTERS (PARWAN).

No. of Weight
FAR value

AC 2172 1
IR 338 0.1556
PC 936 0.4309

MAR 202 0.093
SR 2020 0.930

TABLE II
TCS FOR TS .

0→0 0→1 1→0 1→1
AC 67 61 60 44
IR 206 67 66 37
PC 708 90 85 205

MAR 913 251 246 246
SR 67 11 14 12

TABLE III
EFFECTIVE TCS FOR TS .

Register ID Register name 0→0 0→1 1→0 1→1
R1 AC 67 61 60 44
R2 IR 16.03 5.21 5.13 2.88
R3 PC 305.08 38.78 36.63 88.33
R4 MAR 84.91 23.34 22.88 22.88
R5 SR 31.16 5.115 6.51 5.58

Sum 504.18 133.45 131.19 163.67

each component in Parwan: there are 248 stuck-at faults in AC,
136 in IR, 936 in PC, 202 in MAR, 96 in SR, 14690 in ALU,
and 464 in SHU. From this information, we can easily calculate
the weight vector (Table I).

Based on the RT-level description of the design, we can
determine the fanin cone and fanout cone of a register. For
example, the AC register is connected to three components: AC,
SHU and ALU. Given a set of registers {Ri}, i = 1, 2, .., n, let fi

be the total number of stuck-at faults in components connected to
register Ri. Let fmax = max{f1, .., fn}. We define the weight
of register Ri as fi/fmax to normalize the size of gate-level
logic. Table I shows the numbers of faults affecting registers and
weights of registers. We can see that fmax = 2172 for Parwan
processor, which is the number of faults in AC. The weight of IR
can be calculated as 338/2172, i.e., 0.1556. In this way, weights
of other registers can also be obtained. Finally, we get the weight
vector (1, 0.1556, 0.4309, 0.093, 0.930).

C. Calculation of Output Deviations

The output deviations can be calculated for functional test
sequences using the TCs, the observability vector, and the weight
vector. First, we need to calculate the effective TCs for registers.
Suppose register AC makes N1 0→1 transitions for a functional
test sequence TS. Then its effective 0→1 TC equals the product
of N1, the observability value of register AC, and the weight of
register AC. The following example illustrates how to calculate
the deviation for TS. Consider the CL vector (1, 0.998, 0.998, 1),
the observability vector (1, 0.5, 1, 1, 0.5), and the weight vector
(1, 0.1556, 0.4309, 0.093, 0.930). Also, the TCs corresponding to
TS are shown in Table II.

In Table II, each row shows the TC for one register, while each
column represents the transition type. For example, the value of
third row and second column is 206, which implies that the 0→0
TC for IR is 206 when functional test sequence TS is executed.

By considering the weight vector and the observability vector,
the TC of a register can be transformed to the effective TC.
Table III shows the effective TC values for TS for the given
observability vector and weight vector.

In Table III, each row lists the effective TC for one register.
The last row shows the aggregated effective TC for all registers.
The columns indicate the various types of transitions.

Suppose TS is composed of 50 instructions I1, I2 ..., I50. For
each instruction Ii, suppose the effective 0→0 TC for register
Rk (where Rk, 1 ≤ k ≤ 5, is listed in Table III) is Rki00, the
effective 0→1 TC for register Rk is Rki01, the effective 1→0 TC
for register Rk is Rki10, and the effective 1→1 TC for register
Rk is Rki11. Given the CL vector (1, 0.98, 0.98, 1), the CL value
Ci for instruction Ii can be calculated by considering all possible
transitions and the different registers:

Ci =
5∏

k=1

(1Rki00 · 0.998Rki01 · 0.998Rki10 · 1Rki11). (1)

Using the property of the exponents, whereby xa · xb = xa+b,
Equation (1) can be rewritten as

Ci = 1
∑5

k=1 Rki00 · 0.998
∑ 5

k=1 Rki01 · (2)

0.998
∑ 5

k=1 Rki10 · 1
∑5

k=1 Rki11 .

Let Si00=
∑5

k=1 Rki00, Si01=
∑5

k=1 Rki01, Si10=
∑5

k=1 Rki10,
and Si11=

∑5
k=1 Rki11. Equation (2) can now be written as

Ci = 1Si00 · 0.998Si01 · 0.998Si10 · 1Si11 . (3)
Based on the deviation definition in Section II, the deviation for
TS can be calculated as Δ(TS) = 1 − ∏50

i=1 Ci, i.e.,

Δ(TS) = 1 − ∏50
i=1(1

Si00 · 0.998Si01 · 0.998Si10 · 1Si11) (4)

= 1 − 1
∑50

i=1 Si00 · 0.998
∑ 50

i=1 Si01 · 0.998
∑ 50

i=1 Si10 · 1
∑50

i=1 Si11

Let S∗
00 =

∑50
i=1 Si00, S∗

01 =
∑50

i=1 Si01, S∗
10 =

∑50
i=1 Si10, and

S∗
11 =

∑50
i=1 Si11, Equation (4) can be rewritten as:

Δ(TS) = 1 − 1S∗
00 · 0.998S∗

01 · 0.998S∗
10 · 1S∗

11 .

Note that S∗
00 is the aggregated effective 0→0 TC of all registers

for all the instructions in TS. The parameters S∗
01, S∗

10, and S∗
11

are defined in a similar way. From Table III, we can see that
the aggregated effective TC is (504.18, 133.45, 131.19, 163.67).
Thus we have Δ(TS) = 1 − 1504.18 · 0.998133.45 · 0.998131.19 ·
1163.67, which implies that Δ(TS) = 0.4113.

IV. Experimental Results
We next evaluate the efficiency of deviation-based test-

sequence by performing experiments on the Parwan processor
and the Scheduler module of the Illinois Verilog Model (IVM)
[17] [18]. IVM employs a microarchitecture that is similar in
complexity to the Alpha 21264. It has most of the features
of modern microprocessors, featuring superscalar operation, dy-
namical scheduling, and out-of-order execution. Relevant re-
search based on IVM has recently been reported in [19] [20].
The Verilog model for Scheduler consists of 1090 lines of code.
A synthesized gate-level design for it consists of 375,061 gates
and 8,590 flip-flops.

Our first goal is to show high correlation between RT-level
deviations and gate-level coverage for various fault models. The
second goal is to investigate the ramp-up of the gate-level fault
coverage for various functional test sequences. These sequences
are obtained using different sequence-reordering methods.

A. Results for Parwan Processor

1) Experimental setup: All experiments for Parwan processor
were performed on a 64-bit Linux server with 4 GB memory.
The program for deviation calculation was coded in C++. We
used ModelSim to run the Verilog simulation. The Flextest
tool was used to run gate-level fault simulation and Matlab

273273273273273266266266

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 01:49:30 UTC from IEEE Xplore. Restrictions apply.

Functional Test
Sequences

VCDE
Patterns

RT-level
Deviations

Gate-level
Fault Coverage

Calculate
Deviations

Compute CorrelationVerilog Simulation

Fault
Simulation

Figure 2. Experimental flow.

was used to obtain the Kendall’s correlation coefficient [21].
The Kendall’s correlation coefficient is used to measure the
degree of correspondence between two rankings and assessing
the significance of this correspondence. It is used in this paper
to measure the degree of correlation of RT-level deviations and
gate-level fault coverage. A coefficient of 1 indicates perfect
correlation while a coefficient of 0 indicates no correlation.

We obtained a functional test program [22] for Parwan and
divided it into ten test sequences TS1, TS2, ..., TS10. Each
sequence consists of 50 instructions. For example, TS1 is
composed of the first 50 instructions in the test program.

2) Correlation between output deviations and gate-level fault
coverage: For these ten functional test sequences, we derived
the Kendall’s correlation coefficient between their RT-level out-
put deviations and their gate-level fault coverage. The stuck-
at fault model is used for the Parwan processor, as well as
the bridging-coverage estimate (BCE) [23] and the modified
BCE measure (BCE+) [24]. Figure 2 presents details about
the experimental flow. First we calculate the deviation for the
ten functional test sequences under eight CL vectors. The CL
vectors are chosen as follows: CL1 = (1, 0.998, 0.998, 1), CL2

= (0.99998, 0.995, 0.995, 0.99998), CL3 = (0.99997, 0.9993,
0.9993, 0.99997), CL4 = (1, 0.9992, 0.9992, 1), CL5 = (1,
0.996, 0.996, 1), CL6 = (0.9997, 0.994, 0.994, 0.9997), CL7

= (0.99998, 0.9996, 0.9996, 0.99998), and CL8 = (1, 0.9993,
0.9993, 1). For each CL vector, we obtain the deviation values
for the ten functional test sequences and record them as a vector.
For example, for the CL1 case, the deviations are recorded as
DEV CL1(dev1, dev2, ..., dev10).

We next obtain test patterns in external-VCD (VCDE) for-
mat for the ten functional test sequences by running Verilog
simulation. Using the VCDE patterns, gate-level fault coverage
is obtained by running fault simulation for the ten functional
test sequences. The coverage values are recorded as a vector:
COV (cov1, cov2, ..., cov10). Table IV shows the gate-level fault
coverage for the ten functional test sequences.

In order to evaluate the effectiveness of the deviation-based
functional test-grading method, we calculate the Kendall’s cor-
relation coefficient between DEV CLi (i = 1, ..., 8) and COV
for each CL vector. Figure 3 shows the correlation between devi-
ations and stuck-at fault coverage, as well as between deviations
and BCE/BCE+ metrics, for different CL vectors. For stuck-
at faults, we see that the coefficients are very close to 1 for all
four CL vectors. For bridging faults, the correlation is less, but
still significant. The results demonstrate that the deviation-based
method is effective for grading functional test sequences. The

TABLE IV
GATE-LEVEL FAULT COVERAGE (PARWAN).

Functional Stuck-at BCE BCE+

test fault coverage (%) (%) (%)
TS1 60.50 54.61 40.18
TS2 55.04 49.42 35.10
TS3 55.71 50.40 36.19
TS4 56.20 50.43 36.33
TS5 54.47 52.20 37.97
TS6 57.23 53.61 39.07
TS7 59.99 55.20 40.63
TS8 61.17 55.39 41.14
TS9 61.17 56.01 41.50

TS10 55.99 52.13 37.74

TABLE V
REGISTERS AND REGISTER ARRAYS IN THE SCHEDULER MODULE.

Name Width Array Name Width Array
sb counters 3 0 : 79 instout0 222 −

issued 1 0 : 31 instout1 222 −
valid 1 0 : 31 instout2 222 −

issue head 5 − instout3 222 −
issue tail 5 − instout4 222 −
inst array 217 0 : 31 instout5 222 −

CPU time for deviation calculation and test-sequence grading is
less than 1 second in all cases.

B. Results for Scheduler module

To further demonstrate the benefits of the RT-level deviation
metric for larger circuits and longer test sequences, we perform
experiments on the Scheduler module.

The experimental procedure is similar to that of Parwan
processor: 1) obtain the RT-level deviations by considering TCs,
observability vector, and weight vector; 2) obtain the gate-
level fault coverage; 3) calculate the correlation coefficient and
compare the coverage ramp-up curves.

1) Scheduler module: The Scheduler dynamically schedules
instructions, and it is a key component of the IVM architecture
[19]. It contains an array of up to 32 instructions waiting to be
issued and can issue 6 instructions in each clock cycle.

Table V shows the registers and register arrays in the Sched-
uler module. The first and the fourth columns list the name of the
register or register array. The second and fifth columns represent
the width of each register in bits. The third and sixth columns
indicate whether it is a register array. If it is a register array, the
index value is shown.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CL
1
 CL

2
 CL

3
 CL

4
 CL

5
 CL

6
 CL

7
 CL

8

K
en

da
ll’

s
C

or
re

la
tio

n
C

oo
ef

fi
ci

en
t

stuck−at
BCE
BCE+

Figure 3. Correlation between output deviations and gate-level fault coverage
(Parwan).

274274274274274267267267

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 01:49:30 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
WEIGHT VECTOR FOR SCHEDULER MODULE.

Fanin Fanout No. of
Registers count count connections Weight

sb counters 9211 4800 14011 0.0183
issued 112932 355464 468396 0.6113

valid 4886 355482 360368 0.4703
issue head 2986 397086 400072 0.5221

issue tail 146 202732 202878 0.2648
inst array 275639 490584 766223 1

instout0 92962 4367 97329 0.1270
instout1 118629 4367 122996 0.1605
instout2 92553 4775 97328 0.1270
instout3 92638 4687 97325 0.1270
instout4 93045 4137 97182 0.1268
instout5 118337 4137 122474 0.1598

2) Experimental setup: The experimental setup is the same
as that for Parwan processor, except for the calculation of
deviations. For the Scheduler module, Design Compiler (DC)
from Synopsys was used to extract the gate-level information
for calculating weight vector. Synopsys Verilog Compiler (VCS)
was used to run Verilog simulation and compute the deviations.

All experiments are based on 10 functional test sequences. Six
of them are composed of instruction sequences, referred to as T0,
T1, T2, T3, T4, T5. The other four, labeled as T6, T7, T8 and T9,
are obtained indirectly by sequential ATPG. First, cycle-based
gate-level stuck-at ATPG is carried out. From the generated
patterns, stimuli are extracted and composed into a functional
test sequence, labeled as T6. Next we perform “not”, “xnor”,
“xor” bit-operations on T6 separately and obtain new functional
test sequences T7, T8 and T9. T7 is obtained by inverting each bit
of T6; T8 is obtained by performing “xnor” operation between the
adjacent bits of T6; T9 is obtained by performing “xor” operation
between the adjacent bits of T6. The above bit-operations do not
affect the clock and reset signals in the design.

3) RT-level deviations: Using the deviation-calculation
method in Section III, we calculate the RT-level deviations for
the Scheduler module by considering the parameter TC, weight
vector and observability vector.

To obtain the weight vector, we first determine the fanin
and fanout counts for each register or register array. A net is
considered to be in the fanin cone of a register if there is a
path through combinational logic from the net to that register.
Similarly, a net is considered to be in the fanout cone of a register
if there is a path through combinational logic from that register
to the net. Table VI lists these counts for each register (array)
and shows the weight vector components. In Column 4, “No. of
connections” is the sum of the fanin count and the fanout count.

The observability vector is obtained using the dataflow di-
agram extracted from the design. The dataflow diagram is
extracted in the same way as for the Parwan processor. Figure 4
shows the dataflow diagram of the Scheduler module.

We consider the following order of the registers:
sb counters, issued, valid, issue head, issue tail, instout0,
instout1, instout2, instout3, instout4, instout5, and
inst array. The corresponding observability vector is
< 0.5, 0.5, 0.5, 0.3333, 1, 1, 1, 1, 1, 1, 0.5 >.

Given the information of the TCs, the weight vector, and
the observability vector, RT-level deviations can be calcu-
lated for given CL vectors. Eight CL vectors were used

inst_array

instout0
|

instout5

issue_head

issued

valid

sb_counters

issue_tail

out

Figure 4. Dataflow diagram of Scheduler module.

TABLE VII
RT-LEVEL DEVIATIONS OF TEN FUNCTIONAL TESTS FOR SCHEDULER

MODULE.

Deviations

FT (CL1) (CL2) (CL3) (CL4) (CL5) (CL6) (CL7) (CL8)

T0 0.6250 0.4500 0.2817 0.2906 0.3628 0.5788 0.7704 0.2549

T1 0.6261 0.4504 0.2828 0.2913 0.3630 0.5788 0.7714 0.2556

T2 0.5986 0.4407 0.2698 0.2734 0.3586 0.5716 0.7456 0.2395

T3 0.6054 0.4431 0.2732 0.2778 0.3597 0.5732 0.7522 0.2435

T4 0.6195 0.4480 0.2794 0.2870 0.3619 0.5772 0.7653 0.2517

T5 0.6257 0.4502 0.2821 0.2910 0.3629 0.5790 0.7710 0.2553

T6 0.9773 0.7235 0.6991 0.7344 0.5119 0.7458 0.9966 0.6790

T7 0.9815 0.7367 0.7132 0.7524 0.5211 0.7584 0.9975 0.6977

T8 0.8556 0.5646 0.5192 0.4920 0.4180 0.6057 0.9451 0.4404

T9 0.8826 0.5862 0.5551 0.5275 0.4293 0.6151 0.9598 0.4741

for deviation calculation for the Scheduler module. They are
listed as follows: CL1 = (1, 0.99998, 0.99998, 1), CL2

= (0.9999999, 0.999995, 0.999995, 0.9999999), CL3 = (1,
0.99995, 0.99995, 0.9999998), CL4 = (1, 0.999993, 0.999993,
1), CL5 = (0.9999999, 0.999998, 0.999998, 0.9999999), CL6

= (0.9999998, 0.999995, 0.999995, 1), CL7 = (1, 0.99997,
0.99997, 1), and CL8 = (1, 0.999994, 0.999994, 1). For CL3

and CL6, we set different values to the CL of 0→0 transition
and 1→1 transition. The corresponding RT-level deviations under
these eight CL vectors for the Scheduler module are shown in
Table VII (FT stands for functional test). The total CPU time
for deviation calculation and test-sequence grading is less than
8 hours. The CPU time for gate-level stuck-at (transition) fault
simulation is 110 (175) hours, and the CPU time for computing
the gate-level BCE (BCE+) measure is 120 (125) hours, thus
we are able to reduce CPU time significantly.

4) Correlation between output deviations and gate-level fault
coverages: We obtain the stuck-at and transition fault coverages
for the functional test sequences by running fault simulation
at the gate-level. Bridging fault coverage is estimated using
the BCE and BCE+ metrics. The correlation between these
gate-level fault coverage measures and RT-level deviations are
computed and the Kendall’s correlation coefficients are shown
in Figure 5. As in the case of the Parwan processor, the
correlation coefficients are close to 1 for all the CL vectors. This
demonstrates that the RT-level deviations are a good predictor of
the gate-level fault coverage.

5) Cumulative gate-level fault coverage (Ramp-up):
We evaluate the cumulative stuck-at and transition fault
coverage of several reordered functional test sequences.

275275275275275268268268

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 01:49:30 UTC from IEEE Xplore. Restrictions apply.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CL
1
 CL

2
 CL

3
 CL

4
 Cl

5
 CL

6
 CL

7
 CL

8

K
en

da
ll’

s
C

or
re

la
tio

n
C

oo
ef

fi
ci

en
t

stuck−at
transition
BCE
BCE+

Figure 5. Correlation between output deviations and gate-level fault coverage
(Scheduler module).

These reordered sequences sets are obtained in four
ways: (i) baseline order T0, T1..., T9; (ii) random ordering
T2, T1, T5, T7, T0, T3, T8, T9, T6, T4; (iii) random ordering
T4, T1, T0, T9, T2, T7, T6, T3, T5, T8; (iv) the descending order of
output deviations. In the deviation-based method, test sequences
with higher deviations are ranked first. Figure 6 and Figure 7
show cumulative stuck-at and transition fault coverages for the
four reordered functional test sequences following the above
four orders. We find that the deviation-based method results in
the steepest cumulative stuck-at and transition coverage curves.

V. Conclusions
We have presented the output deviation metric at RT-level to

model the quality of functional test sequences. This metric is
based on the transition counts, observability vectors, and the
weight vectors for registers. By adopting the deviation metric,
timing-consuming fault simulation at gate-level can be avoided
for the grading of functional test sequences. Experiments on the
Parwan processor and the Scheduler module of the IVM design
show that the deviations obtained at RT-level correlate well with
the stuck-at, transition, and bridging fault coverage at the gate
level. Moreover, the functional test sequences set reordered using
deviations provides a steeper cumulative stuck-at and transition
fault coverage, and there is an order of magnitude reduction in
CPU time compared to gate-level methods.

REFERENCES

[1] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing
for Digital, Memory, and Mixed-Signal VLSI Circuits, Boston; Kluwer
Academic Publishers, 2000.

[2] P. C. Maxwell, I. Hartanto and L. Bentz, “Comparing Functional and
Structural Tests,” in Proc. Int. Test Conf., pp. 400-407, 2000.

[3] A. K. Vij, “Good Scan= Good Quality Level? Well, It Depends...,” in Proc.
Int. Test Conf., pp. 1195, 2002.

[4] J. Gatej et al., “Evaluating ATE Features in Terms of Test Escape Rates
and Other Cost of Test Culprits,” in Proc. Int. Test Conf., pp. 1040-1049,
2002.

[5] J. Rearick and R. Rodgers, “Calibrating Clock Stretch During AC Scan
Testing,” in Proc. Int. Test Conf., pp. 266-273, 2005.

[6] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul, “Register-transfer level
fault modeling and test evaluationtechniques for VLSI circuits,” in Proc.
Int. Test Conf., pp. 940-949, 2000.

[7] F. Corno, M. S. Reorda and G. Squillero, “RT-Level ITC’99 Benchmarks
and First ATPG Result,” in IEEE Design & Test of Computers, pp. 44-53,
2000.

[8] M. B. Santos, F. M. Goncalves, I. C. Teixeira, and J. P. Teixeira, “RTL-
Based Functional Test Generation for High Defects Coverage in Digital
Systems,” in Journal of Electronic Testing: Theory and Applications, vol.
17, pp. 311-319, 2001.

1 2 3 4 5 6 7 8 9 10
14

19

24

29

34

39

44

49

54

59

64

69

74

Test sequences

Fa
ul

t c
ov

er
ag

e

T
0
,T

1
...T

9

Random(1)
Random(2)
Deviations

Figure 6. Cumulative stuck-at fault coverage for various test-sequence ordering
methods (Scheduler module).

1 2 3 4 5 6 7 8 9 10
1

6

11

16

21

26

31

36

41

46

51

Test sequences
Fa

ul
t c

ov
er

ag
e

T
0
,T

1
...T

9

Random(1)
Random(2)
Deviations

Figure 7. Cumulative transition fault coverage for various test-sequence ordering
methods (Scheduler module).

[9] W. Mao and R. K. Gulati, “Improving Gate Level Fault Coverage by RTL
Fault Grading,” in Proc. Int. Test Conf., pp. 150-159, 1996.

[10] S. Park et al.,“A Functional Coverage Metric for Estimating the Gate-level
Fault Coverage of Functional Tests,” in Proc. Int. Test Conf., 2006.

[11] I. Pomeranz, P. K. Parvathala, S. Patil, “Estimating the Fault Coverage of
Functional Test Sequences Without Fault Simulation,” in Proc. Asian Test
Symposium, pp. 25-32, 2007.

[12] T. E. Marchok et al., “A Complexity Analysis of Sequential ATPG,” IEEE
Trans. CAD, vol. 15, pp. 1409-1423, Nov. 1996.

[13] I. Pomeranz and S. M. Reddy, “LOCSTEP: A Logic-Simulation-Based Test
Generation Procedure,” IEEE Trans. CAD, vol. 16, pp. 544-554, May 1997.

[14] Z. Wang and K. Chakrabarty, “Test-Quality/Cost Optimization Using
Output-Deviation-Based Reordering of Test Patterns,” IEEE Trans. CAD,
vol. 27, pp. 352-365, 2008.

[15] Z. Wang, K. Chakrabarty and M. Bienek, “A Seed-Selection Method to
Increase Defect Coverage for LFSR-Reseeding-Based Test Compression,”
in Proc. Europ. Test Symp., pp. 125-130, 2007.

[16] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, New York;
McGraw-Hill Companies, 1997.

[17] N. J. Wang et al., “Characterizing the Effect of Transient Faults on a High-
Performance Processor Pipeline,” in Proc. Int. Conf. Dep. Sys. and Net.,
pp. 61-70, 2004.

[18] N. J. Wang and S. J. Patel, “Restore: symptom based soft error detection in
microprocessors,” in Proc. Int. Conf. Dep. Sys. and Net., pp. 30-39, 2005.

[19] M. Maniatakos et al., “Design and Evaluation of a Timestamp-Based
Concurrent Error Detection Method (CED) in a Modern Microprocessor
Controller,” in Proc. Int. Symp. DFT in VLSI Systems, 2008.

[20] N. Karimi et al., “On the Correlation between Controller Faults and
Instruction-Level Errors in Modern Microprocessors,” in Proc. Int. Test
Conf., 2008.

[21] B. J. Chalmers, Understanding Statistics; CRC Press, 1987.
[22] Documentation for the Parwan processor, http: //mesdat.ucsd.edu/

∼lichen/260c/parwan/.
[23] B. Benware et al., “Impact of Multiple-Detect Test Patterns on Product

Quality,” in Proc. International Test Conference, pp. 1031-1040, 2003.
[24] H. Tang et al., “Defect Aware Test Patterns,” in Proc. Design, Automation,

and Test in Europe Conf., pp. 450-455, 2005.

276276276276276269269269

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 01:49:30 UTC from IEEE Xplore. Restrictions apply.

