

Luc Séméria

1

, Andrew Seawright

2

, Renu Mehra

1

, Daniel Ng

3

, Arjuna Ekanayake

4

, Barry Pangrle

1

1

Synopsys, Inc.

2

O-In Design Automation, Inc.

3

Broadcom, Inc.
{lucs,renu,pangrle}@synopsys.com andrew@0-in.com dng@broadcom.com

4

arjuna@stanfordalumni.org

Abstract

 – A RTL C-based design and verification methodology is
presented which enabled the successful high speed validation of a 7
million gate simultaneous multi-threaded (SMT) network processor.
The methodology is centered on statically scheduled C-based cod-
ing style, C to HDL translation, and a novel RTL-C to RTL-Verilog
equivalence checking flow. It leverages improved simulation perfor-
mance combined with static techniques to reduce the amount of
RTL-Verilog and gate-level verification required during develop-
ment.

Categories

 – B.5.2 [

Register-Transfer-Level Implementation

]
Design Aids:

Automatic synthesis, Hardware description languages,
Optimization, Simulation,Verification

.

General Terms

 -- Design, Verification, Performance, Languages.

Keywords

 – C/C++, RTL, design, verification, formal equivalence
checking.

1. INTRODUCTION

With increasing design complexity, different techniques have
been developed to bridge the gap between the amount of logic that
can be put on a chip and the design and verification effort necessary
to build such a chip. Design reuse and moving to higher levels of
abstraction are two promising techniques to boost productivity. For
the development of high-performance processors, the benefits of
standard behavioral synthesis techniques are not obvious. Neverthe-
less, the need for an efficient and fast design entry language
becomes even more crucial.

In this paper, we present how a register
transfer level (RTL) C/C++ design methodology is used to acceler-
ate the design and verification of a complex processor.

C and C++ can be efficiently compiled enabling fast simulation
and a flexible way to scale the number of concurrent simulations.

 In
the case of a processor, a fast synthesizable model also represents a
perfect instruction set simulator, which facilitates the early develop-
ment of software as well as system verification early in the design
process.

Using a programming language for hardware implementation
has several challenges. The first challenge consists of defining a fast
and accurate representation of the hardware. Speed is a must to
reduce simulation time compared to RTL Verilog. RTL C also has to
be accurate so that the design can be debugged early on, at the
source level. In this paper, we present our RTL C coding style. To
increase simulation speed, our C model is statically scheduled and

can use ANSI C types. For higher accuracy, a C++ object library is
used to represent bit-accurate data types. Random initialization of
variables is also performed to check reset behavior.

The second challenge consists of integrating a C-based synthe-
sis flow into the overall ASIC design flow. This can be done by auto-
matically translating the RTL C description into RTL hardware-
description language (HDL), or directly into gates. This translation
step represents an extra step in the ASIC design flow, and can add
additional risks. C to HDL translation tools are fairly recent and
have not yet been validated on many large production designs.
Moreover, evolving and competing C/C++ standards result in vari-
ous interpretations making it difficult to develop and use such tools.

A C lint tool is used at the design entry to catch the most com-
mon coding style errors early on in the design process before C to
HDL translation. Further, formal equivalence checking is commonly
used to verify the different synthesis steps.

Our methodology pro-
vides a novel formal equivalence checking flow to compare the RTL
C and the HDL generated. It uses a separate and additional C to
HDL translation step, followed by equivalence checking between
the two translated RTL HDL models

.

A final challenge is to provide a method to integrate a C-based
design core with IP blocks coded using traditional RTL HDL
descriptions. Co-simulation is used to integrate RTL C models with
other IP Verilog models. Co-simulation is also used to validate the
RTL Verilog and netlists within our C testbench environment

.

The contributions of this paper are the following. We present a
verification flow for C-based design. The design entry is bit-accurate
RTL C model that is automatically translated into HDL for synthe-
sis. Equivalence checking is used to formally verify the RTL C and
HDL models are equivalent. Simulation of the design is also per-
formed at each step of the design process.

The rest of this paper is organized as follows. Related work is
presented in Section 2. The C/C++-based design methodology is
then introduced in Section 3. Our RTL C coding style is described in
Section 4. In Section 5, we present our framework for equivalence
checking between HDL and RTL C. Section 6 is our result section:
the simulation performance of our RTL C model is presented along
with examples of bugs found in our design using equivalence check-
ing.

2. RELATED WORK

Several C/C++ coding styles have been used in the past two
decades in the industry [17,24] as well as in the research community
to describe hardware both for modeling and synthesis [7,20]. In gen-
eral, the C/C++ language is both extended and restricted [15]. It is
extended to support hardware data-types such as bit-vector, 3-state
logic, etc. and, sometimes, to support parallelism using communi-
cating processes and reactivity. On the other hand the C/C++ lan-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006...$5.00.

RTL C-Based Methodology for Designing and Verifying a
Multi-Threaded Processor

guage is also restricted to prevent the usage of non-synthesizable
constructs.

C/C++ programs are sequential whereas hardware is parallel
by nature. Several techniques are usually used to represent hard-
ware. The main difference is on the implementation of parallelism
and reactivity. Both parallelism and reactivity may be implicit using
a run-time simulation kernel as in SystemC [12,18], Cynlib [5],
Spec C [9] or Esterel C [21]. The semantics may then be synchro-
nous/cycle-based, asynchronous/event-driven, or a mix of both. This
run-time behavior of the system is well suited for higher levels of
abstractions, at the behavioral or system level or to model mixed
hardware/software systems at the transaction level. However, it is
not optimal at the RT level. There is an overhead for scheduling the
different tasks, with the risk of running each task more than once at
each clock cycle, which is not very efficient. This is addressed by
static scheduling techniques. Different static coding styles have
been used in the industry and in commercial simulation and synthe-
sis environments. Such environments include RTL-C from Cynergy
[4] and CycleC from C Level Design (acquired by Synopsys) [2].
They are a good fit for processor design.

A synthesizable subset of the language is also defined. Some
research has been done on synthesizing floating point variables [19],
pointers, and dynamically allocated memory [23]. Using these tech-
niques, recursions could also be synthesized. These features mainly
make sense at the behavioral or system level. In the case of C++, the
synthesis of user-defined classes (i.e. classes that are not part of the
hardware C++ library) and methods remains an open issue.

The synthesis path itself can be implemented in two different
ways. One method consists of translating the RTL C description into
an RTL HDL description [2,3,6,7]. This RTL description is then
synthesized using existing synthesis tools. Synopsys CoCentric Sys-
temC Compiler [11] may also synthesize hardware directly without
the intermediate step of generating HDL code.

3. OVERALL METHODOLOGY

In this section, we present an overview of our C-based design
and verification methodology. This methodology has been used in
the development of a simultaneous multi-threaded (SMT) network
service processor. The processor executes MIPS compatible code
and is capable of forwarding 25 million packets per second –
enough performance for 10 gigabit applications such as web
switches, edge routers, traffic shapers and network storage servers.
The design has about 7M gates. The core of the processor which
accounts for 60%-70% of the overall design, is implemented in C at
the RT level. The processor uses TSMC 0.15

µ

 process and is tar-
geted for 300MHz.

 An overview of our C-based methodology is shown in Figure
1. Our design entry is a statically scheduled RTL C model. It is inte-
grated with our C testbench environment for simulation.

Both ANSI
C fundamental types and bit-accurate types are supported. ANSI C
fundamental types provide faster simulation whereas bit-accurate
types model the hardware types more precisely.

The C code is translated into Verilog for implementation using
a commercial tool.

An internal lint tool has been developed to check
the coding style before C to HDL translation.

Equivalence checking is performed between RTL C and Ver-
ilog HDL. We use our own translation tool to convert the RTL C
model into a verification model in HDL. Then a commercial RTL to

RTL equivalence checking tool [1,8,11,13] is used to verify the syn-
thesized HDL against the verification HDL model. This step vali-
dates the HDL generated model against the C golden model. It
validates the translation tool itself and also its interpretation of the
C/C++ model: arithmetic operations, register mapping, and compo-
nent instantiations.

Once the RTL verilog is generated and checked, our methodol-
ogy follows the standard ASIC flow. Equivalence checking is used
to formally validate the transformations performed on the design
during synthesis (and scan insertion). The RTL verilog and the syn-
thesized netlist are also verified using co-simulation with the C test-
bench environment.

4. RTL C MODELING

4.1 Coding style

The core of our processor is modeled in cycle-accurate C. This
C model is statically scheduled. While static scheduling is more effi-
cient, it requires more architecture work early on in the design pro-
cess. In our static method, the design is partitioned in time into a set
of slices.

Figure 2 illustrates the use of slices in a simple example of
a counter.

The slices represent the logic that is computed with specific
ordering in the clock cycle. The design blocks contribute C func-
tions called scheduling functions for execution in each of the slices.
We found the static scheduling method to be a natural fit for effi-
ciently modeling processor pipelines.

The design is described in C as a collection of logical blocks.
The blocks are coded to define the imported, exported and internal
signals and registers for the block, and to define the exported slice
functions for the block. There is a methodology for reading signals
between slices and between design blocks to ensure the design is
proper and synthesizable.

In the RTL C simulation, the blocks are executed and commu-
nicate via the global scheduler which calls the slice functions of all
the blocks in a simple static scheduling loop. Our methodology sup-
ports multiple instantiations of a given logical block.

In the verilog model for the complete design, the wiring of the
instantiations of the logical blocks is generated automatically from a
common file that describes the interconnect between the different
logical blocks. A connectivity checker tool verifies that the connec-
tions described in the connectivity file correspond to the connec-
tions in the RTL C simulation model.

Figure 1: Verification Methodology

RTL C

RTL Verilog

simulation

Netlist

co-simulation

co-simulation

C
 T

es
tb

en
ch

eq. checking

eq. checking

logic
synthesis

C to HDL
translation

RTL C lint

For synthesis, each logical block is individually translated (in
isolation of the other blocks) into a Verilog module. This verilog
module may contain hierarchy. Since logic synthesis doesn’t per-
form scheduling of operations, module instantiation is directly
inferred from the source code: C functions called inside slice sched-
uling functions become implemented as sub-modules.

4.2 Synthesizable subset

C and C++ are programming languages. As a result many of
their features are of little use for hardware modeling, especially at
the RT level.

 In our methodology, unbounded loops and recursion are not
supported. In order to optimize the synthesis results, pointers may
only be used for parameters passed by reference in function calls.
Operations on pointers, such as pointer arithmetic and type casting,
are not permitted. Non-recursive data structures are allowed and
embedded arrays and structures are supported. However, out-of-
bound array accesses within structures are forbidden.

Structures are heavily used throughout our design. They are a
convenient way of representing the set of input/output ports, regis-
ters and combinational signals for a given block. The example
shown in Figure 2 uses several

struct

s:

rCNT

 represents the reg-
isters,

CNTimport

 represents the imported signals and

CNTEx-
port

 the exported signals.

Since logic synthesis doesn’t perform register allocation, regis-
ters are inferred directly from the source code. A naming convention
is used for registers. They are synthesized by having a mandatory
assignment from the

d

 variable to the

q

 variable conditional on the

clock in the

RisingEdge

 scheduling function (

CNTRis-
ingEdge()

 in Figure 2).

A naming convention is also used for ports and combinational
logic signals. Ports may either be generated by analyzing the code
[2] or by simply analyzing Import and Export signals.

4.3 Data types

Fundamental C/C++ data-types are limited to 8b, 16b, 32b and
64b lengths. The data-types used in hardware on the other hand may
be of any length (e.g. 1b, 48b, etc.). In our methodology, two imple-
mentations of data types may be used.

For the fast simulation speed,
the hardware bit vector data types can be mapped to ANSI-C data
types. For example 1-8 bits to

char

, 9-16 bits to

short

, etc. A
slower but more accurate and elegant way of representing such data-
types is to use C++ classes (e.g. the SystemC

sc_uint<>

 class)
that implement the masking functions

.

As shown in the file

common.h

 in Figure 2, the SystemC
library is used if

BIT_ACC

 is defined. Otherwise, ANSI-C data-
types (

unsigned

char

,

short

,

int

 and

long long

) are used.

C++ objects can also be used to implement multi-state logic
(e.g. 0, 1, X and Z states). However, as mentioned by Bening and
Foster [14], the use of ‘X’ logic values is not advised at the RT level
and should mainly be used at the gate level. Random initialization is
a safer and more accurate way of representing the initial state on
signals in hardware at the RT level.

Our implementation uses a modified version of SystemC that
implements random initialization,

in addition to zero initialization,

Figure 2: Example of a counter module in RTL C code

 /* common.h */
 #ifdef BIT_ACC // use SystemC data types
 #include <systemc.h>
 typedef sc_uint<1> U1;
 typedef sc_uint<9> U9;
 typedef sc_uint<16> U16;
 typedef sc_uint<32> U32;
 typedef sc_uint<48> U48;
 #else // use ANSI C data types
 unsigned char U1;
 unsigned short U9;
 unsigned short U16;
 unsigned int U32;
 unsigned long long U48
 #endif

 typedef struct { U9 d; U9 q; } R9;

 /* counter.local.h */
 typedef struct {

U1 enableS0;
U1 resetS0;

 } CNTImport_s;

 typedef struct {
R9 counter;

 } rCNT_s;

 /* counter.export.h */
 typedef struct {

U8 resultS0;
U1 overflowS0;

 } CNTExport_s;

 extern CNTExport_s CNTExport;

 /* counter.c */
 #include “common.h”
 #include “counter.local.h”
 #include “counter.export.h”
 #include “io.export.h”

 CNTImport_s CNTImport;
 rCNT_s rCNT;
 CNTExport_s CNTExport;

 void CNTRisingEdge() {
if(system_clock) {

rCNT.counter.q = rCNT.counter.d;
}

 }

 /* slice 0 */
 void CNTS0() {

CNTExport.resultS0 =
get_slice(0,7,rCNT.counter.d);

CNTExport.overflowS0 =
get_bit(8,rCNT.counter.d);

 }

 /* slice 1 */
 void CNTImportS1() {

CNTImport.enableS0 = IOExport.enableS0;
CNTImport.resetS0 = IOExport.resetS0;

 }

 void CNTS1() {
 rCNT.counter.d = rCNT.counter.q; // default

if(CNTImport.enableS0) {
rCNT.counter.d = rCNT.counter.q + 1;

}
if(CNTImport.resetS0) {

rCNT.counter.d = 0;
}

 }

using a random seed

.

This is implemented in C/C++ using random
assignments in constructor member functions.

The seed can either
be selected randomly for regressions or specified by the user to
reproduce errors.

5. FORMAL EQUIVALENCE CHECKING

5.1 RTL C vs. Verilog equivalence checking

This section describes how we formally check that the gener-
ated verilog description matches the RTL C description. As we have
seen in Section 3, current equivalence checkers can formally verify
that two HDL models are equivalent. In this work, we do not try to
replace existing equivalence checkers. Instead, we developed our
own C to verilog translator tailored for our RTL C subset and coding
style. Existing equivalence checking tools are then used to check
that the verilog model used for synthesis is equivalent to our verifi-
cation verilog model, as shown on Figure 3.

This translation tool differs from existing C to verilog transla-
tion tools not only because it only supports a given coding style, but
also because the generated code is targeted for verification rather
than synthesis. The emphasis is on matching the bit-accurate C/C++
semantics rather than trying to optimize synthesis results. The
implementation of the tool is presented below. Some results and
examples of bugs found in the design and in existing translation tool
are then presented in Section 6.2.

5.2 C to verilog translation

Our RTL C to HDL translation was implemented using the
SUIF compiler framework [10, 25]. The different steps are shown
on Figure 4 and are detailed in the rest of this section.

After preprocessing, the SUIF front-end pass generates an
intermediate SUIF representation of the code. The front end is
slightly modified to keep track of

typedef

 constructs and internal
data-types for bit-accuracy. The resulting SUIF intermediate repre-
sentation is then transformed in each pass in order to remove all C
constructs that do not make sense in verilog. The next steps repre-
sent source-to-source C transformations. They are followed by a C
to verilog translation step and by verilog code generation. Each of
these steps are defined in the following sub-sections.

• Function inlining and forward substitution

The first transformation on the source code consists of inlining
functions that are defined (functions that are not defined are
assumed to be mapped to components). Pointers may be used to
pass parameters by reference. Forward substitution

1

 is used to prop-
agate the pointers’ values. After propagation, loads (...

=*p

) and
stores (

*p=

...) are replaced by direct variable assignments. Forward
substitution is used instead of constant propagation [22] because

pointers to structure fields and array elements are defined using
complex arithmetic operations (e.g.

p=&a[i].f

).

• Loop unrolling and constant propagation/folding

After function inlining, loop unrolling is performed and con-
stant propagation [22] is used to propagate the value of the loop
index (and other induction variables). In the case of nested loops
where an inner loop depends on the indexes of the outer loops, mul-
tiple iterations are necessary.

• Synthesis of structures and arrays

At this stage all array accesses and structure accesses can be
statically resolved. Structures are replaced by a set of variables that
represent their different fields. The dot ‘

.

’ in the

struct

 is
replaced by an underscore character ‘

_

’. Array variables are broken
into a set of elements by appending the element index to the array
variable name. For example, the field

rBLK.packet[2].
header.byte[2]

 co r responds to the va r iab le

rBLK_packet2_header_byte2

. Name clashes are reported as
errors.

The case of a structure variable passed by value or by reference
in a function call is trickier to implement [2]. Instead of breaking the
structure into a set of separate variables, a bit vector is created. Its
size equals the sum of the widths of all the fields in the structure.

All of this is possible because pointer arithmetic and out-of-
bound array accesses are not part of our synthesizable subset.

• SUIF to verisuif translation

This step takes a C intermediate representation and generates a
verilog intermediate representation. The verilog IR and back-end
used were developed by French et al. [16] and extended for our
needs.

First the top-level verilog modules are created. In the case of a
logic block, the output ports correspond to the Export signals. The
input ports correspond to the Export signals assigned to Import sig-
nals. Another technique [2] is to map signals that are assigned but
never read to output ports and signals that are read but never
assigned to input ports. In the case of internal modules, parameters

1. Forward substitution is a pass that replaces a copy operation by a
reevaluation of the expression. [22]

Figure 3: Formal equivalence checking between RTL C and Verilog

RTL C
model

commercial
translator

RTL Verilog
synthesis

model

RTL Verilog
verification

model

equivalence
checking

internal
translator

suif front-end

function inlining

forward substitution

loop unrolling

constant propagation

remove struct and array

csuif to verisuif translation

verisuif backend

RTL C

RTL Verilog

create module(s) and ports

replace variables

translate switch

translate arithmetic

replace macro

instantiate components

Figure 4: Implementation of xlc2v for the translation of RTL C code
into verilog for equivalence checking

passed by value are mapped to input ports and parameters passed by
reference (i.e. pointers) are mapped to output ports.

All variables are then uniquified and replaced by verilog

reg

s
with the correct bit-width. The next few passes modify the code
itself. First the

switch

 statements in C are translated to verilog

case

 statements. Then, all arithmetic operations are replaced to
match the SystemC bit-accurate semantics in verilog. All intermedi-
ate computations are performed on 64bit and their result is truncated
at the final assignment (only

sc_uint<>

 SystemC datatype is sup-
ported).

Several macros are used to represent verilog operations such as
concatenation, bit selection and range selection. They are translated
into their verilog equivalent. Functions that are not macros and not
inlined are then mapped to components. Components are instanti-
ated and temporary

reg

s and wires are connected to their ports.

The resulting verisuif intermediate format is then translated
into verilog using the verisuif back end.

6. RESULTS

In this section, we first present our RTL C simulation perfor-
mance results to illustrate the advantage of using RTL C model in
term of speed. Results are then presented for formal equivalence
checking between RTL C and HDL. Several bugs found using
equivalence checking are described.

6.1 Simulation results

The simulation performance results are shown in Table 1. The
simulation example used here represents about one third of our chip,
equivalent to a 2M gate design. These results are obtained on a
Linux server with dual x86 Intel Xeon 730MHz processors. The
same C testbench environment is used for all models. Co-simulation
is used to validate the RTL Verilog model with the Synopsys VCS
simulator [11] and the C testbench running in two separate pro-
cesses. The Verilog model simulated is the synthesis model. We
expect the SUIF-generated verification model would be slower.

These results show that the RTL ANSI C model is about 46
times faster than the RTL verilog model and only 3 times slower
than our pseudo cycle-accurate behavior model. Using C++ bit-
accurate data types leads to a 14x slow down in terms of perfor-
mance compare to ANSI C. The bit-accurate simulation could how-
ever be accelerated using simple compiler optimization techniques
(e.g. to perform computations on 32b instead of 64b). The bit-accu-
rate model remains however about 3x faster than verilog simulation.
The Verilog results include the overhead of PLI and co-simulation
using IPC. A faster co-simulation environment could be imple-
mented using LWT and no PLI (e.g. using Synopsys DirectC [11]).

6.2 Equivalence checking analysis

Our implementation flow uses the tool presented in Section 5
for RTL C to HDL translation for generating a verification model.

The C Level Design’s System Compiler translation tool [2] is used
for synthesis. Equivalence checking is then performed on the two
RTL HDL codes using either Verplex Conformal LEC tool [13] or
Synopsys Formality [11]. Results for the translation of some of the
blocks of our chip are shown on Table 2. The number of lines for
both the C and Verilog models are reported after removing com-
ments and empty lines. The number of lines in Verilog RTL is from
2x to 7x more than the equivalent RTL C. This mainly comes from
loop unrolling and also from matching the bit-accurate C semantics
in Verilog. The translation time is measured on a Linux server with
x86 Intel Xeon 730MHz processors. Even though the SUIF com-
piler framework was not optimized for performance, the translation
time scales fairly well on our designs.

Several problems have been caught early on in our design as
well as in the translation tool for synthesis. They are listed in Table
3. The types of bugs are sorted in two categories. The first category
marked as

class D

 represents the design and coding-style bugs that
created incorrect behavior or made our translation tool fail. The sec-
ond category marked as

class T

 represents bugs found in C-Level
System Compiler tool [2]. Overall, we found that System Compiler
performed well. Using equivalence checking we were able to find
the problems early in the project and easily work around them.

A detailed discussion of two of the bugs from this list follows.

Example 1.

 Arithmetic mismatches between C and Verilog are a
common problem. With the options we have selected for synthesis,
System Compiler generates a verilog code that “looks” very similar
to the C code but that may not match its semantics. The typical error
is something like the following operation:

Simulation Model cycle per second
speed-up over
HDL Verilog

Pseudo Cycle Accurate C 5864 150.0
RTL-C ANSI-C 1812 46.0
RTL-C Bit Accurate 127 3.2
Verilog RTL 39 1.0

Table 1: Simulation Performance

Block Name C Lines Verilog Lines Translation time

C 2,597 5,034 1 min 43s
I 969 2,243 32s
L 1,258 7,737 50s
O 440 1,376 14s
P 22,409 150,845 32 min 11s
Q 6,199 35,583 6 min 19s
R 23,386 60,552 17 min 20s

Table 2: C to Verilog translation results for several logic blocks using
internal tool xlc2v.

Types of Bug Class

Arithmetic mismatches between C and Verilog semantics
leading to design bug

D

Bug in implementation of concat() macros T
Variable passed by value to a function updated after the
function is called

T

Out of bounds array accesses D+T
Passing a structure field by reference through function call T
Variable read before initialized D
Parameter name mismatch between .h and .c (positional vs.
name based disagreement during synthesis of module
instances from function calls)

D

use of (x = 1) instead of (x == 1) D
Variable assigned in multiple non-blocking statements D
Use of m bit output from a function for a n-bit logic
 (m != n) during synthesis of function call

D

Incorrect syntax/usage of #ifdefs D

Table 3: Types of Bugs Found

o1 = ((b4 + c4) > 0xF);

where

o1

 is a 1b variable and

b4

 and

c4

 are 4b variables. The
carry is lost in the verilog generated for synthesis because the
operation is performed on 4b instead of 32b in ANSI C (or 64b for
SystemC).

The correct Verilog code would look like:

 o1 = (({1’b0,b4}+{1’b0,c4}) > 5’hF);

This problem also occurs with right shifts (

>>

) and other types of
comparisons (e.g.,

<, >, ==, !=). It is often found inside of the
condition statement in if or (?:) constructs, which makes it very
hard to debug during simulation.

Example 2. Bugs were also found in the System Compiler tool for
parameters passed by reference in function calls for functions
mapped to components. The following slice calls the function foo,
mapped to a component.

void BLKS1() {
a.d = a.q;
foo(a.d,&out);
if(reset) a.d = 0;

}
 The verilog code generated for synthesis is the following:

foo foo1(a_d, out);
always @(a_q or reset) begin

a_d = a_q;
if(reset) a_d = 0;

end
 The problem in this case is that foo(a.d,&out) reads the value
of a.d before reset in the C code, whereas in the Verilog HDL code,
it reads the value of a_d after reset. A correct Verilog code would
have been:

foo foo1(tmp_reg, tmp_wire);
always @(a_q or tmp_wire or reset)
begin

a_d = a_q;
tmp_reg = a_d;
out = tmp_wire;
if(reset) a_d = 0;

end
 These types of bugs may be very hard to isolate using simulation. A
workaround is to prevent the use of write-read-write sequences. This
may sometimes be too restrictive and formal equivalence checking
is the best way to make sure the code is correct.

7. CONCLUSION
The RTL-C design and verification methodology presented

enabled the successful implementation and rapid validation of an
extremely complex SMT network processor. The methodology pro-
vides a high speed RTL simulation model from a statically sched-
uled coding style and provides RTL-C to RTL-Verilog equivalence
checking to further leverage the simulation performance advantage
by reducing the amount of RTL-Verilog and gate simulation
required during development.

ACKNOWLEDGMENT
This work was done at Clearwater Networks. The definition of

this design methodology involved the work of several members of
the design and verification teams. We would like to thank Forrest
Brewer, Steve Hatala, Jeff Handong, Dick Hessel, Jeff Huynh, Ed
Jacobs, Phil Lowe, Enric Mussoll, Mario Nemirovsky, James Reil-
ley, Nandu Sampath, Soumya Seshadri, Pierre-Xavier Thomas, Dan
Williams, Tom Yeh. We would also like to thank the engineers at C-
Level Design.

REFERENCES
[1] Avant! corp, Design Verifyer, http://www.avanticorp.com/
[2] C Level Design, C2HDL, http://www.cleveldesign.com/
[3] CoWare, N2C, http://www.coware.com/
[4] Cynergy System Design, http://www.cynergysd.com
[5] Forte Design Systems, Cynlib, http://www.forteds.com/products/

cynlib.html
[6] Frontier Design, A|rt Builder, http://www.frontierd.com/
[7] IMEC OCAPI http://www.imec.be/ocapi/
[8] Mentor Graphics, Formal Pro, http://www.mentorg.com
[9] SpecC Technology Open Consortium http://www.specc.gr.jp
[10] Suif compiler framework http://suif.stanford.edu/
[11] Synopsys tools, http://www.synopsys.com/
[12] SystemC, http://www.systemc.org/
[13] Verplex, http://www.verplex.com
[14] Lionel Bening and Harry Foster, “Principles of Verifiable RTL

Design: a functional coding style supporting verificaion pro-
cesses in Verilog,” 2nd ed., Kluwer Academic Publishers, 2001

[15] Giovanni De Micheli, “Hardware Synthesis from C/C++,” proc.
Design, Automation and Test in Europe, pp. 382-383, Munich,
1999.

[16] Robert French, Monica Lam, Jeremy Levitt, and Kunle Oluko-
tun, “A General Method for Compiling Event-Driven Simula-
tions,” proc.. Design Automation Conference, June 95.

[17] Dan Joyce, Robert Stets, Andreas Nowatzyk, “C++ Design,
Verification and Automatic Conversion to Synthesizable Verilog
on a Large Processor,” Proc. HDLCON, Santa Clara, Feb. 01.

[18] Stan Liao, Steve Tjang, Rajesh Gupta, “An efficient Implemen-
tastion of Reactivity for Modeling Hardware in the Scenic
Design Environment,” proc. Design Automation Conference,
pp.70-75, June 97.

[19] H. Keding, M. Willems, M. Coors, H. Meyr, “FRIDGE: A
Fixed-Point Design And Simulation Environment,” proc. Design
Automation and Test in Europe, pp. 429-435, 1998.

[20] David Ku and Giovanni De Micheli, “High-Level Synthesis of
ASICs under Timing and Synchronization Constraints”, Kluwer
Academic Publishers, Boston, MA 1992.

[21] Luciano Lavagno and Ellen Sentovich, “ECL: A Specification
Environment for System-Level Design,” proc. Design Automa-
tion Conference, New Orleans, pp. 511-516, June 99.

[22] Steven Muchnick, “Advanced Compiler Design and Implemen-
tation,” Morgan Kaufman Publishers, San Francisco, California,
1997.

[23] Luc Séméria, Koichi Sato, Giovanni De Micheli, "Synthesis of
Hardware Models in C with Pointers and Complex Data Struc-
tures," IEEE trans. on VLSI, pp. 743-756, vol. 9, n. 6, Dec. 01.

[24] Kazutoshi Wakabayashi and Takumi Okamoto, “C-Based SoC
Design Flow and EDA Tools: An ASIC and System Vendor Per-
spective,” IEEE trans. on CAD, vol. 19, n. 12, pp. 1507-1522,
Dec. 00.

[25] Robert Wilson, Robert French, Christopher Wilson, Saman
Amarasinghe, Jennifer Anderson, Steve Tjiang, Shih-Wei Liao,
Chau-Wen Tseng, Mary Hall, Monica Lam, and John Hennessy
“Suif: An Infrastructure for Research on Parallelizing and Opti-
mizing Compilers”, ACM SIPLAN Notices 28(9), pp.67-70,
Sept. 1994.

