
African Physical Review (2008) 2 Special Issue (Microelectronics): 0005 10

RTOS Evolution and Hardware Microkernel Implementation Benefits

Ahmed Karim Ben Salem and Slim Ben Saoud
LECAP-EPT / INSAT, Centre Urbain Nord, Tunis Cedex, Tunisia

Due to the importance and complexity of real-time applications, the demands on real-time platforms increase every year,
which motivates moving these applications onto multiprocessor hardware system on chip (MPSoC). This paper deals with
different methods used for efficient handling of real time design projects leading to their successful completion, not just
completion on time, but completion with as little silicon surface as possible. In the following pages, we outline the evolution
of Real Time Operating System (RTOS) architecture and their limitations, compare different approaches and investigate the
gain using the hardware implementation with microkernel structure for these RTOS that will improve both performance and
design time.

1. Introduction

Great progress made by the semiconductor
industry, smaller process geometries and higher
densities have all provided design engineers in the
field of real time systems means to create complex
and high-performance System on Chip (SoC)
designs.

Furthermore, trends in chip design - the new
SoC platforms and the introduction of software-to-
hardware tools for FPGAs- have improved the
practicality of these devices as software-
programmable computing platforms. They have
offered the opportunity to bring the embedded Real
Time Operating System (RTOS) onto the FPGA to
improve both performance and design time.

To fully exploit such chips, different
approaches are used to obtain better performance in
RTOS such as the use of special purpose hardware,
for example, the Real-Time Unit (RTU) [5], which
contains RTOS services implemented in hardware
and the use of the microkernel architecture to speed
up system-calls, task management, inter-process
communication for a real-time kernel [3][7].

2. RTOS Scalability

The main task of an RTOS is to manage the
resources of the computer such that a particular
operation executes in precisely the same amount of
time every time it occurs. An RTOS provides a
complete software support, while a Real Time
Kernel (RTK) is intended to be used with or
without association with an OS.

In an RTOS, the tasks are generally complete
programs. While in a RTK, the tasks are rather
functions of the same program. In general, the
RTOS are used in the computers to manage
significant data amount, but the RTK are used in
embedded calculators.

Today’s RTOS has the ability to scale in order
not to use more resources than necessary. The most
obvious resource is the ROM and RAM footprint.
The purpose of the software scalability is most
often to reduce an extensive configuration by
reducing the amount of functionality supported.
This concerns, for example, the size, the number of
tasks, synchronisation, and communication
mechanism.

Two RTOS generations appeared since the
emergence of the commercial application. The use
of the first RTOS generation, a category in which
we usually classify as VxWorks, pSOS or VRTX, is
trivialized today. But this generation suffers from
several limitations. First of all, they are unable to
benefit, in an ideal way, from the memory
partitioning mechanisms offered by the
microprocessors. Indeed, with this type of OS, all
tasks share a single addressing space. In addition,
they are not adapted to the multiprocessors
requirements for the distributed real time systems.

About fifteen years ago, the arrival of a second
generation of the commercial RTOS in the market
reduced some of these limitations. Oss, like OSE,
QNX or LynxOS, support the MMU (Memory
Management Unit) specific to the principal 32 bits
processors. They can, therefore, manage
applications claiming a certain level of faults
tolerance since different tasks with the MMU can
function in separate and memory-protected space.
In addition, the techniques of direct message
passing between tasks, supported in standard by
OSE or QNX, which are independent of the
processors location and the network type
connecting them, simplify considerably the
development of distributed applications or high
availability software.

African Physical Review (2008) 2 Special Issue (Microelectronics): 0005 11

The RTOS hardware implementation has
reduced considerably some limitations of software
RTOS and presents a better performance.

When the hardware kernel was introduced into
multiprocessor systems, it was called real-time unit
(RTU). It moves the scheduling, inter-process
communication (IPC) such as semaphores and time
management control, for instance, the time ticks
and delays from the software OS-kernel to
hardware. More functionality and improvements
were added.

The previous work of [5], [7] and [8] has shown
the benefits of having the RTU activities
implemented in hardware. The system overhead is
decreased resulting in improved predictability and
response time, the CPU load and memory footprint
is reduced, and less cache misses are seen.

In [1] and [4], the RTU was used in a research
project in multiprocessor systems called Scalable
Architecture for Real- Time Applications (SARA).
The SARA-system is based on the idea to
incorporate as many parts of a RTOS into hardware
as possible. The scalability of the SARA-system
could be used in the transition from a single
processor system into a multiprocessor system. The
RTU handled the scheduling of the system.
Microkernel Approach

RTOS used in today’s embedded systems need
to reflect the modularity of the underlying
hardware and the increasing demand for adding and
replacing functionality in the system. A RTOS
structured with the microkernel concept fulfils
these requirements [3].

Monolithic kernels (Fig. 1.a) are large in code
size with complex structure which makes them
difficult to change and maintain without affecting
other parts of the kernel.

The microkernel approach (Fig. 1.b) is based on
the idea of only placing essential core RTOS
functions in the kernel, and others functionalities
are designed in modules that communicate through
the kernel via minimal well-defined interfaces. So,
only a minimal part of the OS runs in kernel mode,
whereas all applications run in user mode. A
microkernel’s main function is resource
management.

The OS kernel contains only a small core of
fundamental services, such as timers, messages,
and scheduling. All higher level services and
programs – drivers, file systems, protocol stacks,
and user applications – run outside the kernel as
separate, memory-protected components.

A microkernel OS has a loosely layered
structure with client-server message passing
communication between the layers, a well defined

communication mechanism that allows programs to
exchange data while remaining safely isolated from
each other.

An example of a true microkernel is L4 [6].
Several others microkernels have been developed
such as ChorusOS, EROS, Nucleus, and VxWorks.

The first generation of microkernels suffered
from poor performance, which led to bad reputation
of this kernel structure. In the second-generation
microkernels, performance has increased and it is
no longer a problem [2]. The client-server message
passing idea of the microkernel structure results in
more context switching compared to monolithic
systems [2]. Implementing the real-time kernel in
hardware, following the microkernel structure
approach, results in a microkernel with the same or
better performance as monolithic structured
systems, but without the latencies that first
generation microkernel systems has been suffering
from.

The work of [7] shows that a microkernel
structured kernel in hardware can be ported to an
existing monolithic RTOS, and how it affects the
performance of the system-calls.

Hardware

Primitive Process
Management

Virtual Memory

I/O and Device
Management

Interprocess
Communication

File system

Users

Hardware

Microkernel

C
lie

n
t

p
ro

ce
ss

D
ev

ic
e

d
ri

ve
r

P
ro

ce
ss

 s
er

ve
r

F
ile

 s
er

ve
r

V
ir

tu
al

 m
em

o
ry

Kernel
Mode

User
Mode

User
Mode

Kernel
Mode

(a) Layered Kernel (b) Microkernel

Fig.1: Layered vs. Microkernel architecture.

3. Conclusions and future work

The RTOS overview presented in this paper
showed that hardware RTK introduced into MPSoC
has several benefits as compared to the pure
software RTOS system. Moreover, microkernel
RTOSes offer inherently greater modularity than
conventional OSes, add flexibility to the system,
enabling the stringent testing, extreme fault
tolerance and dynamic upgradeability that many
battlefield systems require.

We are currently working on a CoDesign of
hardware RTOS, using the new SoC trends,
dedicated to digital control systems.

African Physical Review (2008) 2 Special Issue (Microelectronics): 0005 12

References

[1] L. Enblom and L. Lindh, "Adding flexibility
and real-time performance by adapting a
single processor industrial application to a
multiprocessor platform". in ‘Parallel and
Distributed Processing’, Proceedings of the
2001 EUROMICRO Workshop, Mantova,
Italy, p. 487, February (2001).

[2] H. Härtig, M. Hohmuth, J. Liedkte, S.
Schönberg and J. Wolter, “The performance
of µ-Kernel-based systems”, in Proceedings
of the 16th ACM symposium on Operating
Systems Principles, Saint Malo, France, p.66
(1997).

[3] J. N. Herder, "Towards a true microkernel
operating system", Thesis in Computer
Science, VRIJE University Amsterdam,
February (2005).

[4] T. Klevin and L. Lindh, "Scalable architecture
for Real-Time applications and use of bus-
monitoring". in Proceedeings of RTCSA’99,
p. 208-211, December (1999).

[5] J. Lee, J. V. Mooney III, K. Ingström, A.
Daleby, T. Klevin and L. Lindh, "A
comparison of the RTU hardware RTOS with
a hardware/software RTOS", in Proceedings
of the ASP_DAC 2003, Design Automation
Conference, p. 683-688, January (2003).

[6] J. Liedtke, U. Dannowski, K. Elphinstone, G.
Lieflander, E. Skoglund, V. Uhlig, C. Ceelen,
A. Haeberlen and M. Volp. "The L4Ka
vision", System Architecture Group,
University of Karlsruhe, Germany, April
(2001).

[7] S. Nordström, L. Lindh, L. Johansson and T.
Skoglund, "Application specific real-time
microkernel in hardware" (2005).

[8] T. Samuelsson, M. Åkerholm, P. Nygren, J.
Stärner and L. Lindh. "A comparison of
multiprocessor real-time operating systems
implemented in hardware and software".
International Workshop on Advanced Real-
Time Operating System Services (ARTOSS),
Porto, Portugal (2003).

