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RTSYS: A DOS application for the analysis

of reaction time data

ANDREW HEATHCOTE
University ofNewcastle, Newcastle, New South Wales, Australia

RTSYS is a menu-driven DOSapplication for the manipulation, analysis, and graphical display of
reaction time data. It can be used either in a single-task environment under DOS,with access to a set
operating system commands, or as an application under Windows. All functions have context­
sensitive help. RTSYS fits the ex-Gaussian distribution to reaction time data without the difficulties
usually associated with numerical parameter estimation. Distribution fitting and flexible censoring
and rescaling options allow RTSYS to address the problems of reaction time distribution skew and
outlying responses with reasonable sample sizes. RTSYS can automatically process multiple input
files from experiments with arbitrary designs and produce formatted output of statistics for further
processing by graphical and inferential statistical packages. The present article reviews and ex­
plains techniques used by RTSYS and provides an overview of the operation of the program.

RTSYS is a DOS application, written in Turbo Pascal

6.0, that calculates distribution statistics for reaction

time (RT) data. It also provides facilities for censoring

and rescaling data. Statistics calculated include the num­

ber of RTs, percent of RTs censored, the median, mean,

variance, and a nonparametric measure of skew [i.e.,

(mean - median)/ standard deviation)]. Because RT data

are often scored as correct or incorrect, where incorrect

RTs are relatively infrequent, percent error and mean error

RT are also calculated. RTSYS fits the ex-Gaussian dis­

tribution and reports distribution parameters u, a, and !'.

Fitting the ex-Gaussian also produces chi-squared and

likelihood goodness-of-fit statistics. Goodness offit can

be inspected visually by plotting RT histograms and su­

perimposed fitted ex-Gaussian distributions.

RTSYS will typically be used to convert raw data files

collected from experiments into files of statistical pa­

rameters that are used as input to inferential and graphi­

cal applications. One ofRTSYS's most useful features is

its ability to automatically process arbitrary factorial and

nonfactorial between- and within-subject designs. Design

cells can be collapsed both by mixing data from different

factor levels or by Vincent averaging. Vincent averaging

(usually performed over a subjects factor) approximately

preserves distribution shape and is useful for obtaining

ex-Gaussian fits where design cells contain too fewobser­

vations for sufficiently precise parameter estimates. Vin-
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cent probability histograms allow visual inspection ofthe

shape ofthe averaged distribution and the goodness offit

of a fitted ex-Gaussian distribution.

Once you have specified a within-subject design and

the names ofthe data files corresponding to each subject,

RTSYS automatically calculates statistics for each sub­

ject and design cell. Individual parameters for each sub­

ject and subject averages for each cell can be viewed on

screen, printed, or output to a parameter file. Parameter

file format, including delimiter and missing value char­

acters, and the order of design cells can be controlled to

conform to the requirements ofgraphical and inferential

applications.

RTSYS is accompanied by a manual that provides an

extensive overview of the program and examples ofhow

to use options and organize analyses. Example data files

are provided so that the user can practice using RTSYS.

RTSYS also has on-line context-sensitive help for all op­

tions as well as an introductory help that gives an over­

view of the application. The first section of this article

reviews and explains the analysis techniques used by

RTSYS. The remainder of the article describes the user

interface and hardware requirements ofRTSYS.

WHY SHOULD YOU USE RTSYS?

Two phenomena make the analysis of RT data prob­

lematic. First, RT data can contain fast and slow outlying

values caused by anticipation and distraction. If the pro­

portion of outliers is sufficient, interpretation of results

may be confounded. Second, RT distributions are usually

positively skewed (e.g., Figure 1; but see Luce, 1986,

p. 117, for a counterexample with simple RT to an intense

auditory stimulus). Skew creates problems of interpreta­

tion for descriptive statistics. For instance, an independent

variable may affect the mean and median differently by

changing the degree of skew. Significantly skewed or
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Figure 1. A histogram ofRf data exhibiting a skewed distribution and potential outliers.

asymmetric data also violate an assumption made by
most parametric tests-that variability in data is normal

and hence distributed symmetrically.
Skew is commonly ignored, or it is removed by non­

linearly transforming the measurement scale, for in­
stance, from milliseconds to log(millisecond) or milli­
second"! (e.g.,Box & Cox, 1964, 1982). While this strat­

egy is useful to ensure that data conform to a normal dis­

tribution assumption, Ratcliff and Murdock (1976),
Hockley (1984), Mewhort, Braun, and Heathcote (1992),
and Heathcote, Popiel, and Mewhort (1991) all demon­

strate that the magnitude ofskew can contain information
about the effect of experimental manipulations. Hence,
transformation may lead inferential tests to miss poten­
tially important effects. Furthermore, analysis of un­

transformed RT takes advantage of a natural and inter­
pretable ratio scale, time. Nonlinear transformations of
time produce scales that are not so easily interpretable,

with the exception ofthe inverse transform that results in
a speed scale.

Solutions to the problem ofoutliers usually rely on re­
moving or censoring observations. Criteria for censoring
are, however, problematic because real data are almost

inevitably rejected along with spurious data. The amount
ofreal data lost as a function of the exclusion criterion is
usually unknown, so one must choose criteria without
being able to weigh the cost of losing real data against

the benefit ofexcluding spurious data. Despite these dif­
ficulties, outliers cannot be ignored, especially in para­
digms where frequent distraction or anticipation is
known to occur. Beginning with Tukey's (1960) seminal

paper on the contaminated normal model, there have
been numerous demonstrations of the potentially large
influence of even a small percentage of outliers on sta­

tistical parameter estimates.

A further practical problem, generated in part by at­
tempted solutions to the difficulties outlined above, is

the plethora of statistics that must be calculated and in­
terpreted by the conscientious RT researcher. Location
(e.g., mean and median), scale (e.g., variance), and asym­

metry (e.g., skew) measures, and potentially a variety of
nonlinearly rescaled versions, need to be calculated. Per­

cent error is useful to address the problem of speed­
accuracy tradeoff (Johnson, 1939; Link, 1982; OIlman,
1966; Pachella, 1974; Yellot, 1967). Mean error RT is

useful to determine if errors are due to anticipation or
distraction. To compound the problem, each censoring

scheme doubles the number of statistics to be analyzed.
While RTSYS does not provide a panacea, it encour­

ages researchers to explore possible solutions to the
problems outlined with a range of techniques. Through
quantifying RT distribution shape, RTSYS can reveal

structure within RT data not evidenced by conventional
analyses. The following sections provide relatively non­
technical explanations and illustrations of the techniques

employed by RTSYS. The first section deals with the
issue of RT distribution skew. The second section deals
with Vincentizing, a useful technique when the number

of observations is low. The third section deals with the
issue of outliers.

Estimating RT Distribution Skew

The principal difficulty in determining skew is find­

ing an efficient estimator. Efficiency is related to the
variation of estimates across samples. When efficiency
is low, estimates vary widely, especially with small sam­

ples. Prior to the widespread availabilityofcomputers, the
ease ofcomputation ofan estimator was also a consider­
ation. While the computational burdens ofthe techniques
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outlined are quite heavy, RTSYS has been optimized to
allow adequate performance even on an XT or AT.

Kendall and Buckland's (1967) Dictionary ofStatisti­

cal Terms defines skewness as "an older and less prefer­
able term for asymmetry, in relation to a frequency dis­

tribution." Most statistical packages describe skewness
with a statistic called the third shape factor or moment

ratio (often simply called skew): a3 = (113/112)2/3. The

variance, 112' and the third central moment, 113' are esti­
mated by:

The ~3 exponent and 112 components of a3 are scale fac­
tors. It is 113 that measures the asymmetry of the distri­

bution. As can be seen from its estimator, 113 is negative
when the distribution is left skewed (mean < median for

unimodal distributions) and positive when the distribu­
tion is right skewed (mean> median, the usual case with

RT data).
The formulas used to estimate a3 are justified using

the method of moments. The method of moments does

not require specification of a particular theoretical dis­
tribution, although it does require that moments of the

desired order exist (cf. the Cauchy distribution for which
moments are undefined), and provides formulas that are
simple to compute. However, Ratcliff (1979) criticized

estimation ofskew in RT data by the method ofmoments
on the grounds that it is inefficient (i.e., estimates are

very variable, requiring tens of thousands of observa­
tions to become sufficiently precise) and not robust (i.e.,
it is sensitive to outliers). RTSYS calculates the standard

deviation, using the method-of-moments formula, but it
does not calculate the third central moment or skewness
using the method-of-moments formula because ofits low

efficiency.

n - 1

n -1 The Ex-Gaussian Distribution
The theoretical distribution used by Ratcliff (1978,

1979; Ratcliff & Murdock, 1976) as a model ofRT dis­
tribution is the sum of independent Gaussian (normal) and

exponential random variables, named the ex-Gaussian dis­
tribution by Burbeck and Luce (1982). The ex-Gaussian

distribution has three parameters: 11, the mean ofthe nor­
mal component; (1, the standard deviation of the normal

component; and 1", the mean of the exponential compo­
nent. The parameters of the components are related in a
straightforward manner to the central moments of the

overall distribution, the mean (Ill), the variance (112),
and the third central moment (113):

III =11+ 1" (1)

112 = (12 + r 2 (2)

113 = 2r3 (3)

Hence, the overall mean is determined by the location of
both normal and exponential components, the overall

variance is determined by both the variance of the nor­
mal and exponential components (the variance ofan ex­

ponential is r 2) , and 113 is determined solely by the ex­
ponential component, because the normal distribution is
symmetrical and hence makes no contribution to the
asymmetry of the ex-Gaussian.

Figure 2 illustrates an ex-Gaussian distribution and
its Gaussian and exponential components. The curves

are called probability density functions (pdfs) because
the probability of an RT in a given interval is the area

Ratcliff suggested that, instead of the method of mo­
ments, maximum likelihood estimation be used to deter­
mine skewness. Maximum likelihood estimation is more

efficient than the method ofmoments. In fact, it is con­
sistent and efficient, and it has the highest asymptotic

(large sample) efficiency of any unbiased estimation
method (see Cox & Hinkley, 1974, chap. 9). Its draw­
back is that a particular theoretical form of the RT dis­

tribution must be assumed. If the assumption is wrong,

estimates will be biased. It is also computationally in­
tensive, requiring optimization or search rather than pro­

viding a simple formula such as that for 113'

n

L (Xi - i)3
-'--i=--'-I _

JL3 = .

n

L(xi - i)2
.i=--'-I _

JL2 = -

and
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Figure 2. Probability density functions for (a) a normal distribution with I.l = 500, a =SO, (b) an exponential distribution with 't"=100, and
(c) the resulting ex-Gaussian distribution. Parameter values are typical ofthose observed by Heathcote, Popiel. and Mewhort (1991). Units
are expressed in milliseconds.
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and

Unfortunately, the convolution integral does not have a
closed form solution. However, the result can be ex-

under the curve in that interval. For example, the proba­

bility ofa 500-msec RT measured on a system with mil­
lisecond resolution (i.e., the response occurred in the in­

terval between the 499th and SOOth system clock tick) is
the integral (i.e., area) of the pdffrom 499 to 500 msec.

The pdfs for the exponential and Gaussian components
are given by the following equations:

I
1 --RT

pdEx(RT IT) = - e T
T

pressed as above using the standard normal integral, which

has a number ofaccurate and computationally cheap nu­
merical approximations.

The ex-Gaussian was first proposed by McGill (1963)
as a model of RT data where the right tail of the RT dis­
tribution seemed to be exponential. McGill suggested

that the exponential distribution reflects the residual
component of RT (the sum motor and perceptual and

other nondecision stages), with the Gaussian distribution
due to decision latency. However, Luce (1986) points out

that a review of physiological mechanisms by Meijers
and Eijkman (1974) found that the motor component of
the residual contributes very little variability. Since the ex­

ponential component is typically the main contributor of
variability to the ex-Gaussian, Luce suggests that it should

not be identified with the low variance residual compo­
nent ofRT.

The opposite attribution ofcomponents was suggested
by Hohle (1965). He used the central limit theorem to

argue that residual time, because it is the sum of a num­
ber of component processes, is Gaussian. However, as
the sum of Gaussians is Gaussian, part of the Gaussian

component could be due to decision processes even if
Hohle is correct. Later work suggests that both the Gauss­

ian and exponential components of fitted ex-Gaussian
distributions can be functions of experimental manipula­
tions that should influence the decision stage (e.g., Heath­

cote et aI., 1991; Hockley, 1984), rejecting a unique
identification ofthe components ofthe ex-Gaussian with
residual and decision times.

Luce (1986) notes that the fit ofthe ex-Gaussian to RT
data is "surprisingly accurate" (p. 100). For example,

Ratcliff and Murdock (1976) found that the ex-Gaussian
provided a better fit to data from recognition memory

experiments than did gamma and lognormal distribu­
tions. Heathcote (1995a) argues that the ex-Gaussian is

a good model ofRT data because the Gaussian component
can absorb additive Gaussian measurement error. Hence,
the ex-Gaussian can model variability associated with

the measurement process as well as variability intrinsic
to the cognitive mechanisms producing the observed RT.

Estimation of skewness through maximum likelihood

fitting of the ex-Gaussian was implemented in RTSYS
because of the ex-Gaussian's empirically demonstrated
ability to accurately model RT distribution. However, it

is hoped that, in the future, fitting of alternative distri­
butions will be implemented. Luce (1986) provides a
comprehensive review oftheoretically motivated RT dis­

tribution models. Candidates for implementation in
RTSYS include the displaced gamma, lognormal, in­
verse Gaussian, and Weibull distributions, all of which

have a simple three-parameter form and have received
attention in the psychological literature. Fitting of these
distributions through maximizing likelihood is not al­

ways as easy as for the ex-Gaussian because ofnonreg­
ular parameters. Regular parameters are asymptotically

normally distributed. When a parameter is not regular, it
has poor estimation properties. Hence, another reason to

(4)

cc

= fpdEx(z, 'l')pdG[(RT - z),Ji,a]dz

o

(12 RT-Jl (RT-Jl_!!.-)
---- (1 r y2
2r 2 r --

= e f e 2 dy.

'l'm1 -cee

The pdf for the ex-Gaussian is calculated by taking the
convolution of the above equations.

Convolution of continuous random variables is most

easily explained using the analogous operation for dis­
crete random variables. A discrete random variable is
described by a probability function (pf), the discrete

analogue of the continuous pdf. The pf gives the proba­
bility of each of a set of discrete outcomes. For a fair

coin, for example, the pfis p(x) = .5, where x = 0 for a
tail (T) and x = 1 for a head (H). Now consider the prob­

ability function for the sum of two coin tosses, P2(x),
where x = 0 for (T,T), x = 1 for (T,H) or (H,T), and x =
2 for (H,H). The summation of coin-toss outcomes is
analogous to the summation of outcomes for the contin­

uous Gaussian and exponential components of the ex­
Gaussian. Given that the coin tosses are independent,

the probability for any pair of outcomes is ~, the prod­
uct ofthe pfvalue for each outcome. To finish construct­
ing the pf, we need only add the probabilities of pairs

with identical outcomes-in this case, the single outcome

x = 1. Hence, P2(O) = Y<I, P2(1) = Y2, and P2(2) = Y4.
Convolution in the continuous case involves analo­

gous operations of multiplying pdfs and summing den­

sities for identical outcomes. Summation of identical
outcomes is replaced by integration over a variable z,

where the outcome ofone pdfis set to z and the other pdf
to (RT - z), so that the sum of outcomes is z + (RT ­

z) = RT.In the following equation, the integration is per­
formed over values where the exponential distribution

has nonzero probability density (0,00).

pdEx_G(RT Iu.o,1')
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prefer the ex-Gaussian is that numerical estimation

through likelihood maximization is stable and robust.

Table 1
Method of Moments and Maximum Likelihood Estimates

(Assuming an Ex-Gaussian Distribution) of the First Three
Central Moments and Ex-Gaussian Parameters

for an Example Data Set

convert products to sums. The ex-Gaussian log likelihood

is given by:

lEx-G(RT IIL, a, r)

= In LEx-G(RT IJL, a, r)

= -n (In --/2; + In r _ a
2

_ IL)
2r

2
r

_i [RT; _ <I>(RTi - IL _ a)].
i=l r a r

<I>(x) is the standard normal integral given in Equation 4.

RTSYS uses a rational function approximation for <I> that

gives greater than single precision accuracy (Kennedy &

Gentle, 1980, pp. 90-92).
RTSYS replaces maximization of log likelihood with

an equivalent operation, minimization ofminus log likeli­

hood. Since I(RTI,u,o;1')is usually negative, -1(RTI,u,a,1')

is usually positive and acts like a lack of fit measure,

such as squared deviation in least squares fitting: a min­

imum value of minus log likelihood indicates the best­

fitting model.

Search for the Maximum Likelihood Estimate
To illustrate the process of maximum likelihood esti­

mation through search, we will investigate fitting of an

example data set of 10 RTs. An ex-Gaussian distribution

with (l1,a,1') = (500,50,100) was sampled, resulting in

the data set (474.688, 506.445, 524.081, 530.672,
530.869,566.984,582.311,582.940,603.574, 792.358).
Since the ex-Gaussian is a convolution, the easiest way to

generate samples from it is to sum pairs of samples from

normal and exponential distributions. Table 1 gives esti­

mates ofthe mean and second and third central moments

(transformed to the same scale) and the ex-Gaussian pa­

rameters obtained by both maximum likelihood estima­

tion and method-of-moments estimation. Equations 1-3
were used to convert method-of-moments estimates of

111,11z, and 113 to ex-Gaussian parameter estimates and

maximum likelihood estimates of 11, a, and r to mo­

ments estimates.

The sample has positive skew as indicated by a me­

dian (549) less than the mean and has positive estimates

of the third central moment. Both methods produce sim­

ilar estimates. Note that this occurred because the sam­

ple was selected to have a positive third central moment

estimate. The sample size used is too small for precise

estimation and would often result in negatively skewed

samples. For example, the method-of-moments third

central moment estimate is dominated by the cubed

residual for the largest data point that is an order ofmag­

nitude greater than all other cubed residuals. When this

point is removed, the method-of-moments estimate of

1131/3 = - 54.1, indicating negative skew, despite the fact

that the median (530.9) is still less than the mean (544.7).
Ratcliff (1979) criticized the method of moments for its

sensitivity to extreme RTs, which may be outliers not

487.8 32.0 81.7
495.8 24.0 73.7

Estimating the Ex-Gaussian Parameters
This section describes estimation of the ex-Gaussian

parameters by likelihood maximization and compares it

with estimation using the method ofmoments. The like­

lihood of an observation is identical to its probability

density for a continuous distribution, or probability for a

discrete distribution. However, while identical mathe­

matically, the emphasis is shifted from the probability

density of a particular observation given a set of distri­

bution parameters, pd(RT I11,a,1'), to the probability den­

sity of a particular set of distribution parameters given

the observation, L(I1,a,1'IRT). More commonly, likeli­

hood is considered as the joint probability density of a

set ofobservations, RT = (RT l' RT2' ... RTn)' Given that

the observations are independent, the likelihood is given

by the product of the probability densities of the indi­

vidual observations.

L(I1,a,1'IRT) = pd(RT1111,a,1')pd(RT21 11,a,1')

... pd(RTnll1,a,1').

For fixed RT, the likelihood gives the probability density

of particular values of the parameters. Maximum likeli­

hood estimation selects the parameter values that have

the greatest probability density-that is, the parameter

values that are most likely given the data set. .

In some cases, maximum likelihood estimation leads

to closed form solutions for the parameters as a function

ofthe data. For example, least squares estimation for lin­

ear models with additive, constant variance Gaussian

error is equivalent to the maximum likelihood estimate.

For the ex-Gaussian distribution, however, closed form

solutions are not available, so maximum likelihood esti­

mation is carried out by search. Search involves evaluat­

ing the likelihood for different values of the parameters

until the best values are found.

Because the probability density values for each obser­

vation are usually small, their product, the likelihood, can

become so small that it is difficult to represent in float­

ing point form on a computer. To avoid representational

difficulties, search is usually carried out using log like­

lihood [1(RTII1,a,1')] rather than likelihood itself. Log­

arithms are monotonic, and, therefore, order-preserving,

functions. Hence, the parameter values obtained by max­

imizing likelihood are the same as the parameter values

for the maximum log likelihood. Logarithms also help to

simplify the expression for the likelihood, because they

Method of moments 569.5 87.7 102.9
Maximum likelihood 569.5 77.5 92.9
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generated by the psychological process under investiga­

tion. In contrast, the ex-Gaussian-based maximum like­
lihood estimate remains positive (jlF3 = 11.9) when
the largest value is dropped from the sample.

The process of search used to obtain the maximum
likelihood estimates can be illustrated geometrically. As­

sume that we know the true value of two of the three ex­
Gaussian parameters. We could then construct a plot of
minus log likelihood as a function of the unknown pa­

rameter. Figures 3a, 3b, and 3c illustrate such plots for
the example data when the unknown parameters are u, G,

and r, respectively. The value of the unknown parameter
with the lowest value on the plot is the maximum likeli­
hood estimate of the parameter.

Similarly, if we knew the true value of only one pa­
rameter, we could plot each value of the unknown pair of

parameters on a plane and the corresponding minus log
likelihood as a point on a surface above the plane. Fig­

ures 3d, 3e, and 3f plot the surfaces for u, G, and r
known, respectively. The maximum likelihood estimate
corresponds to the coordinates of the point on the plane

under the lowest point on the surface. The likelihood
surface for estimation of all parameters simultaneously
cannot be illustrated because it requires four dimensions

(three for the parameters and one for the likelihood).
Determination of the entire likelihood surface is

wasteful (computation of the three dimensional plots

took several hours each, see Appendix) when we require
knowledge ofonly one point, the minimum. Fortunately,
in many cases, we can find the minimum through search

with only local knowledge of the surface. To illustrate,
imagine that you wish to find the lowest point in a land-

scape, but it is dark so you have only knowledge of the

local height provided by moving your foot around. You
could proceed by determining the lowest point in your

neighborhood, moving to it, then repeating the process
until you are at the minimum and are surrounded by

higher points.
The problem of search or optimization has been in­

tensively studied, and algorithms exist that make search
tractable even in high dimensional spaces. RTSYS uses
two such algorithms: simplex and Marquardt-Levenberg.

Press, Flannery, Teukolsky, and Vetterling (1988) give
detailed explanations and the exact algorithms. The re­

mainder of this section gives a brief description suffi­
cient to facilitate use of the algorithms within RTSYS.

Simplex is a simple and robust algorithm that acts very

much like the above analogy, except that it moves around
by contracting, expanding, and moving a four-dimensional

hypercube (the simplex). The Marquardt-Levenberg al­
gorithm is more sophisticated, using the first and second

derivatives of log likelihood with respect to the parame­
ters as well as its magnitude. The first derivatives (slopes)

are used to determine the direction of steepest descent,
and the second derivatives are used to estimate how far
to step assuming that the surface is quadratic (e.g., a good
approximation for Figure 3a). Search is terminated when

fractional tolerance, the ratio of the previous improve­
ment in likelihood to the improvement of likelihood on

the present move, falls below a criterion value. Note that
termination is not guaranteed. When the surface around
the minimum is relatively smooth, termination occurs rap­

idly. However, when the surface is irregular, termination
may be slow or may not occur at all. Generally, larger RT
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data sets result in smoother likelihood surfaces and ter­
mination in fewer steps.

Under ideal conditions, the Marquardt-Levenberg al­
gorithm will find the minimum much more quickly than
will the simplex algorithm. However, certain surfaces,
such as a gradually descending valley, can cause very slow
convergence. Heading in the direction ofsteepest descent,
combined with some overshoot of the bottom of the val­
ley, may lead to repeated crossing at almost right angles
to the gradual decrease toward the minimum. The sur­
face may also be markedly nonquadratic, leading to poor
estimates of how far to move on each move on step.

Experience with both methods indicates that the sim­
plex algorithm is the most robust, rarely failing to con­
verge. With smaller data sets (n < 300), the Marquardt­
Levenberg algorithm tends to move quickly to the region
of the minimum but then either does not converge or con­
verges slowly.For larger data sets, however, the Marquardt­
Levenberg method is much faster than the simplex
method. For intermediate cases, RTSYS allows a combina­
tion ofthe two methods, using the Marquardt-Levenberg
method for a default number of steps to find the approx­
imate region of the minimum, then switching to the sim­
plex method to find its exact location.

Problems With Search
In general, search is a sensitive process that requires

careful attention. It often results in nonconvergence or
error conditions due to floating point overflows or un­
derflows. With a slow computer, or even with a fast com­
puter and a large number of data sets, determining the
best-fitting ex-Gaussian parameters may become prohib­
itively time consuming. The following describes features
ofRTSYS that automatically take care of many difficul­
ties arising during search. The design goal for RTSYS was
to allow unattended computation of best-fitting param­
eters so that even users of slow machines can process
large data sets by leaving RTSYS running overnight.

The geometric analogy illustrates one difficulty with
optimization: the problem oflocal minima. A local mini­
mum is a point that is surrounded by higher points but is
still not the overall lowest point, the global minimum (see
Figure 4). Whether search descends to a local or global
minimum depends upon where it starts. Local minima can
be avoided by a judicious choice of the starting point for
search.

RTSYS allows the user to select a starting point, but it
is also able to estimate its own starting point. When the
method ofmoments produces reasonable estimates ofthe
ex-Gaussian parameters (i.e., a> 0, t> 0; e.g., Table 1),
they can be used as a starting point for search. When they
are not reasonable, RTSYS uses a heuristic: r = 0.8 X

sample standard deviation. The heuristic is based on
Luce's (1986) observation previously cited (see also Rat­
cliff, 1993, p. 510) and my own experience that r domi­
nates the variability of the ex-Gaussian. The remaining
parameters are determined using Equations 1 and 2 (i.e.,
a = 0.6r, and j1 = sample mean -r).
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-I

Local Minimum

Figure 4. A twlHlimensionailikelihood surface with a local mini­

mum and a global minimum.

Some data sets may cause the search algorithm to at­
tempt to evaluate the log likelihood function for a$; 0 or
r $; 0, causing a floating point error. The ex-Gaussian
distribution may be an inappropriate model when the
data's distribution is symmetric or negatively skewed
(r $; 0) or when it is sharply peaked and better modeled
by an exponential plus a constant (a$; 0). Such cases may
also occur due to sampling error when the ex-Gaussian
model is appropriate, especially for small sample sizes.
Even when the final result is positive values of a and r,
attempts may be made during search to evaluate the log
likelihood function at parameter values that cause float­
ing point errors. To avoid floating point errors, RTSYS
sets the minus log likelihood function to a large value for
o or r$; (sample mean)/l,OOO. This effectively introduces
a barrier in the likelihood surface ensuring that search
does not move into inappropriate regions. Failed evalua­
tions of the likelihood function are reported by RTSYS
and implausible parameter estimates are set to the miss­
ing value, alerting the user to the problem. 1

When fitting fails, RTSYS allows the cause to be deter­
mined and a remedy, if possible, to be found. The prob­
lematic RT distributions can be plotted to examine the
shape of the distribution. Search may be attempted again
with new start points or other parameters controlling the
search process, such as the criterion for terminating search.
In particular, simplex search (the most robust method)
can be carried out in an interactive mode. During inter­
active mode, the parameter vector (u.o, r) and minus log
likelihood are displayed for each step. At any step, the
search may be paused and restarted with new control pa­
rameters supplied by the user. Even with these precautions,
some cases may not converge (i.e., the search may con­
verge in an unacceptable region of the parameter space
or get caught in a limit cycle or even chaotic oscillation).
In such cases, censoring the data set or collecting more
data may be necessary.

Even when search is not problematic, it is important to
ensure that the ex-Gaussian distribution provides an ad­
equate model of the data. RTSYS allows evaluation of
the ex-Gaussian model, both graphically, through plot­
ting the ex-Gaussian curve on a histogram of the data
(see Figure 5) and, inferentially, through a chi-square test.
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Figure 5. The histogram ofRT frequency given in Figure I, with the best-fitting ex-Gaussian function (solid line) superimposed.

Chi-square is calculated by comparing the observed and
expected number ofRTs in each ofa series ofcategories

that span the range of the RT distribution.
A difficulty with chi-square testing is choosing the

width ofthe categories, especially when the scale ofdis­

tributions may vary widely. D'Angostino and Stephens
(1986, p. 69) recommend the use ofchi-square cells with
equal probabilities under the fitted distribution, citing a

reduction in bias and better small sample properties.
Unfortunately, determination of the width ofequal prob­
ability bins requires search using the integral of the ex­

Gaussian pdf, an operation more computationally expen­
sive than parameter fitting itself. Instead, RTSYS uses
categories with equal numbers of data points, approxi­

mating equally likely ex-Gaussian categories for reason­
able fits. The user may select the number ofcategories or
allow RTSYS to automatically select 2n 2/5 categories (a
heuristic suggested by D'Angostino & Stephens, 1986,

p. 70). When a category produces less than five expected
or observed values, RTSYS collapses the category with

the subsequent category to ensure that the assumptions
of chi-square testing are not violated.

A Nonparametric Measure of

Distribution Asymmetry
A nonparametric measure of distribution asymmetry

is provided by the standardized distance between the mean
and median [i.e., (mean - median)/standard deviation].
The measure is briefly discussed by Kendall, Stuart, and
Ord (1987, p. 106, and Exercise 3.22, p. 116) and was

used by Ratcliff(l993). It is bounded between -1 and 1,
with positive values indicating that the mean is greater
than the median, as is commonly observed for RT distri­

butions. Ulrich and Miller (1994) point out that this mea­
sure should be less than 0.31 (the theoretical value for an
exponential distribution) for RT distributions.

A related measure, which replaces the median with the
mode, has been studied in relation to the unimodal Pear­

son system of distributions (see Kendall et aI., 1987).
However, RTSYS calculates the median version because

the mode is difficult to estimate efficiently. Although
values ofthe median form ofthe statistic, called nonpara­

metric skew in RTSYS, cannot be used to produce esti­

mates ofthe third central moment and hence estimates of
parametric skew, they provide an alternative way of as­
sessing skew in situations where the sample size is small.

Nonparametric skew's advantage over the method-of­
moments estimate is that it is not as sensitive to outliers.

Summary
Estimation of skew using the method of moments has

unacceptably high variance for sample sizes commonly
used in experimental psychology. RTSYS provides a

more efficient way to determine skew through maximum
likelihood estimation of the ex-Gaussian distribution.
The researcher can choose either robust simplex search

with smaller samples or more efficient but less robust
Marquardt-Levenberg search with large samples (such
as may be produced by simulations; e.g., Mewhort et aI.,

1992) and assess the suitability ofthe ex-Gaussian model
with chi-square testing. For samples that are too small to

allow fitting of the ex-Gaussian (a minimum of approx­
imately 100 observations is recommended), RTSYS can
calculate a nonparametric measure ofdistribution asym­

metry. Log and inverse transformations are also provided
for use with small samples and inferential tests that as­
sume normality. An alternate solution to the problem of
sparse data is given in the next section.

Vmcentizing: What to Do When Data Are Sparse

The most frequently encountered difficulty in dealing
with skew arises from small data sets. Even maximum like­

lihood estimates of skew are less efficient than the sam-



ple mean. Hence, data sets sufficient to make reliable in­
ference about the mean will not always be adequate for

reliable inference about skew.As samples become smaller

sampling error leads to increasingly frequent missing
values for skew estimates, further complicating inference.
Typically, experiments that attempt to measure skew

have at least 100 observations; however, in many para­
digms, 100 observations is an unrealistic goal. Difficul­

ties range from limited stimuli, limited time, and limited
attention on the part of subjects to confounding by prac­

tice effects. The usual strategy adopted by the behavioral
scientist when faced with low numbers of observations,
and consequent variability in estimates, is pooling or mix­

ing ofobservations from different conditions or subjects.
When measuring the shape ofdistributions, however,mix­

ing may lead to artifacts. The artifacts can be illustrated
with a simple example using the familiar Gaussian or nor­

mal distribution.
Suppose two experimental units (e.g., subjects or con­

ditions) produce normally distributed data with different
means and variances (Figure 6a). Mixing the data over

units results in an almost bimodal rather than normal dis­
tribution (Figure 6b). Ideally,we want a combination tech­
nique that preserves the component distribution's shape

while averaging their parameters (Figure 6c). However,
when we do not know the underlying distribution (e.g., RT
data), or when we assume the distribution but cannot es­

timate its parameters with few observations (e.g., fitting
the ex-Gaussian fails), we cannot average parameters.

Ratcliff (1979) proposed that Vincent averaging, a tech­

nique originally used to average learning curves (Hil­
gard, 1938; Vincent, 1912), provides the stabilizing effect

ofaveraging without distortion ofdistribution shape. He
demonstrated analytically that Vincent averaging pro­

duces no shape distortion for several theoretical distri­
butions (exponential, logistic, and Weibull), and he dem­

onstrated, using Monte Carlo techniques, that distortion
is minimal for the ex-Gaussian. He also analyzed a large
RT database with sufficient observations for stable fit­

ting of the ex-Gaussian distribution to individual sub­
ject's data. Ex-Gaussian parameters found by fitting to
Vincent-averaged distributions were close to the average

of ex-Gaussian parameters estimated from individual
subject's data. Hence, Vincentizing was able to produce
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average distributions with the same shape as component
distributions and parameters that were the average of
component distributions' parameters.

Vincent averaging is achieved in two stages. First,

quantiles are calculated for each component distribution.
If, for instance, five quantiles are required, calculate the
times below which 10%, 30%, 50%, 70%, and 90% ofob­

servations fall for each component (e.g., subject). Sec­
ond, corresponding quantiles are averaged across compo­

nents. The intervals between adjacent averaged quantiles
contain equal proportions (l/q, where q is the number of

quantiles) of the average distribution's RTs. The inter­
vals below and above the first and final quantiles each
contain l/(2q) of the RTs.

Ratcliff (1979) suggested a simple algorithm for calcu­

lating component quantiles. For n ordered reaction times
and q quantiles, write an array containing q copies of
each ofthe n RTs in turn. If, for instance, the RTs (1,2,3)

are observed and two quantiles are required, then the array
contains (1,1,2,2,3,3). Quantiles are obtained by aver­

aging successive groups ofn observations from the array
[e.g., (1+1+2)/3 = 1.33, and (2+3+3)/3 = 2.66]. Daw­
son (1988) provides an implementation ofthe algorithm.

RTSYS uses a modified version of Ratcliff's algorithm
that addresses a problem arising with large data sets.

RTSYS can process a maximum of 2,500 RTs and 100
quantiles. With each RT being a 6-byte real, a direct im­
plementation of the algorithm requires up to 1.5 MB of

memory! RTSYS avoids high memory loads with an al­
gorithm that refills the same n element array after each
quantile is calculated. The slight bookkeeping overhead

is far outweighed by reduced memory requirements.
The ex-Gaussian distribution can be fit directly to the

average quantiles because they form a representative
sample from the average RT distribution (i.e., by defi­
nition, each average quantile RT is equally likely to be

sampled). An added advantage of Vincentizing is in­
creased speed in fitting the ex-Gaussian, at least with
data sets where «< n. The speedup occurs because cal­

culation of likelihood requires the pdf for individual ob­
servations to be evaluated q times rather than n times.

For good ex-Gaussian fits, Vincentizing requires as few

as 20 observations per condition, with the restriction that
q < n (and preferably,q < n/3). When small numbers ofob-

w ~ 00

Figure 6. (a) Two normal distributions with means of 0 and 3 and variances of 1 and 4, respectively. (b) The distri­
bution resulting from pooling or mixing the two normal distributions. (c) The distribution resulting from averaging
the component parameters (mean = 1.5, variance = 2.5).
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servations per condition are used, Vincentizing should be

performed over more components to ensure a stable esti­

mate. Generally, q is chosen large enough so that the shape

of the distribution is preserved but small enough so that

high-frequency noise is not included (usually 5 ~ q ~ 20).

The choice ofnumber ofquantiles is aided by plotting

a Vincent histogram (see Figure 7). A Vincent histogram

is a graphical representation of the average distribution.

It is plotted as q - 1 rectangles, which span the intervals

between adjacent average quantiles and with heights cho­

sen so that their areas are (1/q)(Ratcliff, 1979). The Vin­

cent histogram is a discrete approximation to a pdf. Like

a pdf, the area under the Vincent histogram in a range is the

probability of sampling an RT in that range. The shape

of the Vincent histogram can be used to judge whether

enough quantiles have been chosen to provide a smooth

estimate of the pdf without blurring its shape. The best­

fitting ex-Gaussian function can be superimposed on the

Vincent histogram to determine how well it models the

data. The suitability of the ex-Gaussian model for Vin­

centized data can also be assessed inferentially with a

chi-square test.

Standard Errors for Vrncent Averages

A drawback of Vincentizing over subjects is that it re­

moves subject variation. Hence, inferential testing on the

parameters of the fitted ex-Gaussian cannot be per­

formed. Ratcliff and Murdock (1976, p. 200) provide a

table of standard deviation estimates for a range of ex­

Gaussian parameter values. The table is derived using

large sample properties of maximum likelihood estima­

tors and may not be appropriate for small samples and

parameter estimates derived by Vincentizing.

A more satisfactory solution for small samples may be

provided by resampling (e.g., Efron & Tibshirani, 1993).

Resampling involves creating a number (e.g., 100) of

new Vincent averages from the original data sets by sam­

pling with replacement (i.e., select a subject at random,

then repeat the process until n subjects are chosen, then

calculate the Vincent average of the sampled data sets).

The ex-Gaussian distribution is then fit to each ofthe re­

sampled Vincent averages. The standard deviations ofthe

parameter estimates can be used to perform inference.

In the current version of RTSYS, resampled data sets

must be created externally then processed in the usual

way by RTSYS, most conveniently with the resampling

replications as a factor. At present, I am investigating the

theoretical properties ofresampling combined with Vin­

centizing. Future versions of RTSYS will incorporate

automatic resampling if the results are favorable.

Summary
Vincent averaging allows RTSYS to determine skew

even when as few as 20 observations are available for each

experimental unit in each cell of the design. Vincent av­

eraging combines data across subjects or conditions with­

out distorting the shape of the underlying distribution.

The ex-Gaussian distribution can then be fit to the Vin­

centized data to obtain a maximum likelihood estimate

of skew. A chi-square test allows assessment of the ade­

quacy ofthe ex-Gaussian as a model of the data. The dis­

tribution of the Vincent-averaged data can be viewed by

plotting a Vincent histogram. The Vincent histogram also

provides a visual summary of the average distribution of

the data, which is useful even when large numbers ofob­

servations are available for each cell.

Censoring

Typically, RT data are used to investigate a particular

psychological process. The process of interest may not,

hrwever, be the only process to contribute to RT variation.

Some confounds can be controlled by careful experi­

mental design, but two confounds generic to RT data­

anticipation and distraction-may require post hoc mea­

sures. Anticipation produces fast RTs, and distraction
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Figure 7. A Vincent histogram with 20 quantiles. Each rectangle has an area oft/20, and there are 19 rectangles.
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means is low or standard deviation censoring when sub­
ject variation is high. He also suggests that the researcher

try "a range ofcutoffs and make sure that an effect is sig­
nificant over some range of nonextreme cutoffs" (Rat­

cliff, 1993, p. 519). Censoring and rescaling facilities in
RTSYS make it easy to implement his recommendation.

Compensating for Censoring With

Maximum Likelihood Estimation

Even when censoring is informed by the experimenter's
expertise, it is still likely to reject some real data. Fortu­

nately, with samples large enough to fit a distribution,
maximum likelihood estimation can be used to compen­

sate for the unwanted effects ofrejection ofreal data. As
when determining skew, the maximum likelihood tech­

nique requires assumption of a theoretical distribution.
The effect of censoring 71 fast and 72 slow observations
from a sample of n RTs is incorporated into the like­

lihood function, L, of a theoretical distribution with pdf
pd(RT) is

(note that Il indicates a repeated product). The integrals
assess the probability ofan RT less than a and greater than
b, where a and b are the lower and upper censoring cri­

teria. Hence, the first and last terms assess the probabil­

ity of observing 71 RTs less than a and 72 RTs greater
than b. The middle term is the likelihood of the (n ­

71 - 72) uncensored observations. Although other adap­
tations of the likelihood function are possible (cf. Ken­

dall & Stuart, 1967, Equation 32.36, p. 523), Ulrich and
Miller (1994) found fitting with Equation 5 to be the
most robust approach.

Ulrich and Miller (1994) carried out a set ofsimulations
to determine how fitting with Equation 5 affects bias in es­

timating means and standard deviations. They found good
bias reduction properties with little decrease in efficiency,

especially for mean estimates. They recommend an Er­
langian distribution for best recovery ofthe mean and the
ex-Gaussian for best recovery ofstandard deviation. How­
ever, there is little to choose between the Erlangian and ex­

Gaussian for mean estimation (average relative biases
ranging from -0.1 to 2.7 and from -1.5 to 1.4,and max­

imum inefficiencies of 1.34and 1.81, respectively; see Ul­
rich & Miller, 1994, Tables 14 and 15, p. 68--69).RTSYS
assumes an ex-Gaussian pdf in Equation 5 and automati­

cally fills in the values of 71> 72' a, and b implied by the
censoring criteria selected. Hence, RTSYS provides a con­
venient mechanism for implementing the approach rec­

ommended by Ulrich and Miller.

produces slow RTs. An indirect solution is to use a ro­

bust measure of central tendency, such as the median,
which is insensitive to extreme observations. This does

not, however, solve the problem when variance and skew
are of interest. A direct solution is to remove or censor
uncharacteristically fast and slow RTs. Unfortunately, a

poor choice ofcensoring criteria can distort the nature of

the process of interest by removing real observations.
The positive skew of RT distribution makes censoring

criteria for slow RTs particularly problematic (see Rat­
cliff, 1993, and Ulrich & Miller, 1994, for extensive re­
views of censoring methods for RT data).

RTSYS supports three types ofcensoring criteria: ab­
solute, standard deviation, and percentile. Censoring cri­

teria can be specified separately for fast and slow RTs,

allowing the asymmetry of RT distribution to be taken
into account. Absolute censoring allows specification of
times above or below which observations are rejected. Like

all censoring, it should be used with caution because it
may introduce bias. Ulrich and Miller (1994) study ab­

solute censoring extensively and provide a useful set of
recommendations for how to safely use it. Absolute cen­

soring is most appropriate for rejecting fast RTs that
occur through anticipation. Experiments on simple RT to

intense signals indicate that the residual (nondecision)
component of RT is at least 100 msec (Luce, 1986, Ta­
ble 2.1, p. 62). Hence, routine use ofan absolute fast RT

censoring criterion of 100 msec seems justified.
Standard deviation censoring rejects RTs that are a

criterion number of standard deviations above or below
the mean. Percentile censoring rejects RTs above or
below a criterion percentile point. Percentile and stan­

dard deviation censoring techniques are useful because
they adapt to the scale of the data's distribution. For in­

stance, when comparing cells with different means, ab­
solute censoring will affect means and proportions of

observations censored differently, biasing comparisons
between conditions. Standard deviation censoring will
adapt to different condition means, and percentile cen­

soring will ensure that equal numbers ofobservations are
removed in each condition.

Percentile censoring should be treated with care when
comparing conditions in which outliers occur with dif­

ferent probabilities. For example, an irritating or tedious
condition is more likely to produce slow outliers due to
distraction than is an enjoyable condition. In such a case,

where it is inappropriate to remove the same percentage
ofslow data from both conditions, standard deviation cen­

soring may be preferred. RTSYS also calculates mean
error RT so the predominant type oferror (faster or slower
than correct mean RT) can be used to guide criterion set­
ting (see Link, 1982, and Pachella, 1974, for a discussion

of speed-accuracy tradeoff).
In a study ofthe effect ofoutliers on the power ofanal­

ysis of variance, Ratcliff (1993) recommends either an
inverse transformation when variability among subject

L ~ (lpdlRT1dt)" X "If pd(RT,l

xlIPd(RT)dtr
(5)
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Summary
RTSYS provides three criteria for censoring data: ab­

solute, standard deviation, and percentile. Criteria can be
applied independently and in any combination for both

slow and fast RTs. The criteria are applied uniformly for
each cell of the experimental design. The ex-Gaussian
likelihood function can be automatically adjusted de­

pending on the number ofobservations censored in each
cell. This procedure entails increased computation.I but

it reduces bias introduced by censoring real RTs along
with outlier RTs.

THE USER INTERFACE

The RTSYS user interface consists of a Main menu
and six submenus. Each menu has options that can be se­
lected either by pressing the capitalized letter of the op­

tion or by moving a highlighted bar with the cursor keys
and pressing enter when the desired option is high­

lighted. Context-sensitive help can be obtained by press­
ing the FI key when the highlighted bar is on the option
in question.

Main Menu

The Main menu consists of options and status indica­
tors. Status indicators appear at the bottom of the screen
and, if defined, include the names of active files. The

Main menu options are submenus (except for Help and
Quit) that have a similar format to the Main menu, but
without the status indicators. Submenus consist of op­

tions on the left of the screen and default settings on the
right ofthe screen. The defaults control the way in which
the options are performed. Selecting the Defaults option

of the submenu causes the Defaults menu to appear. De­
fault values can then be changed, by either entering ex­
plicit values or toggling between possible states of the
default.

Defaults can also be changed through the Defaults
submenu of the Main menu. Defaults set in this way are

changed permanently through storage in a defaults file.
RTSYS reads a defaults file on start up and is distributed
with a standard defaults file, rtsys.def, in its home direc­

tory. Defaults files can also be stored by the user in data
directories using the Save option ofthe Defaults submenu.
This should be done to customize RTSYS when perform­

ing a series ofsimilar analyses. When RTSYS is executed
using the rt.bat file (see next section) from a directory
containing a defaults file, it will automatically load that

defaults file, allowing analysis to proceed with appro­
priate settings.

Most options require information about the design of
the experiment that you are analyzing. Design informa­

tion is specified in the Files menu and stored in a design
file. Options may also require that RTSYS has informa­
tion about file names. If a design file and file names are
not specified, RTSYS will ask appropriate questions after
you select an option. Youmay not alwaysknowthe answers

to the questions, especially if file names are requested.
If this happens, you can simply hit enter and you will be
returned to the previous level. .

RTSYS submenus are used in a sequence to process
data files and output results. In order to speed later cal­
culation of statistics, experimental data files must be

combined with design information to create ordered
files. Ordered files are ASCII and are created and ma­

nipulated in the Data Management menu. Vincentizing
can also be performed in the Data Management menu.
Once ordered files are created, frequency or Vincent his­

tograms can be plotted in the Graphics menu to check the
data's distribution. Statistics are calculated from ordered

files and stored as (non-ASCII) statistics files in the
Analysis menu. Once the ex-Gaussian parameters are

calculated in the Analysis menu, the Graphics menu can
be used to view the best-fitting distribution superim­
posed on histograms. The contents of statistics files can

be viewed, printed, and saved to ASCII parameter files
in the View Statistics menu. While both Data Manage­

ment and Analysis menus create one file corresponding
to each data file, the View Statistics menu creates, for
each statistic, a single parameter file that combines re­

sults from between-subject and within-subject design
cells. The following sections provide an overview of the

options and defaults of each submenu.

Specifying File Names and Interacting With DOS:

The Files Menu

To make finding out about files easier, the Files sub­
menu is available from the Main menu and all submenus.

To facilitate single-task usage under DOS, the Files
menu allows you to interact with the operating system.
oPtions provided allow you to list files (the DOS "dir"

command), look at ASCII files (the DOS "type 'file
name' I more" command), edit ASCII files (using the

edlin editor), delete, rename, and copy files (the DOS
del, ren, and copy commands), and create and remove di­
rectories (the DOS md and rd commands). Under Win­

dows, most of these functions are more easily accom­
plished with the File Manager. The remaining Files
menu options allow you to specify file names and design

information.
RTSYS can be used in both single-file and multifile

modes. In single-file mode, operations are performed on

a single file. If a file required by an option is not defined,
the user will be asked to specify it on a command line.
The names of each type of file (Data, Ordered, or Sta­

tistics files) can also be specified using options in the
Files menu. In multifile mode, all operations are done on
a set of files whose names are specified in a holding

file. The holding file is an ASCII file containing one file
name per line. A holding file is specified using the Mul­
tiple Files option in the Files menu. Holding files allow

large sets of files to be batch processed and allow speci­
fication of subjects and between-subject factors. It is
best to specify only the root names of files in the hold-



Randomized Data Files
Each line in a randomized data file contains integer

values designating the levels of each factor for a trial,
a trial indicator, and an RT value (real or integer). For
example,

Note that comments in braces { } are not in the actual
file.

If the data are not of the accuracy type (i.e., there are
no correct and incorrect answers), the trial indicators be­
fore the RT can be omitted. The type ofdata file assumed

(accuracy or not) is controlled by the Accuracy Data de­
fault in the Data Management Defaults menu.

The type of data file to be used and the values of the
different indicators can be set in the Defaults section of
Data Management menu. Again, assumption of either

accuracy (final value before the RT is a trial indicator) or
nonaccuracy data formats is controlled by the Accuracy

Data default in the Data Management Defaults menu.
The user may specify that any number of values be

ignored before a factor specification (after the Block

Header Indicator in a blocked file or at the start of each
line in a randomized file) and also before the trial indi­
cator in a blocked file. This may be useful if specific

information about a trial, such as a trial number, is in­
cluded in a data file. The user can also specify collaps­
ing by choosing which factors to ignore. Again, the De­

faults section ofthe Data Management menu can be used
to set these values. Finally,header lines in the data file may
be skipped using the Data File Header Line Skip option

in the same defaults menu. A maximum of2,500 (correct
+ error) RTs may be analyzed in each design cell.

RTSYS does only cursory analysis oferror data (mean
and percent). This is appropriate in most RT paradigms
because errors are kept low to avoid speed-accuracy
tradeoff. When error rates are low, even estimates of

error variance are imprecise, let alone ex-Gaussian pa­
rameters. If, however, you want more extensive analysis
of error data, the data file can be processed with indica­

tors for correct and error data flipped (usually set in the
Files Defaults menu, because this is easier than changing
the actual data file) so that RTSYS treats the error data

as correct data and treats correct data as error data. Al­
ternatively, you can use correct/incorrect as a factor in

the design and disable the Accuracy Data default in the
Data Management menu.

ing file. In multifile mode, RTSYS attempts to append
file extensions for data, ordered, and statistics files as re­

quired by the option. This allows a holding file listing
only the root names ofthe data files to be used to execute

several different options without having to respecify the
names on each occasion. Default extensions used are de­

fined in the Files Defaults menu.
A within-subject design must be specified by the user

and stored in a design file. Each line of the design file

contains the levels of each factor for a cell. Levels are
specified by integer designators. You must specify fac­

tors in the same order as they occur in your data files and
use the same designators as used in your data files. De­

sign files can be created from within RTSYS using the
Get Design File option in the Files menu. The Get De­

sign File option generates factor level indicators I, 2, 3,
and so on, by default, but it allows recoding to more mean­
ingful (unique integer but not necessarily ordered) val­

ues if required.

This method of creating design files works only for
fully factorial designs. Ifyou have a nonfactorial design,

you can create a design file either directly using an ASCII
editor (access to DOS's edlin is given in the Files menu)
or by creating the full factorial design ofwhich your de­

sign is a subcase and then editing out the cells (lines) that
are not present.

Once a design file is created, it can be loaded from disk

using the same option. Design files control the order in
which cells are processed. This is particularly useful
when generating parameter files for input to other appli­

cations. Design files can also be used to ignore cells by
omitting the lines that designate them. Operations in all

submenus are performed only on cells specified in the
design file.

All Files options assume the Default Path, which you
can set in the Files Defaults menu, unless you begin your
specification with a "\". For example, if you set the De­

fault Path as " \dat\exp 1", RTSYS will search for a file
specified by new.dat, as "\dat\exp I\new.dat".

Data File Format: The Data Management Menu

Twotypes ofdata files are accepted by RTSYS: blocked

and randomized. Blocked files use only one condition or
cell of the within-subject design in a block of trials. Ran­
domized data files come from a design in which differ­

ent cells are mixed in a block.

Blocked Data Files
In a blocked data file, RTs from each block are pre­

ceded by a cell designator line. The cell designator line

begins with a block header indicator (an integer value that
cannot equal an RT value), followed by integer values
specifying the levels of each factor for a cell. Following

lines contain an integer correct/incorrect/discard trial in­
dicator (in the default state, 1 = correct, 2 = incorrect,
3 = discard trial) and an RT value (which can be real or

integer). For example,

-3532

1678

1 735

2 1111

532 1 679

3221699

4 1 12799
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{Cell designator line, Block header ( - 3),

cell (5 3 2)}

{Correct RT}

{Correct RT}

{Error RT}

{Cell 5,3,2 Correct RT}

{Cell 3,2,2 Correct RT}

{Cell 4,1,1 Error RT }
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Ordered Files

Inan ordered file, RTs from each cell are collected to­

gether and listed from smallest to largest. Given that

most RT data sets consist ofless than 1,000 observations,

I follow Press et al's, (1988, p. 227) recommendation and

use Shell's method of sorting. RTs are also divided ac­

cording to whether they are from correctly answered or

error trials. When creating ordered files, RTSYS allows

RTs to be linearly rescaled to change time units. RTs can

also be transformed according to the resolution ofthe ex­

perimental apparatus that collected them. Most RT mea­

surement systems assume a measurement unit, usually

1 msec or the frequency of the monitor refresh (16.7 or

20 msec). RTs are actually measured as the number of

measurement units accumulated before a response is de­

tected. Hence, the best estimate ofthe actual RT is one half

a measurement unit greater than that actually recorded.

Although the difference is usually small, it can be im­

portant for order statistics, especially with low-resolution

measurements (see Heathcote, 1988, for a discussion of

time measurement in computer-controlled experiments).

Inan ordered file, RTs for each cell are preceded by a

cell designator line (similar to a blocked data file but

with no block header indicator). Each line thereafter con­

tains a single RT value. The list ofcorrect RTs is followed

by an indicator (-1 as default value), and the error RTs

are listed. The end of the error RTs is marked by another

indicator (-2 default), and the next cell then begins. For

example,

1 1 {Cell 1,1}

567

784

733

-1 {End of Correct RTs}

899

-2 {EndoferrorRTs}

21 {Ce1l2,I}

967

Ordered files can be produced directly from single

data files or by Vincent averaging across a number ofor­

dered files. A holding file specifying the names of the

ordered files to be Vincentized over must be supplied

(using the Files menu), because file names cannot be en­

tered from the command line. Ordered files can also be

merged using the Join Ordered Files option of the Data

Management menu. For example, you may wish to join

together the data from one subject collected over several

days. Again, a holding file specifying the names of the

files to be combined is required.

Calculating Statistics: The Analysis Menu

The analysis menu produces statistics files from or­

dered files. Statistics files contain one record for each

cell of the design. Each record contains the statistics de­

scribed above. Input from the ordered files can be non-

linearly rescaled (using inverse and log transformations)

and/or censored. Censoring and rescaling are controlled

from the Analysis Defaults menu. They have no perma­

nent effect on the ordered files, only the results stored in

the statistics files. Similarly, factors may be collapsed in

the Analysis menu and results stored in statistics files

with no effect on the original ordered files. tor flexibil­

ity, it is advisable to specify ordered files with the finest

factor structure applicable to your data and collapse nui­

sance factors during analysis.

You will often wish to try different combinations of

censoring, rescaling, and collapsing. In multifile mode,

you can use the same holding file for each combination

but maintain separate file names for each combination

by changing the default Statistics File Extension in the

Data Management Defaults menu. For example, you

may wish to compare statistics for uncensored data (e.g.,

stored in *.sts files) with statistics for data with the upper

5% of observations removed (e.g., stored in *.su5).

Analysis can be done with or without fitting the ex­

Gaussian distribution function. Not fitting the ex-Gaussian

is much quicker and may be appropriate for a first look

at the data. Ifthe ex-Gaussian is not fitted, its parameters

will be set to the missing value in the statistics files. Al­

though every attempt has been made to make fitting au­

tomatic, some data sets may require closer scrutiny. Such

scrutiny is aided by some knowledge of the fitting pro­

cess (see the previous section, Search for the Maximum
Likelihood Estimate). '

Search times for fitting the ex-Gaussian may be slow,

especially on XT or AT machines. Insuch cases, multifile

mode can be used to perform overnight runs. You should

experiment with the tolerance parameter in the Analysis

Defaults menu to determine what values give you an ac­

curate fit for the least computation. The Tolerance De­

fault determines how small the relative decrease in minus

log likelihood must be between steps of the fitting algo­

rithm before it stops. Ifyou can increase the tolerance with­

out changing the estimated parameters, do so; this will

speed fitting. Do not set tolerance less than 1OE-8, because

fitting will converge slowly due to spurious variation in­
troduced by rounding errors.

The search algorithm will abort after a number ofitera­

tions specified in the Analysis Defaults menu, and it will

continue fitting with the next cell. This default avoids

cases where fitting is not converging. Set it to a large value

to ensure that a reasonable attempt at fitting is made, but

not so large that multifile runs are unable to complete in

a reasonable time.

Viewing Results: The Graphics and

View Statistics Menus

RTSYS has two menus dedicated to viewing and out­

put of the results ofanalyses. The Graphics menu is mainly

designed to help fitting the ex-Gaussian, although limited

options for formatting and output ofgraphs are available.

The View Statistics menu allows viewing ofstatistics and
output to either a printer or a file.



Graphics
The Graphics menu allows you to look at the distribu­

tion of your data. Two types of histograms can be plot­

ted: frequency histograms and, for Vincentized data, Vin­

cent probability histograms. Plotting histograms requires

only that you have created ordered or Vincentized files.

You can specify the scaling of the histograms, using the

Graphics Defaults menu. Otherwise, RTSYS will auto­

matically choose the scale to fit the available graphics. If

user-specified scaling truncates the data, a warning mes­

sage will appear and the histogram will not be displayed.

User-specified scaling is useful so that direct compari­

sons can be made between figures.

Once the ex-Gaussian distribution has been fit in the

Analysis menu, and the resulting statistics files are avail­

able, a plot ofthe best-fitting ex-Gaussian distribution can

be superimposed on either frequency or probability density

histograms. Note that you must make sure that ordered and

statistics files correspond to obtain correct results!

You can also perform censoring in the Graphics menu

using the Graphical Censor option. Unlike censoring in the

Analysis menu, graphical censoring creates a new copy of

the ordered file (with extension ".cns" in multifile mode).

For each cell, histograms and lists offast and slow RTs are

displayed, and you will be asked to supply a fast and slow

RT censoring criterion. The histogram is then redisplayed

with the censored data removed, and the cycle may be re­

peated as required. Viewing the histogram gives a sense of

the scale ofthe RT distribution and can be particularly use­

ful for removing outlying RTs due to recording errors.

There are no direct facilities for exporting figures (e.g.,

the Windows clipboard is not supported), although some

memory resident applications are available that directly

dump a graphics screen to the printer. Fortunately, many

other applications allow you to plot a histogram using

the contents of an ordered file. However, it may not be

easy to plot the ex-Gaussian density based on the fitted

parameter values. To circumvent this problem, RTSYS

can save ordered files containing the value of the ex­

Gaussian density corresponding to each RT observation.

The saved file is identical to an ordered file except that

each RT value is followed by a tab character and the cor­

responding ex-Gaussian value. The two columns of RT

and ex-Gaussian values can be used in a graphics pack­

age to plot the ex-Gaussian function. It is also difficult

to plot a Vincent histogram. RTSYS allows you to save

files of coordinates for the corners of the Vincent histo­

gram. The file of tab-delimited coordinates can then be

used to plot the Vincent probability histogram with a

graphics package.

Note that appropriate Turbo Pascal font files (* .chr)

and graphics driver files (*.bgi) must be resident in the

RTSYS home directory if you invoke any of the options

using graphics. These files should be automatically

copied during installation.

Viewing Statistics
The contents of statistics files can be viewed on the

screen, printed, or saved in an ASCII file. The output des-
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tination is determined by a default of the View Statistics

menu. In multifile mode, averages across statistics from

the same cell in different files are calculated. The output

format (including number of columns, decimal places,

missing value string, and delimiter for output to file) can

be controlled from the View Statistics Defaults menu.

Files appropriate for inferential statistical analysis can

be generated in multifile mode. The ASCII file produced,

called a parameterfile, is a listing of values ofa statistic

for each cell for each subject. The order ofsubjects (files)

is determined by the holding file, usually with one sub­

ject's statistics per line. Within-subject statistics are listed

within a line, with cell order determined by the design file

and values separated by either a space or tab delimiter.

Multifile operations in the View Statistics menu can

be slow with large factorial designs due to disk access

time. Greater speed can be obtained using the Multifile

Speed default. Usually, RTSYS resets a statistics file and

searches from the beginning for each design cell. This al­

lows the order of cell output to differ from the order of

storage and allows for different storage orders across dif­

ferent statistics files. However, when the Multifile Speed:

Fast (No Match) Default is selected, all statistics files are

assumed to store cells in the same order as the design file.

Hence, statistics files do not have to be reset for each cell,

resulting in a faster operation.

Hardware and Installation

RTSYS is distributed on a single 5.25- or 3.5-in.

floppy disk. It can be installed to a hard disk by typing

a: \install from the DOS prompt or using run a: linstall in

the Windows program or File Manager. RTSYS will be

installed in the directory c:\rtsys, and example data will

be stored in the directory c:\rtsys\testdat. The rt.bat file

contained in c:\rtsys should be copied into a directory in

your system path (e.g., c:ldos) so that you may invoke

RTSYS from any directory. From Windows, either make

a program item that executes c:\rtsys\rtsys.exe with the

working directory c: Irtsys or choose run rt from the

Windows file manager. The latter method has the ad­

vantage that the File Manager working directory will be

passed to RTSYS's Default Path. In this way, you can

avoid having to type in the path to your data directory.

Under DOS, you will be automatically moved to the di­

rectory specified in your Default Path when you exit

RTSYS. Hence, using the rt.bat file under DOS, you can

move in and out of RTSYS without having to leave the

directory containing your data. You may put RTSYS in a

directory other than c:\rtsys if you wish. Only the rt.bat

file and/or the program item directories need be changed.

RTSYS was originally designed for use with slower

(e.g., XT or AT) DOS machines. The range ofDOS func­

tions available in RTSYS allows single-task usage on a

non-Windows DOS machine. Because distribution fit­

ting can be time consuming on slow hardware, RTSYS

was designed for robust performance with overnight

runs on large data sets. With faster machines (e.g., 486),

fitting is relatively rapid. However, disk 10 with complex

designs may still be a bottleneck because RTSYS holds
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information for only one design cell at a time in RAM to
avoid exceeding the 64K data segment limit. If extra
memory is available, a working directory on a RAM disk

greatly speeds file manipulation, especially for large fac­

torial designs. RTSYS 1.0 is configured with a maxi­
mum of299 design cells and 2,500 observations per cell.

If you routinely work with either more cells or more ob­
servations per cell, recompiled versions are available on
request. However, the two settings trade off; therefore,

exceeding both settings is not possible.
Flexible parameter file formatting means that RTSYS

works easily with most applications. Tab-delimited pa­

rameter files can be read into an ASCII editor (e.g., the
Notepad) and cut and pasted through the Windows clip­

board to most spreadsheets. I routinely use RTSYS in
conjunction with spreadsheets in Minitab 9.2 and 10.0

and Word 2.0 and 6.0.

FUTURE DIRECTIONS AND AVAILABILITY

The area of density estimation has undergone signifi­
cant growth in recent years. Many of the techniques

developed are beginning to emerge from the statistical
research journals and find practical application. Tradi­
tional parametric-model-based approaches, such as
maximum likelihood estimation of the ex-Gaussian, are

being supplemented by nonparametric techniques that
make fewer assumptions about the data. For example,
Silverman (1986) reviews kernel-based methods that pro­

duce smoothed estimates ofdensity. Kernel methods use
local, weighted averaging and are particularly suited for

graphical display (the traditional histogram is actually a
type of kernel estimate using a rather nonoptimal rec­
tangular kernel applied to disjoint ranges). Tarter and Lock

(1993) review another approach, Fourier analysis, and its
relationship to kernel techniques. They point out that Fou­
rier methods have an advantage over traditional tech­
niques that use distributions based on elementary func­
tions (such as sin(kx), x", and e kx

) because they use a

generalized representation, capable of representing any
reasonably well-behaved function. Greater generality al­

lows fewer assumptions to be made about the data.
It should not be inferred that "nonparametric" tech­

niques require no assumptions. Both Fourier and kernel

methods require specification of the smoothness of the
density estimate, a restriction on the complexity of the
density akin to the Ockham's Razor heuristic success­

fully applied in most branches of science. In the Fourier
approach, smoothness is determined by the shape ofa win­
dow on the frequency spectrum. In the kernel approach,
it is usually determined by a parameter controlling the

width of the kernel. However, these assumptions are
preferable to stronger assumptions made by traditional
"parametric" approaches, unless, ofcourse, the paramet­
ric assumptions are true.

In the future, it is hoped that a selection of these new
techniques suitable for RT data will be implemented in
RTSYS. In particular, the Adaptive Epanechnikov Ker-

nel seems suited to estimation ofRT densities with long
tails. As each RT is paired with a density estimate, re­
sults of the analysis can be stored as an addition to an or­

dered file in the same way that ex-Gaussian density es­
timates can be stored in an ordered file. Appropriately

chosen kernel estimates are superior to histograms as es­
timates of density. Hence, the graphics options can be
extended to plot the kernel density estimate, allowing vi­

sual checking of the parametric estimate in different re­
gions (e.g., does a parametric tail estimate overestimate

or underestimate the tail density?). Nonparametric den­
sity estimates may also be useful in recovering estimates

of the mode, by examining the derivative of the density
estimate, and the median, mean, and especially higher
order central moments, through integration of the den­

sity. Further investigation is required to determine the

usefulness of these techniques.
Accurate nonparametric density estimation is also im­

portant for determining the hazard function. Luce (1986)

suggested that the tail of the hazard function is useful in
discriminating between parametric models with similar
densities. The Adaptive Epanechnikov Kernel has been

used for hazard function estimation ofempirical (Smith,
1995) and simulation (Heathcote, 1995b) data. However,

VanZandt and Ratcliff (1993) point out that hazard func­
tion estimation is sensitive to contamination from out­
liers and mixtures in general, especially in the critical tail
region (see also Heathcote, 1995a). Detection and mod­

eling of mixtures is a difficult problem, except in ex­
treme cases resulting in clear multimodal densities (e.g.,

Figure 6b). Tarter and Lock's (1993, chap. 5) Fourier ap­
proach shows some promise with this problem, but fur­
ther investigation is necessary to determine if it is worth­

while implementing in RTSYS.
It is hoped that future versions ofRTSYS will imple­

ment maximum likelihood fitting ofa range of three pa­
rameter distributions, including the displaced gamma, log­
normal, inverse Gaussian, and Weibull. As reviewed by
Heathcote (1994, see also Luce, 1986,and Ulrich & Miller,

1993), each distribution can be motivated by plausible
psychological models, so selection ofthe best-fitting dis­

tribution may stimulate the investigators intuition about
the mechanisms underlying RT in their paradigm. Sig­

nificance of differences in fit can be tested with likeli­
hood ratio tests. A potential extension involves fitting four
parameter models, such as the convolution ofnormal and

gamma distributions (Link, .1968)or the convolution of
normal and inverse Gaussian distributions (Heath & Will­
cox, 1990). The convolved normal component may be

useful in accounting for additive measurement noise ex­
trinsic to the stochastic dynamics of the psychological
process of interest (Heathcote, 1995a). Likelihood ratio
test can be used to determine if the extra parameter sig­
nificantly improves fits.

Fitting of parametric distributions may be improved
by using the method of scoring. The method of scoring

replaces the raw matrix of second partial derivatives of
log likelihood used in fitting algorithms, such as Newton-



Raphson (e.g., Dobson, 1983, p. 30) and Marquardt­
Levenberg, with its expected value under the model. Fur­
ther investigation is required to determine whether the
method of scoring speeds fitting, especially with more
sophisticated search algorithms such as Marquardt­
Levenberg. An added advantage of the method of scor­
ing is that the asymptotic variance--eovariance matrix of
the parameters is equal to minus the expected second de­
rivative matrix at the maximum likelihood estimate (also
called the information matrix). Hence, the method of
scoring provides estimates of parameter standard errors
that allow inferential comparison of individual subject
and Vincentized distribution parameters.

One criticism oflikelihood ratio tests and standard er­
ror estimates given by the information matrix is that they
rely on large sample results. With smaller samples, they
may, therefore, be misleading. A recently developed so­
lution is to use resampling and jackknife procedures to
estimate standard errors and confidence intervals (e.g.,
Efron & Tibshirani, 1993). It is hoped that future versions
ofRTSYS will implement automatic estimation of these
quantities. As described in the section on Vincentizing,
the present version can be used for resampling with some
preparation of data sets external to RTSYS. Given the
computational demands ofthis approach, efficient fitting
becomes an even more pressing issue, reinforcing the need
to investigate and implement approaches such as the
method ofscoring. A parametric study using real data and
simulated data to investigate the difference between re­
sampled and asymptotic standard error estimates would
also be of interest.

To facilitate the reader's understanding of the ex­
Gaussian distribution, the Appendix contains Mathema­
tica code for performing the convolution (Equation 4),
plotting pdfs (Figure 2), sampling from the ex-Gaussian,
and calculating and plotting likelihood surfaces (Fig­
ure 3). Similar graphics can be generated for other distri­
butions defined in the Mathematica ContinuousDistribu­

tions package with minor alterations to the Mathematica
code supplied.

Copies of RTSYS, including a hardcopy of the man­
ual, can be obtained by sending an international money
order for $25 (US) (note that checks drawn on non­
Australian banks are expensive to cash; if you wish to
send such a check, please send $30 [US]) or $20 (Aus­
tralian) for orders within Australia. While many of the
improvements suggested above will be implemented in
pursuit of research issues, distribution of documented,
robust, and user-friendly versions is time consuming and
depends on the interest ofmembers of the psychological
research community. Please send bug reports, suggested
improvements, and information on the use ofRTSYS in
research and teaching projects to rtsys@baal.newcastle.
edu.au.
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NOTES

I. When fitting fails, the barrier will usually cause search to con­

verge to a value near it (i.e., a or r =mean/I ,000). RTSYS interprets

any converged value of rror r less than twice the barrier (mean/500) as

indicating a failure and sets all ex-Gaussian parameters to the missing

value. Not all failed calls to the log likelihood function occur due to

zero or negative value of a or r; they may also occur for evaluations of

the «1I(x) approximation when [x] > 7, or numerical evaluation of the in­

tegral on the left of Equation 5 is ::;;0 or the integral on the right of

Equation 5 is ~ I. When such failures occur, minus log likelihood is also

set to a very large barrier value. Fitting, however, is continued, because

excursions into these regions may occur on the way to an adequate fit.

Numerical problems are reported in both interactive and normal fitting

modes so that suspect fits containing many numerical problems may be

identified. When performing long fitting runs, the user is advised to

echo fitting feedback to the printer so that suspect fits containing many

numerical evaluation problems may be identified.

2. Unfortunately, the integrals in Equation 5 do not have closed form

solutions or approximations and, hence, must be evaluated with com­

putationally expensive numerical integration. Fortunately, the integra­

tion has to be performed only twice for each evaluation of L since

the result does not vary with the value of each RT. The integration is

performed using Press et ai's. (1988, p. 116-118) Romberg integration

on an open interval from 0 to a or b with an absolute accuracy of I in

106
. A lower limit of 0 is used because computation is faster for a def­

inite integral and little probability density occurs for RT< 0 in RT data.

Integration is performed using the midpnt function, and JMAX is set

to 10 rather than the recommended IS to save time on slowly converg­

ing integrals that occur when estimates of a and rare very small. If in­

tegration fails (JMAX is exceeded), -In(L) is set to a large value.

APPENDIX

This appendix describes code used to perform the ex-Gaussian

convolution and produce Figures 2 and 3 using Mathematica

Version 2.2.1 for Microsoft Windows on a 25-MHz 486SL. To

access predefined functions for statistical distributions, you

must load the standard Mathematica package ContinuousDis­
tributions:

«Statistics'ContinuousDistributions' .

Using this code as a template, you can explore the properties

of the ex-Gaussian distribution (and other standard distribu­

tions defined in ContinuousDistributions).

To define the ex-Gaussian pdf, you can either type in the func­

tion given in the text,

Exp[(s"2/(2*t"2»­

«x-m)/t)]*(t*(2 *Pi)"0.5)"-1 *

Integrate[Exp[-y"2/2],

{y,-Infinity,«(x-m)/s)-(s/t»} ],

or directly convolve the component normal and exponential

distributions defined in the package ContinuousDistributions,

pexg[m_,s_,t_,x_] :=

Integrate[PDF[ExponentialDistribution[( lit) ],z] *

PDF[NormalDistribution[m,s],(x-z)], {z,O,Infinity}J.

Note that predefined exponential distribution parameter, b, is

the inverse of 'l". Hence, the parameter t of the function pexg is

entered in the exponential density as lit. The integration is per­

formed over values where the exponential has nonzero probabil­

ity density (0,00). The integral in the output ofboth versions of

the ex-Gaussian density is expressed in terms ofthe error func­

tion (Erf), which can be efficiently approximated numerically.

Figure 2 was produced by plotting the predefined normal

and exponential densities and the ex-Gaussian density defined

above:

Plot[PDF[NormalDistribution[500,50],x], {x,300,700},

PlotRange->{O,O.O1},PlotStyle->AbsoluteThickness[ I]]

Plot[PDF[ExponentialDistribution[O.O I],x], {x,1 ,500},

PlotRange->{0,0.01 },PlotStyle->AbsoluteThickness[ I]]

Plot[pexg[500,50,1 OO,x],{x,300, 1OOO},

PlotStyle->AbsoluteThickness[I]].

Samples from the ex-Gaussian were obtained as the sum of

samples from the normal and exponential distributions:

randexg[m_,s_.t-]:= Random[NormalDistribution[m,s]] +

Random[ExponentiaIDistribution[ lit]].

The sample of 10 values was obtained with the following com­

mands (note that this command will produce different values

each time it is invoked):

sample = Table[randexg[500,50,100],{i, 1O}].

The ex-Gaussian likelihood function was obtained by summing

minus the natural log ofthe ex-Gaussian density over the set of

10 sample values:

ll[m_,s_,t_,rtseU := Apply[Plus,Log[pexg[m,s,t,rtset]]J.

Plots ofthe likelihood function in the neighborhood ofthe sam­

ple generating function's parameters were obtained with the fol­

lowing commands. Note that the plots were very computation­

ally intensive (e.g., several hours each for the three-dimensional

plots), so the two-dimensional plots were saved and displayed



using the Show function to allow selection of the appropriate

plot regions without recomputation. Given the shape ofthe two­

dimensional plot regions, the three-dimensional plots were

computed directly.

plotlltmu = Plot[lI[ m,50, IOO,sample],{m,460,520}]

Show[plotlltmu,PlotRange -> {{460,520},{57,58} },

AxesOrigin -> {460,57}]

plotlltsig = Plot[1l[500,s, 100,sample],{s,1O,80}]

Show[plotlltsig,PlotRange -> {{ 1O,80},{56,59}},

AxesOrigin -> {1O,56}]
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plotlltau = Plot[1l[500,50,t,sample],{t,40, 120}]

Show[plotlltau,PlotRange -> {{40,120},{56.5,57.8}},

AxesOrigin -> {40,56.5}]

Plot3D[1l[500,s,t,sample],{s, I0,80}, {t,40, 120}]

Plot3D[1l[m,50,t,sample],{t,40, 120}, {m,450,550}]

Plot3D[1l[m,s, IOO,sample],{s, I0,80}, {m,450,550}]

(Manuscript received January 3, 1994;
revision accepted for publication March 8, 1995.)


