
UC Irvine
UC Irvine Previously Published Works

Title
RTZen: Highly Predictable, Real-time Java Middleware for Distributed and Embedded 
Systems

Permalink
https://escholarship.org/uc/item/66g152wc

Journal
Middleware 2005, Proceedings, 3790

ISSN
0302-9743

Authors
Raman, Krishna
Zhang, Yue
Panahi, Mark
et al.

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66g152wc
https://escholarship.org/uc/item/66g152wc#author
https://escholarship.org
http://www.cdlib.org/


RTZen: Highly Predictable, Real-time Java

Middleware for Distributed and Embedded

Systems ? ??

The original publication is available at www.springerlink.com

Krishna Raman, Yue Zhang, Mark Panahi, Juan A. Colmenares? ? ?,
Raymond Klefstad, and Trevor Harmon

Department of Electrical Engineering and Computer Science
University of California, Irvine, CA 92697, USA

kraman, yuez, mpanahi, jcolmena, klefstad, tharmon@uci.edu

Abstract. Distributed real-time and embedded (DRE) applications possess strin-
gent quality of service (QoS) requirements, such as predictability, latency, and
throughput constraints. Real-Time CORBA, an open middleware standard, al-
lows DRE applications to allocate, schedule, and control resources to ensure pre-
dictable end-to-end QoS. The Real-Time Specification for Java (RTSJ) has been
developed to provide extensions to Java so that it can be used for real-time sys-
tems, in order to bring Java’s advantages, such as portability and ease of use, to
real-time applications.
In this paper, we describe RTZen, an implementation of a Real-Time CORBA
Object Request Broker (ORB), designed to comply with the restrictions imposed
by RTSJ. RTZen is designed to eliminate the unpredictability caused by garbage
collection and improper support for thread scheduling through the use of appropri-
ate data structures, threading models, and memory scopes. RTZen’s architecture
is also designed to hide the complexities of RTSJ related to distributed program-
ming from the application developer. Empirical results show that RTZen is highly
predictable and has acceptable performance. RTZen therefore demonstrates that
Real-Time CORBA middleware implemented in real-time Java can meet stringent
QoS requirements of DRE applications, while supporting safer, easier, cheaper,
and faster development in real-time Java.

Keywords: RTSJ, Real-Time CORBA, Design Patterns, Middleware, DRE

1 Introduction

For as long as computers have been able to talk to one another, software engineers
have struggled with the task of building distributed applications. Over the years, various
technologies have been created to deal with the problem, culminating in the “golden age
of networking” of the early 1980s, which saw the advent of remote procedure calls and
the socket metaphor. More recently, object-oriented architectures such as CORBA have
become popular for making computer communication easier to implement.

Traditionally, the overhead of CORBA-based middleware has limited its deployment
to large enterprise-class servers and workstations. Developers of distributed, real-time,

? This material is based upon work supported by the National Science Foundation under Grant
No. 0410218, Boeing DARPA contract Z20402, and AFOSR grant F49620-00-1-0330.

?? Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Founda-
tion.

? ? ? Also with the Applied Computing Institute, College of Engineering, University of Zulia



2

and embedded (DRE) systems, who must contend with far more limited resources, often
seek lighter-weight alternatives, such as socket libraries, but these solutions are nearly
as tedious and error-prone as they were following their invention a quarter-century ago.

In the last few years, however, research has shown that intelligent design and careful
implementation of CORBA can produce middleware that meets the needs of today’s DRE
developers [1]. By bringing the CORBA model to the DRE domain, the low-level details
of the network are abstracted away to the middleware layer, which shortens and simplifies
the development cycle for distributed applications. Thus, DRE developers can enjoy the
same benefits of CORBA that enterprise developers have enjoyed for many years, such
as interoperability across varying hardware, languages, and operating systems.

CORBA middleware for DRE developers offers more benefits than just simplicity and
portability. The recent Real-Time CORBA Specification [2] provides stringent quality of
service (QoS) constraints on memory, performance, and dependability. CORBA middle-
ware that conforms to this specification improves predictability by bounding priority
inversions and managing system resources end-to-end. Such features are vital for DRE
systems.

One key challenge in adopting CORBA, however, has been the steep learning curve for
C++ middleware implementations, primarily due to the complexity of the CORBA-C++
mapping [3–5]. Simpler, easier-to-use languages, particularly Java, have been applied
successfully to address this problem [6]. Java offers less “accidental complexity” than
C++, a higher degree of portability, native support for concurrency and synchronization,
a comprehensive class library, and other features that make it attractive to application
developers.

In the DRE domain, however, Java middleware has previously been unable to offer
the necessary QoS guarantees of predictability for two primary reasons: i) the under-
specified scheduling semantics of Java threads can lead to the most eligible thread not
always being run; and ii) the Java garbage collector can preempt any other Java thread,
thus yielding unpredictably long preemption latencies.

The need to allocate or reclaim memory can potentially be a major source of un-
predictability if such operations are allowed to occur on demand in unexpected circum-
stances (e.g., reallocating a buffer to handle a larger-than-expected amount of data, or
having a garbage collector run to reclaim memory). To address this concern, the Real-
Time Java Experts Group has defined the Real-Time Specification for Java [7]. RTSJ
brings a simpler, more portable, and easier-to-use language to the world of DRE systems.
It provides stronger guarantees on thread semantics than conventional Java and defines a
new memory management model that allows allocation of objects not subject to garbage
collection.

By using these newly-defined real-time Java features, CORBA middleware imple-
mented in Java can provide the best of both worlds: a portable, developer-friendly lan-
guage and the guarantee of predictability required by DRE systems. Implementing such
middleware is not simply a feat of engineering, however. It remains to be seen, for in-
stance, if the developer community will accept the strict scoped memory model of RTSJ,
or whether ongoing research into real-time garbage collection will make such memory
models obsolete.

Real-time systems are inherently more complex to develop and maintain than con-
ventional systems. Thus, designing and implementing a software system as powerful as
CORBA middleware, using the new RTSJ features for real-time memory management, is
necessarily more complex than developing systems in conventional Java. However, RTSJ
still retains many of Java’s advantages compared to C++, such as superior portability
and native thread support. Furthermore, RTSJ’s memory model may be easier to manage
than that of C++, which requires programmers to handle the memory management of



3

each individual object. RTSJ addresses this problem with the concept of scoped memory,
allowing the system to reclaim the memory of multiple objects automatically. Maintain-
ing entire blocks of memory as scopes can be less complex and error-prone than managing
each object manually, as in C++.

Mapping Real-Time CORBA object lifetime models into this RTSJ memory model
is a challenging task. The system must be designed carefully to ensure predictability
through RTSJ features, while simultaneously complying with the Real-Time CORBA
Specification, all the while shielding these complexities from the middleware user and
maintaining Java’s key advantage: ease of use.

In this paper, we show how we achieved these goals in designing and implementing the
first open-source real-time Java, Real-Time CORBA middleware, which we call RTZen.1

The largest known open-source RTSJ project, RTZen demonstrates that real-time Java
and Real-Time CORBA are maturing into viable technologies for DRE system develop-
ment. More importantly, our work proves that these specifications can be integrated into
a single middleware architecture that combines the advantages of each. The result is a
predictable, efficient, customizable, and embeddable RTSJ implementation of CORBA.

The remainder of this paper is organized as follows: Section 2 explains the RTSJ
features used in RTZen to ensure predictability, with special focus on memory scop-
ing; Section 3 describes the RTSJ-specific design patterns that we adopted in RTZen’s
implementation; Section 4 describes the architecture of RTZen; Section 5 presents em-
pirical results that demonstrate RTZen’s ability to accommodate real-time requirements;
Section 6 describes related work; and in Section 7 we provide concluding remarks.

2 Overview of RTSJ

Java offers developers significant advantages, with features like object-oriented program-
ming, platform independence, dynamic class loading, simplified memory management,
exception handling, and run-time consistency checks. However, the Java VM mechanism
that enables simplified memory management—the garbage collector—introduces chal-
lenges for real-time systems by potentially causing unbounded priority inversions, thus
reducing predictability. To address this challenge, RTSJ reduces the need for garbage
collection by introducing new types of memory regions and real-time threads.

2.1 RTSJ memory areas and switching

In addition to heap memory in standard Java, RTSJ introduces two new memory regions
with restrictions aimed at making memory management more predictable. RTSJ speci-
fies three memory regions: heap memory, immortal memory, and scoped memory. Each
memory region has an associated life-span, and objects may be allocated within these
regions by setting the allocation context before making allocations.

– Heap memory is the same as the original Java heap. Objects can be allocated in
heap memory, and are alive until the last reference to them is removed, when the
object becomes “garbage.” Garbage objects may be collected automatically by the
garbage collector. The running of a garbage collector is undesirable for real-time
systems, because it may be invoked at a time which causes higher-priority tasks
to be interrupted from accomplishing their time-critical task.2 The lifespan of heap
memory is the same as that of the JVM; i.e., objects created in heap memory can
stay alive as long as the JVM exists or until they become garbage.

1 Available at http://doc.ece.uci.edu
2 This is assuming that real-time garbage collection is not used.



4

– Immortal memory is a fixed-sized area whose lifetime is the same as that of the
JVM. Objects allocated in immortal memory, however, will never be garbage col-
lected. Therefore, if not managed carefully, the memory in this region could easily
become exhausted which will cause an OutOfMemoryException. As a consequence,
this region must be used sparingly and managed carefully. In particular, memory
allocations from the immortal region should generally occur at application initializa-
tion.

– Scoped memory is a memory region with a limited lifetime. The end of this lifetime
occurs when there are no more threads executing in the region. Scoped memory is
ideal for temporary allocations that follow the lifetimes of specific threads of control.
The benefit of using scoped memory is that it is both allocated and reclaimed as a
single (not necessarily contiguous) block,3 which are predictable operations.

RTSJ also introduces two new thread types which can be used to execute in memory
regions and are used to determine the lifetime of scoped regions. The most important
feature of these new threads is that they are scheduled preemptively so that the highest
priority thread is always running.

– RealtimeThreads (RTTs) are used to enter scoped, immortal, and heap regions.
Also, memory located in the heap can be referenced from any other region, following
the rules imposed by RTSJ (see Sect. 2.2).

– NoHeapRealtimeThreads (NHRTTs) are similarly used to enter scoped and immortal
regions, but possess one important distinction: no heap access is allowed. According to
normal memory access rules, any region can access the heap. However, if there is code
executing in a NHRTT, that code cannot access the heap. The important consequence
of this restriction is that NHRTTs can never be preempted by the garbage collector,
whereas RTTs can. Therefore, NHRTTs should be used whenever possible to ensure
predictability, even if heap memory will also be used in the application.

2.2 Nested Scopes

Scoped memory may be nested, producing a scoping structure called a scope stack. Since
multiple memory areas can be entered from an existing memory area, this scope stack
can form a tree-like structure. One key relationship is as follows: if region B is entered
from region A, then A is considered the parent of B (see Fig. 1(a)). Certain rules gov-
ern memory access among scopes. Code within a given memory scope A can reference
memory in another region B only if the lifetime of the memory in the region B is at
least as long as that of the first region A. This lifetime can be guaranteed only if the
requested object resides in an ancestor region (i.e., a parent or grandparent, etc.), im-
mortal, or heap memory. A violation of this rule results in an IllegalAssignmentError

or IllegalAccessError.
One important constraint is that a memory region can have only one parent, thereby

preventing cycles in the scope stack. Consequently, a single scope cannot have two or
more threads from different parent scopes enter it. If one thread takes a particular path
to get to a memory region and forms a scoped memory hierarchy, a second thread
will have to follow the same hierarchy to reach the same memory region, otherwise a
ScopedCycleException is thrown. For example, if a thread enters scope B from A, then
another thread that enters B must also be entered from A. An important implication of
this restriction on scoping structure is that a given region cannot access memory residing
in its “sibling” region. In the event that these two regions need to coordinate to perform

3 While RTSJ supports both linear- and variable-time allocation of scoped memory regions, we
strictly use the linear-time allocation mechanism in this work.



5

B

Immortal

A

C

Heap

(a) Nested Scopes.

to Heap to Immortal to A to B to C

from Heap yes yes no no no

from Immortal yes yes no no no

from A yes yes yes no no

from B yes yes yes yes no

from C yes yes yes no yes

(b) Access rules for (a).

Fig. 1. RTSJ Access Rules.

some task, they will need to do so through memory stored in a common ancestor region.
For example, in Fig. 1(a), scope C cannot access scope B. These regions can coordinate
only via objects stored in A or immortal memory. Table 1(b) depicts the complete access
rules among scopes in Fig. 1(a).4

The new memory regions introduced in RTSJ and described above provide memory
that will not be managed by the garbage collector, but the restrictions imposed on these
memory regions pose challenges for designing real-time middleware such as RTZen.

3 RTZen’s Design Patterns

Traditional design patterns [8, 9] are used to simplify the development process of large
software systems. Using design patterns leads to better modularity and maintainability
of code. RTZen is based on such design patterns, especially those used in the develop-
ment of networked and concurrent object-oriented middleware systems such as Acceptor-
Connector, Half-sync/Half-async and Interceptor.

Design patterns have the potential to mitigate the complexity of RTSJ to a large
degree. Consequently, some RTSJ design patterns have been proposed in the litera-
ture [10–12]. Also, additional RTSJ design patterns have been discovered in the course
of developing RTZen, and the main goal of this section is to describe them.

3.1 Summary of Existing RTSJ Patterns

The patterns below alleviate some of the most common difficulties that an RTSJ pro-
grammer is likely to encounter. These difficulties mostly pertain to properly handling
scoped memory hierarchies and obeying memory access rules.

Immortal Singleton. The Immortal Singleton pattern [12] is a simple adaptation of
the classical Singleton pattern [8]. It allows the creation of a unique instance of a class
from immortal memory, allowing it to be accessed from any memory area.

Wedge Thread. A Wedge Thread [10, 11] is used to prevent the premature reclamation
of a scoped memory area by controlling its lifetime. It consists of a real-time thread that
enters a scope and blocks, waiting for a signal to exit the area. Wedge threads should be
used sparingly since they occupy system resources.
4 Table 1(b) assumes that real-time threads are used. Note that if no-heap real-time threads

are used, no references to the heap are permitted.



6

Memory Pool. The Memory Pool pattern [10] is a set of instances of a given class
preallocated in a specific memory area (e.g., immortal memory). When an instance of
this class is requested, an object is taken from the pool and when the instance is no
longer needed, it is returned to the pool. Depending on the implementation, the pool
size may vary (e.g., if the pool is empty, a new instance may be created and returned).
In general, pooled objects must be mutable, so they can be reconfigured and reused.

Encapsulated Method. The Encapsulated Method pattern [11] allows the allocation of
objects that represent intermediate results of an algorithm in a temporary scope. After the
final result is obtained, the temporary scope is discarded, thereby avoiding unnecessary
allocations in the original scope.

Multi-scoped Object. The Multi-scoped Object pattern allows transparent access of
an object regardless of the originating region of the callee. This pattern ensures that the
necessary steps are taken to guarantee that a given method is called from the correct
scope by performing the proper memory scope traversals on behalf of the callee. Pizlo
et al. [11] attempt to generalize the idea, but they cover only the case of a multi-scoped
object performing allocations in its own scope from a child scope, among other simpler
cases.

Memory Block. The Memory Block pattern [10] allows the pooling, via serialization,
of objects of varying sizes in a byte array block allocated from immortal memory, thus
allowing read and write access from any memory scope and any thread type. When an
object is discarded, the memory block makes those bytes available for further use. This
pattern can be used to communicate information between scopes and threads otherwise
forbidden by RTSJ access rules. However, it has important disadvantages: i) it requires
explicit memory management, and ii) (de)serialization incurs additional overhead.

3.2 New RTSJ Patterns

In developing one of the largest and most complex open-source RTSJ software projects,
we have encountered more situations that warrant the use of four new design patterns.

Separation of Creation and Initialization.

Context. To use memory efficiently, RTSJ applications typically create some pools of
recyclable objects, preallocated in specific memory areas such as immortal memory [10].

Problem. Creation of objects in another memory area requires the use of Java reflection.
But reflection can become memory inefficient when creating objects with parameters
because the parameters for the reflection call must be objects themselves.

Solution. To solve this issue, the Separation of Creation and Initialization pattern is
used. It defines classes with the default constructor that creates uninitialized instances,
as well as accessor methods that allow the modification of the object’s internal state
(i.e., the configuration) just before they are going to be used. RTZen uses this pattern
to (de)marshal requests, as well as to create ORB and POA façades in memory pools.

Cross-scope Invocation.

Context. RTSJ programmers often encounter situations in which the calling object
needs to invoke an operation on an object allocated in an different scope, such as in a
sibling scope.



7

public class
ExecuteInRunnable

implements Runnable{
private Runnable r;
private MemoryArea a;

public void init(
Runnable r,MemoryArea a){

this.r = r; this.a = a;
}

public void run(){
try { a.enter(r);}
catch(Throwable ex){...}

}}

Fig. 2. The Execute-

InRunnable class.

MemoryArea parent;
ScopedMemory sibling;
Runnable logic;

...
ExecuteInRunnable eir =

EIRPool.getEIR();
eir.init(logic, sibling);

...
try { parent.executeInArea(

eir);}

catch (Throwable t) { ... }
finally { EIRPool.freeEIR(eir

);}
...

Fig. 3. Using Execute-

InRunnable.

Scope A Scope B

Parent Memory Area

executeInArea() enter()

Fig. 4. Invocation between
sibling scopes.

Problem. However, the memory access rules of RTSJ dictate that a given object can
be accessed directly only if it is residing in the calling object’s scope stack (an ancestor
scope). Therefore, for indirect access to occur, elaborate memory traversal must be per-
formed, in which the control thread must first jump to a scope that is a common ancestor
of both objects, then enter the callee object’s region (possibly traversing intermediate
regions along the way), and finally invoke the operation.

Solution. By using the ExecuteInRunnable class (see Fig. 2), the Cross-scope Invoca-
tion pattern can simplify the indirect access process. If necessary, this ExecuteInRunnable
class can be used repeatedly to perform such a memory traversal.

Figures 3 and 4 show the use of this pattern. Assume the simplest case in which B
and C are sibling scopes and A is their parent memory region, with B being the current
scope (Fig. 4). After being instantiated using the default constructor or obtained from
a pool, the ExecuteInRunnable object is initialized within the sibling scope C and a
Runnable object that contains the logic to be executed in B. Once the executeInArea

method of the MemoryArea class is called by B, the ExecuteInRunnable object starts to
run in A, making the current thread enter C and finally execute the logic provided in
the Runnable object.

As is common in RTSJ programming, the allocation of arguments and returned values
of the requested method require special care to avoid illegal access errors: arguments must
be accessible from the callee scope, and returned values must be accessible from the caller
scope. This requirement may add significant code complexity, but this complexity can
be alleviated by the adoption of the Memory Pool and Memory Block patterns [10].

Immortal Exception.

Context. In RTSJ applications, exceptions may need to be thrown and handled in
different memory areas.

Problem. However, in RTSJ, the propagation of exceptions is restricted by memory
access rules. A given exception object must be handled in a memory area that can legally
reference that exception. If not, a ThrowBoundaryError is returned and the original
exception is lost.

RTSJ’s memory area rules introduce accidental complexity into exception handling.
The CORBA specification requires exceptions to be thrown in many scope regions. How-
ever, some of those exception objects cannot be handled in their local scopes, yet cannot
be legally accessed from the region that can handle them either. For example, an excep-
tion raised in the Thread Pool Scope may need to be handled in ORB Memory Scope,
but this access is prohibited by RTSJ memory access rules.



8

Corsaro et al. [12] proposed that exceptions can be initially handled in the local
scope. With this approach, the notification of the exceptional condition is encapsulated
in a status variable or object and then transferred to an outer scope, where the condition
is finally handled, or propagated again to an outer scope. Although effective, this ap-
proach has the following drawbacks: 1) the code complexity is increased; 2) the exception
propagation mechanism is tightly coupled with the system’s memory structure; 3) the
actual exceptional condition may not be reported correctly because of an inappropriate
mapping between the exception type and the status variable or object (e.g., exceptions
are commonly handled using general types); and 4) system performance may be affected
since the exception must be re-instantiated several times as it is propagated from scope
to scope.

Solution. Consequently, we have designed the Immortal Exception pattern, an efficient
and flexible solution that allows exceptions to be handled independently of the memory
area in which they are thrown, without violating RTSJ referencing rules. In this pattern,
a factory class that creates exception objects of specified types resides in immortal mem-
ory. The Immortal Singleton pattern [12] is used to cache the exception objects in the
factory so that they can be reused (i.e., re-thrown). Distinct families of exceptions, such
as CORBA system exceptions and application exceptions, are organized into different
factories.

This pattern offers important advantages and a minor disadvantage. Since all excep-
tions are allocated in immortal memory, they can be accessed from anywhere, thereby
avoiding the boundary problem. This design is particularly useful when the system must
handle a large number of exceptions, such as the 400 instances of CORBA system excep-
tions handled by RTZen. A limitation of this pattern, however, is that since exception
objects are preallocated, no message that explains the cause of the run-time exception
can be associated with the exception objects. However, good documentation can alleviate
this inconvenience.

Immortal Façade.

Context. A consequence of RTSJ’s scoping rules is that large RTSJ applications, such
as RTZen, often have complex scoping structures.

Problem. Scoping structures introduce more development complexity to application
users. In general, when objects in different scopes interact using method calls, the com-
plexity of traversing the memory structure is exposed to both the caller object and callee
object. Furthermore, the caller is typically tightly coupled with the system’s memory
structure, in particular with the callee object’s locality. This exposed complexity makes
development and system maintenance more difficult and therefore compromises one of
RTZen’s design goals.

Solution. To hide complexity from the application developer, as well as to minimize
the dependencies of the caller object on the callee object’s memory locality, we used the
Immortal Façade pattern based on the Gang of Four’s Façade design pattern [8]. The
Immortal Façade consists of a façade class and an implementation class. The façade
class acts as a surrogate for and typically implements the same interface as the actual
implementation class. It encapsulates the logic that handles the cross-scope invocation.
The façade objects need to be accessible from scopes of interest, so they are frequently
allocated in immortal memory and managed by a pool. The implementation class im-
plements the actual business logic behind the façade. An instance of it is allocated in a
specific scoped memory.

In RTZen, two key patterns, Cross-scope Invocation and Immortal Façade, have been
used to hide the complex scoping structures between callers and callees. One example of



9

the combined use of these two patterns is the ORB façade. RTZen maintains a pool of
ORB façade objects in immortal memory. These façades do not implement any business
logic. All the logic is contained in the ORB implementation object hosted in the ORB
scope. Since the ORB façade is in immortal memory, the user can access it with ease and
make invocations on it. The Cross-scope Invocation pattern is used when the invocation
thread needs to laterally traverse scoped regions.

4 Architecture

This section explains the rationale behind the design of RTZen. First, we outline the goals
for RTZen and the CORBA features influenced by the memory and thread constructs of
RTSJ. Next, we describe the design of RTZen, emphasizing its scoped memory structure
and illustrating the processing of an invocation on a remote object. Finally, we present
an overview of RTZen’s customization features.

4.1 RTZen Design Goals

The design of RTZen has been driven by the following requirements.

– Predictability. Real-time middleware must provide a high degree of predictabil-
ity. As a result, a Real-Time CORBA implementation requires eliminating priority
inversions and bounding the size of critical sections.

– Specification Compliance. An ORB must be compliant to the CORBA spec-
ification to ensure application portability across ORB implementations. However,
proprietary features and optimizations should still be available if they prove to be
advantageous in certain cases.

– Performance. Even though real-time applications tend to favor predictability over
performance, it is the goal of RTZen not to compromise on this requirement. RTZen
aims to provide both a predictable and high performance CORBA implementation.

– Minimize User Complexity. One of the key aspects of middleware is that it off-
loads the complexities of distributed programming from the application developer
to the middleware developer. In the case of RTSJ middleware, complexities related
to distributed programming brought on by the addition of memory and thread con-
structs are offloaded as well.

– Efficient Use of Memory. RTSJ memory constructs must be used efficiently. Allo-
cations must be made in the context of memory scopes or managed carefully in pools
or caches located in immortal memory. Memory leaks must be completely avoided
to ensure continuous system operation. If possible, use of heap memory should be
avoided to ensure that the garbage collector always remains idle.

– Customizability. Finally, middleware should be customizable and support mini-
mization of footprint for embedded applications while maintaining all the advantages
of using middleware.

Our earlier work with ZEN [13] focused on each of these goals except for the efficient
use of memory, as RTSJ implementations have only recently become available. Matur-
ing RTSJ implementations, such as jRate [14], have provided the real-time JVM layer
necessary to ensure predictability and make the memory model of RTZen possible.

4.2 Mapping Real-Time CORBA to RTSJ

Primary features of RTZen are heavily influenced by the constraints imposed by the
added memory and thread constructs of RTSJ. To understand the architecture of RTZen
we must first examine them.



10

The feature that influences the architecture of RTZen the most is the CORBA re-
quirement that an application developer must be able to control the lifetimes of various
components, including ORB instances, POA instances, and CORBA objects. As a result
of this requirement, each of these components is mapped onto a scoped memory region
(Section 4.3). Furthermore, the CORBA specification defines the API that must be ex-
posed to application programmers. Since RTZen will use scoped memory regions, the
traversal of its internal scoped memory structure must not be exposed to the user.

The final issue is the selection of priorities of RTSJ threads. Recall that RTSJ intro-
duces two new types of threads: RealtimeThread (RTT) and NoHeapRealtimeThread

(NHRTT). The RTSJ platform was designed under the assumption that any NHRTT will
possess a higher priority than any RTT, so that NHRTTs will never block for garbage
collection [15]. If the application developer chooses to use both RTTs (to access heap
memory) and NHRTTs, the priority mappings can ensure that NHRTTs are always
mapped to higher priorities than are RTTs.

4.3 RTZen Design

To meet all of the goals and successfully implement the Real-Time CORBA specification,
RTZen was designed with a unique memory hierarchy (Fig. 5). The main purpose of this
hierarchy is to enable objects to be independently allocated and freed to follow the Real-
Time CORBA specification. As a side effect, this design also allows for pluggable and
customizable architecture that does not use the heap.

The idea of lifetime – the length of time for which an object is valid – is central to
understand the rationale behind the design of RTZen. CORBA exposes to the application
the ability to both create and destroy various CORBA components (e.g., ORBs and
POAs). RTZen enables this by assigning memory scopes to these components. When the
user creates one of these components, the associated memory scope is created, along with
a wedge thread if required. Recall that wedge threads occupy system resources; therefore
they are only used in scopes where there is not already an active thread keeping that
scope alive. When the component is destroyed, the associated memory scope is freed by
signaling all active threads in that region to terminate (including wedge threads).

RTZen is organized as a scoped hierarchy: Fig. 5 shows the memory layout of the
RTZen components. Each component with a defined lifetime is allocated in its own scope
and maintains its state within the scope. Moreover, some components have child scopes
for dependent components with smaller lifetimes, thus creating a tree-like scoped memory
structure.

In RTZen the application initially starts in immortal memory. The first application
scope region is above the initial immortal region and holds references to the ORB façade
and POA façade objects which are allocated from immortal memory and cached. The
ORB and POA façades internally hold a reference to the ORB and POA scoped memory
region respectively, not to the corresponding implementation object itself. In both cases
the implementation object is the portal of the scope. Under the ORB scope, there are
various other scoped regions for transport, acceptor, POAs, thread pools, and temporary
request processing. Each region has at least one thread object inside to keep the region
alive. Wedge threads keep the ORB and POA regions alive, whereas threads in the other
regions perform an active role for request processing.

The scoped memory structure combined with object-oriented concepts like inheri-
tance and polymorphism enables the development of customizable and adaptable sys-
tems [16, 13]. Each component can inherit its interface from a base class and implement
different features. And since each component is maintained in an individual scoped re-
gion, it can be easily plugged in and out of the runtime memory structure of the pro-
gram. RTZen’s protocol and transportation framework is built using this technique. Thus



11

SCOPED MEMORY

Scoped memory object cache
POA Façade

Cache

ORB Façade

Cache
 Object Ref Delegate Cache

IMMORTAL MEMORY

ORB Façade Ref POA Façade Ref
Servant

Implementation

BASE APPLICATION SCOPE

ORB MEMORY SCOPE

Connector registry ORB Impl Acceptor registry Active Demux table

TRANSPORT

SCOPE

Socket

TEMP. SCOPE

CDR Stream Ref

Request Data

Byte Buffer Ref

REQUEST

PROCESSING SCOPE

CDR Stream Ref

Request Data

Byte Buffer Ref

ACCEPTOR

SCOPE

Server

Socket

POA MEMORY

SCOPE

POA

Impl

THREAD

POOL SCOPE

Thread pool

CLIENT SIDE

TRANSPORT

SCOPE

Socket

Object Impl
Object Ref

Delegate Ptr

SERVER SIDE

Wedge

Thread

Wedge

Thread

D
IR

E
C

T
IO

N
 O

F
 S

C
O

P
E
 N

E
S

T
IN

G


Fig. 5. Scoped Memory Structure of RTZen.

transports and protocols can be configured, added, and removed in a pluggable manner
without affecting the other components of the ORB.

This scoped hierarchy also allows RTZen to avoid any heap allocation. However,
since RTSJ scoped regions are not garbage collected, RTSJ developers have to be very
careful about allocating and maintaining references to objects in these scoped regions.
In RTZen, this issue has been resolved using memory pools and the immortal singleton
pattern. Memory pools are used for any object that stores state and is simultaneously
accessed by multiple request threads, while an immortal singleton is maintained for those
objects which require only a global state and are accessed in a synchronous manner.

On the other hand, the scoped hierarchy introduces two accidental complexities into
the design of RTZen. The first one is exception handling. Exceptions in RTSJ are not
propagated beyond the scope in which they were thrown. However, the CORBA speci-
fication requires that the ORB throw exception in many locations. To solve this issue,
RTZen uses a combination of local exception handling and the Immortal Exception pat-
tern (Section 3). The second issue that may occur is creation of objects and references
across scopes. RTSJ does allow creation of objects across scopes using reflection. How-
ever, if the constructor requires any arguments, then reflection causes wasteful allocation
of memory for the arguments. To solve this issue, RTZen separates the creation and ini-
tialization of objects.

While allowing for more efficient memory usage and customizability, the scoped hi-
erarchy described above potentially increases the complexity perceived by application
developers – since it requires traversing the application and ORB internal scoped hierar-
chy to make invocations – if not for the use of two key patterns: cross-scope invocation
and immortal façade (Section 3.2). One example of the combined use of these two pat-
terns is the ORB façade. RTZen maintains a pool of ORB façade objects in immortal
memory. These façades do not implement any business logic. All the logic is contained
in the ORB implementation object hosted in the ORB scope. Since the ORB façade
is in immortal memory, the user can access it with ease and make invocations on it.
The cross-scope invocation pattern is used if this invocation’s thread needs to laterally
traverse scoped regions.



12

Along with using RTSJ scoped memory to enhance predictability, RTZen also ensures
that priorities are maintained and respected throughout the ORB. To achieve this, RTZen
is implemented with an endpoint-per-priority paradigm: for every distinct priority level,
RTZen maintains a separate endpoint [17]. Each endpoint executes at the highest priority
of requests that it may process. This ensures that i) high priority requests are not queued
behind low priority requests, and ii) incoming requests are guaranteed that the thread
reading the request data from the socket will run at an equal or higher priority.

RTZen also includes many of the performance and predictability enhancing tech-
niques pioneered in ZEN [18–20] and TAO [21–24]. For example, RTZen’s thread pool
implements the Half-Sync/Half-Async pattern [9] to minimize complexity and allow high
throughput, and the POA uses active-demux tables to allow O(1) demultiplexing of
server-side objects.

4.4 Sample Invocation using RTZen

This section traces through an invocation on the client and server side to illustrate the
traversing of the scoped memory structure of RTZen during a remote method call. We
assume that priorities are propagated with each request from the client to the server and
that the server is using a thread-pool with lanes.

The server object is created on the remote end with the appropriate policies, and
the corresponding Interoperable Object Reference (IOR) is generated. The IOR informs
the client about the remote object’s location and some supported policies. When the
server object is registered on the server side, RTZen creates a separate endpoint for
each supported request priority. This allows requests of varying priorities to be handled
independently of each other. This information is also propagated to the client in the IOR.

After obtaining the IOR (e.g., from a Naming Service), the client application reads
it and uses the client-side ORB to create a stub of the remote object. The stub acts as a
placeholder for the remote object: local invocations made on the stub are translated to
remote invocations on the server object by the ORB. RTZen creates the stub objects in
the application scope so that the client application may invoke requests on them directly
without having to traverse any scopes.

The invocation starts when the client application sets the priority of the request and
invokes a method on the stub. Based on the priority, the stub locates the appropriate
endpoint on the remote ORB to contact, sends the request message and then waits for
the return value. Within the ORB, this translates to using the Cross-Scope Invocation
pattern to jump to the ORB scope and then to the transport scope. At this point, the
message is sent and the active thread jumps back to the ORB scope and then enters to
a temporary scope where it waits for the reply.

After the request message is received by the server transport, the transport thread
reads the request header to locate the POA that the remote object is registered with.
Then the transport thread uses cross-scope invocation to jump from the transport scope
to the POA scope where it locates the reference to the target remote object. At this
point, the transport thread jumps to the thread pool region and locates a thread which
supports the priority of the request. The request is passed to a thread from the thread
pool, and the transport thread returns to its initial scope (i.e., the transport scope) and
listens for more incoming requests (Half-Sync/Half-Async pattern [9]). The thread-pool
thread now processing the request uses cross-scope invocation to jump to a temporary
memory scope where the request is processed. At this point, the invocation is made on
the actual remote object and once the invocation is complete, the thread jumps to the
transport thread and sends back the reply message.

Finally, on the client side, the client transport thread receives the reply message and
jumps to the temporary scope where the thread that made the request is waiting. The



13

client transport thread hands the reply back to the waiting thread which exits back to
the client scope and returns from the invocation on the stub.

4.5 Customization Features

Over and above the Real-Time CORBA specification, RTZen also implements some addi-
tional features which allow for greater customizability. First, RTZen allows the server-side
object to be hosted on thread pools which can be based on either RTTs or NHRTTs.
This feature allows the application developer to choose the tradeoff between being able
to use the heap or having a more predictable environment.

Second, RTZen includes the implementation of a pluggable transport and protocol
framework [25, 13] that allows the application developer to plug in custom transport
layers or protocols to the ORB. This is specially useful in embedded environments where
standard TCP/GIOP functionality may be unnecessary or wasteful. Currently, RTZen
includes a very compact version of GIOP with reduced functionality as well as a pluggable
serial transport that enables the use of the serial port for CORBA invocations.

Third, RTZen also includes a set of Mock RTSJ classes5 which enable it to run
on standard (non-RTSJ) Java VMs. This feature also allows Java developers to use a
standard Java VM to prototype RTSJ applications.

Finally, we have also developed ZEN-kit [26], a user-friendly graphical tool for cus-
tomizing RTZen. ZEN-kit implements a customization strategy based on conditional
compilation that takes advantage of the RTZen’s modular architecture. Using this tool,
developers can selectively include Core and Real-Time CORBA features into the ORB
in order to meet specific requirements of DRE applications, in particular those related
to memory footprint.

5 Empirical Results

5.1 Testing Environment

All experiments were run on 865 MHz Pentium III (Coppermine, 256KB Cache) proces-
sors with 512MB PC133 ECC SDRAM, for both server side and client side, connected
via 10 Mbps Ethernet on a closed subnet. The operating system was TimeSys Linux GPL
4.1 based on the Linux kernel 2.4.21, which supports the Native POSIX Thread Library
(NPTL) [27]. The non-real-time Java Virtual Machine (JVM) used for comparison was
the Sun JDK 1.4 JVM. The real-time Java platform was jRate [14], a real-time Java
ahead-of-time compiler.

5.2 Performance Measurements

For all tests, measurements were based on steady state observations, where the system is
run until the transitory effects of cold starts are eliminated before collecting the measured
observations.

Measuring typical performance. We used the median as a measure of typical performance
because, as so often is true in real-time systems, distributions were typically highly skewed
toward the minimum observation, with a large spike near the typical observation, and
with a long, low-probability tail toward the maximum.

5 Currently, the Mock RTSJ classes expose a reduced set of the RTSJ API and do not perform
allocation of access checks.



14

Measuring worst-case performance. We used the maximum as an estimate of a system’s
“worst case.” The worst case is an important measurement for real-time systems because
real-time systems must be designed with the assumption that the system will always
deliver the worst possible performance, even though designing to that assumption is
wasteful since typical times are usually near the best case [15].

For these experiments, the observed maximum in a sample size of 10,000 observations
was used to estimate the worst case for each message size. A sample size at least this
large was necessary to observe a reasonable estimate for the maximum latency because
the maximum values tended to be extremely low-probability events. The range of the
observations (maximum − minimum), or jitter was also used as another measure of a
system’s predictability.

5.3 Typical Performance: Comparison of RTZen on jRate; TAO, JacORB

on Sun JVM; and RTZen on Sun JVM

The test case used here has a single thread running on the client side, sending variable-
size octet sequences to the server side. The size ranged from 32 bytes to 1024 bytes.

 100

 1000

 10000

102451225612832

N
um

be
r 

of
 c

al
ls

 / 
se

co
nd

Message size [bytes]

RTZen on jRate
TAO

JacORB on Sun JVM with default garbage collector
Simulated RTZen on Sun JVM with default garbage collector

Fig. 6. Typical Performance: Comparison of RTZen on jRate; TAO, JacORB on Sun JVM; and
RTZen on Sun JVM

Comparison of RTZen on Sun JVM to JacORB on Sun JVM. Java developers in non-
real-time domains can afford to be careless about memory management because of the
existence of the garbage collector. The process of memory housekeeping — allocating
memory and cleaning it after it is used — creates overhead that can slow an application
substantially. RTSJ developers, on the other hand, do not have the luxury of depending
on a garbage collector for memory reuse, and must instead be more heedful of memory
usage. Section 4 described the careful memory management design in RTZen. Along with
the obvious effect of improved predictability, yet another consequence of careful memory
management is improved performance. This would be shown by the fact that the typical
performance of RTZen is better than JacORB’s.

To measure this performance improvement, we compared RTZen with JacORB [6], a
widely used Java-based ORB. Both ORBs were tested on the standard Sun non-real-time
JVM detailed above. In this case, RTZen used its Mock RTSJ classes (Section 4.5), so



15

all scopes and immortal memory regions were therefore simulated as heap memory, and
all allocations in those regions were subject to garbage collection.

The performance of JacORB was measured using the four types of garbage collec-
tors (default, throughput, concurrent low pause, and incremental) supported by the
JVM [28]. JacORB obtained its highest throughput with the throughput garbage collec-
tor, shown in Fig. 6. Note that, in the same conditions, RTZen significantly outperforms
JacORB. Thus, the test shows the performance improvement gained from the extensive
memory reuse (memory pools) and other performance enhancing techniques in RTZen
(Section 4.3).

Comparison of RTZen on Sun JVM and RTZen on jRate. Figure 6 shows that RTZen on
jRate performs about 30% slower than RTZen on Sun JVM. On the Sun JVM, RTZen
uses the heap instead of the scoped memory and immortal memory regions; thus it
does not incur any RTSJ scoped region traversal or access/allocation check penalties. In
addition, jRate is not an optimizing compiler, so it generates unoptimized code; jRate also
uses an open-source implementation of the Java API libraries which may not have been
optimized. This measurement provides an approximate idea of the overhead introduced
by RTSJ over normal Java.

Comparison of RTZen on jRate and TAO. We used TAO as our baseline measurements
for RTZen performance. TAO was written in C/C++ and thus provides a good approx-
imation of the highest performance possible by a Real-Time CORBA ORB. Figure 6
shows that RTZen is slower than TAO; however, considering the overhead of RTSJ and
Java VMs discussed above, RTZen compares favorably to TAO.

5.4 Consistency: Comparison of RTZen on jRate to JacORB on Sun JVM

We next compared the round-trip latency jitter of RTZen and JacORB. JacORB was
run on the Sun JVM with the default garbage collector, on which JacORB obtained
its narrowest jitter; RTZen was run on jRate. Although the platforms were different,
the measurements show the performance that can be expected from these ORBs on the
platforms for which they were designed. Since performance was more or less equivalent
across different message sizes, as shown in Fig. 6, we compared the two ORBs for a
message size of 128 bytes.

Figure 7 shows the distribution of the round-trip latency values with the maximum
and minimum bound indicated, as well as the circle to represent the median value. From
Fig. 7 we can see RTZen is highly predictable compared to JacORB, with the jitter
value of 90 µs and 9770 µs respectively; RTZen’s maximum value is close to its median.
Also, RTZen has not achieved this predictability by unduly degrading performance. No-
tably, RTZen’s typical performance and predictability, as measured by the worst case
observed, are within the range of time units typically used for distributed real-time sys-
tems (10 ms) [15]. These jitter values were expected and highlight the predictability
gained by developing in RTSJ.

5.5 Typical Performance and Consistency: RTZen on jRate with variable

message size

Figure 8 shows that RTZen is predictable across varying message sizes. RTZen performs
within round-trip latency jitter of around 200 µs in all cases, which is better than the
distributed real-time application requirements of 10 ms [15].

While satisfying the jitter requirement, RTZen’s typical performance stays roughly
constant even when message size increases. Throughput increases minimally (about



16

RTZen on jRate JacORB on Sun JVM
0

2000

4000

6000

8000

10000

12000

R
ou

nd
tr

ip
 L

at
en

cy
 [m

ic
ro

se
co

nd
s]

 

Fig. 7. Consistency: Comparison of
RTZen on jRate and JacORB on
Sun JVM

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 760

102451225612832

R
ou

nd
tr

ip
 L

at
en

cy
 [m

ic
ro

se
co

nd
]

Message size [bytes]

Fig. 8. Consistency: RTZen on jRate with variable
message sizes.

20 µs) as the message size increases from 32 bytes to 1024 bytes. Once the message
size exceeds the allocated buffer limit (1024 bytes), the round-trip latencies increase
slightly (about 50 µs, about 8%). RTZen allows application developers to configure the
message buffer size to customize performance and predictability as required.

5.6 Consistency: Comparison of RTZen on jRate and TAO

To compare the round-trip latency jitter of RTZen and TAO, we set up a test case running
two client threads. The purpose of this experiment was to test the jitter bounds of both
ORBs and to show that RTZen can be set up with NHRTTs that are not interrupted by
the garbage collector. The first thread was run at the highest CORBA priority, while the
second thread was run at the lowest CORBA priority. The low priority thread performed
a long operation; the high priority thread performed a short action which would interrupt
the lower priority thread. In RTZen, the high priority was a NHRTT, and the low priority
thread was a RTT. The RTT was also set up to allocate data on the heap to generate
some garbage data which would be reclaimed by the garbage collector.

Figure 9 shows a comparison of jitter measurements on the high priority thread with
RTZen and TAO running. Although RTZen is still slower than TAO, the jitter of the high-
priority task in RTZen is similar to TAO’s. These performance and jitter measurements
demonstrate RTZen’s ability to accommodate real-time requirements.

RTZen on jRate TAO
400

600

800

1000

1200

1400

1600

1800

R
ou

nd
tr

ip
 L

at
en

cy
 [m

ic
ro

se
co

nd
s]

 

Fig. 9. Consistency: Comparison of RTZen on jRate and TAO



17

6 Related Work

During the last decade, a considerable amount of standardization [29] and research [30–
34] work has been done on CORBA, and some results derived from this work have
been incorporated in various ORBs available today, both commercial [35, 36] and open-
source [37, 6, 38].

Additionally, significant efforts have been carried out to enhance the predictability
and performance of CORBA and make it suitable for DRE systems. The research com-
munity has determined the strengths and limitations of CORBA as foundation for DRE
systems [39, 40], and based on them, researchers have proposed i) software architecture
designs [25, 23], ii) scheduling approaches and mechanisms [41–43], iii) techniques for
improving quality of service [44, 24], iv) extensions for real-time network protocols [25,
45–47], v) the adaptation of CORBA services [48, 49], vi) techniques for tailoring CORBA
ORBs to computational platforms under stringent resource constraints [50, 51, 13], and
vii) modeling and verification methods [52]. Meanwhile, the Object Management Group
has produced the Real-Time CORBA specifications [53, 17].

Several Real-Time CORBA implementations exist as of this writing. Perhaps the
most well-known is TAO [21, 54], a popular open-source ORB compliant with most of
the features and services defined in CORBA 3.x [55]. Built on top of TAO is CIAO [56], a
CORBA Component Model (CCM) implementation for developing component-oriented
DRE systems. ROFES [57] is a minimal memory footprint prototype of Real-Time
CORBA. It has been adapted to work with several different hard real-time networks,
including SCI [45], CAN, ATM, and an Ethernet-based time-triggered protocol [46].
Commercial Real-Time CORBA implementations are also available: OpenFusion e*ORB
C Edition for Real-time [58] from PrismTech, ORBexpress RT [59] from Objective Inter-
face Systems, and VisiBroker-RT [60] from Borland Software Corporation. Very recently,
PrismTechnologies and Objective Interface Systems announced Real-Time CORBA com-
pliant ORBs for RTSJ: OpenFusion RT for Java and ORBexpress RT for Java, respec-
tively.

Java Remote Method Invocation (RMI) [61] is a mechanism for developing object-
oriented distributed systems in Java, and there is some progress adapting RMI so that
RTSJ supports timely invocation of remote objects [62]. Standard Java RMI has become
more compatible with CORBA, in particular due to RMI/IIOP, a form of RMI that uses
IIOP as the underlying protocol. RMI/IIOP holds promise to evolve into a bridge to
RT-CORBA.

7 Conclusion

Memory management is a vital part of any RTSJ application. The RTZen architecture
addresses the memory allocation and scoping issues related to implementing a Real-
Time CORBA ORB using RTSJ. It provides a solid foundation for further research into
implementations of Real-Time CORBA services and applications based on Java. Such
research would incorporate RTSJ scheduling features into the RTZen scheduling service
and provide support for custom configuration of RTZen to minimize its memory footprint
for smaller embedded applications. Further research is also needed for adapting RTZen
to Java virtual machines that support a real-time garbage collector.

In its current state, however, RTZen fulfills the essential goals of real-time distributed
systems: predictability, specification compliance, high performance, minimal user com-
plexity, customizability, and efficient use of memory. Our work proves that the RTSJ and
Real-Time CORBA specifications can be integrated into a single middleware architecture
that combines the advantages of each.



18

Acknowledgments

The authors thank Susan Anderson Klefstad for significant revision work and suggestions and
Morgan Deters for timely jRate bug fixes. Juan A. Colmenares thanks the University of Zulia
(LUZ) for supporting his participation in this research.

References

1. Schmidt, D.C.: R&D Advances in Middleware for Distributed, Real-time, and Embedded
Systems. Communications of the ACM. Special Issue on Middleware 45 (2002) 43–48

2. Object Management Group: Real-time CORBA Specification. OMG Document
formal/02-08-02 edn. (2002)

3. Schmidt, D.C., Vinoski, S.: The History of the OMG C++ Mapping. C/C++ Users
Journal (2000)

4. Schmidt, D.C., Vinoski, S.: Standard C++ and the OMG C++ Mapping. C/C++ Users
Journal (2001)

5. ZeroC, I.: The Internet Communications EngineTM . www.zeroc.com/ice.html (2003)
6. Gerald Brose and André Spiegel and Reimo Tiedemann et al.: Jacorb.

http://www.jacorb.org/ (2004)
7. Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, Turnbull: The Real-Time Specification

for Java. Addison-Wesley (2000)
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA (1995)
9. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley & Sons,
New York (2000)

10. Benowitz, E.G., Niessner, A.F.: A patterns catalog for RTSJ software designs. In: Lecture
Notes in Computer Science. Volume 2889., OTM 2003 Workshops (2003) 497–507

11. Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-time java scoped memory: Design
patterns and semantics. In: 7th IEEE Int’l Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2004). (2004) 101–110

12. Corsaro, A., Santoro, C.: Design patterns for RTSJ application development. In: Lecture
Notes in Computer Science. Volume 3292., OTM 2004 Workshops (2004) 394–405

13. Klefstad, R., Rao, S., Schmidt, D.C.: Design and Performance of a Dynamically
Configurable, Messaging Protocols Framework for Real-time CORBA. In: Proceedings of
the 36th Annual Hawaii Int’l Conference on System Sciences. (2003)

14. Corsaro, A., Schmidt, D.C.: The Design and Performance of the jRate Real-Time Java
Implementation. In Meersman, R., Tari, Z., eds.: On the Move to Meaningful Internet
Systems 2002: CoopIS, DOA, and ODBASE, Berlin, Lecture Notes in Computer Science
2519, Springer Verlag (2002) 900–921

15. Dibble, P.C.: Real-Time Java Platform Programming. Prentice Hall (2002)
16. Klefstad, R., Schmidt, D.C., O’Ryan, C.: Towards highly configurable real-time object

request brokers. In: Proceedings of the 5th IEEE Int’l Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2002). (2002) 437–447

17. Object Management Group: RealTime-CORBA Specification, v 2.0. Object Management
Group. OMG Document formal/03-11-01 edn. (2003)

18. Klefstad, R., Krishna, A.S., Schmidt, D.C.: Design and Performance of a Modular
Portable Object Adapter for Distributed, Real-Time, and Embedded CORBA
Applications. In: Proceedings of the 4th Int’l Symposium on Distributed Objects and
Applications. (2002)

19. Krishna, A., Klefstad, R., Schmidt, D.C., Corsaro, A.: Towards predictable real-time Java
object request brokers. In: Proceedings of the 9th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTTAS 2003). (2003) 49–56

20. Krishna, A., Schmidt, D.C., Klefstad, R.: Enhancing real-time CORBA via real-time java
features. In: Proceedings of the 24th Int’l Conference on Distributed Computing Systems
(ICDCS 2004). (2004) 66–73



19

21. Schmidt, D.C., Levine, D.L., Mungee, S.: The design of the TAO real-time object request
broker. Computer Communications 21 (1998) 294–324

22. Gokhale, A., Schmidt, D.C.: Techniques for optimizing CORBA middleware for
distributed embedded systems. In: Proceedings of the 18th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM ’99). Volume 2. (1999)
513–521

23. Pyarali, I., Spivak, M., Cytron, R., Schmidt, D.C.: Evaluating and optimizing thread pool
strategies for real-time CORBA. In: Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems (LCTES ’01). (2001) 214–222

24. Pyarali, I., Schmidt, D.C., Cytron, R.: Techniques for Enhancing Real-time CORBA
Quality of Service. Proceedings of the IEEE 91 (2003) 1070–1085

25. O’Ryan, C., Kuhns, F., Schmidt, D.C., Othman, O., Parsons, J.: The design and
performance of a pluggable protocols framework for real-time distributed object
computing middleware. In: IFIP/ACM Int’l Conference on Distributed Systems Platforms
(Middleware ’00). (2000) 372–395

26. Gorappa, S., Colmenares, J.A., Jafarpour, H., Klefstad, R.: Tool-based configuration of
real-time corba middleware for embedded systems. In: Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05), Los
Alamitos, CA, USA, IEEE Computer Society (2005) 342–349

27. Corp., T.: TimeSys Linux GPL 4.1. www.timesys.com (2004)
28. Sun Microsystems, I.: Tuning garbage collection with the 1.4.2 java[tm] virtual machine.

(2003)
29. Object Management Group: Catalog of OMG Specifications.

http://www.omg.org/technology/documents/spec catalog.htm (2005)
30. Gokhale, A., Schmidt, D.C.: Principles for Optimizing CORBA Internet Inter-ORB

Protocol Performance. In: Proceedings of the 31st Annual Hawaii Int’l Conference on
System Sciences. Volume 7. (1998) 376–385

31. Arulanthu, A.B., O’Ryan, C., Schmidt, D.C., Kircher, M., Parsons, J.: The Design and
Performance of a Scable ORB Architecture for CORBA Asynchronous Messaging. In:
Proceedings of the IFIP/ACM Int’l Conference on Distributed Systems Platforms
(Middleware 2000). (2000) 208–230

32. Mishra, S., Shi, N.: Improving the Performance of Distributed CORBA Applications. In:
Proceedings of the Int’l Parallel and Distributed Processing Symposium (IPDPS 2002).
(2002) 36–41

33. Alberto Coen Porisini, Matteo Pradella, Matteo Rossi, Dino Mandrioli: A formal
approach for designing CORBA-based applications. ACM Transaction on Software
Engineering and Methodology 12 (2003) 107–151

34. Majumdar, S., Shen, E.K., Abdul-Fatah, I.: Performance of adaptive CORBA
middleware. Journal of Parallel and Distributed Computing 64 (2004) 201–218

35. Borland Software Corporation: Borland Enterprise Server, VisiBroker Edition.
http://www.borland.com/visibroker/ (2005)

36. IONA Technologies: Orbix 6.2. http://www.iona.com/products/orbix/ (2005)
37. McConnell, S., Pedersen, J., Evans, J.S., Kühne, L., Rumpf, M., Boyce, S., Wood, C.:

Openorb community project. http://sourceforge.net/projects/openorb/ (2004)
38. Puder, A.: Mico: An open source corba implementation. IEEE Software 21 (2004)

http://www.mico.org/.
39. Gokhale, A., Schmidt, D.C.: Evaluating CORBA latency and scalability over high-speed

ATM networks. In: Proceedings of the 17th Int’l Conference on Distributed Computing
Systems (ICDCS ’97). (1997) 401–410

40. O’Ryan, C., Schmidt, D.C., Kuhns, F., Spivak, M., Parsons, J., Pyarali, I., Levine, D.L.:
Evaluating policies and mechanisms for supporting embedded, real-time applications with
CORBA 3.0. In: Proceedings of the 6th IEEE Real-Time Technology and Applications
Symposium (RTAS 2000). (2000) 188–197

41. Gill, C.D., Levine, D.L., Schmidt, D.C.: The Design and Performance of a Real-Time
CORBA Scheduling Service. Real-Time Systems 20 (2001)

42. Dipippo, L.C., Wolfe, V.F., Esibov, L., Cooper, G., Bethmangalkar, R., Johnston, R.,
Thuraisingham, B., Mauer, J.: Scheduling and priority mapping for static real-time
middleware. Real-Time Systems 20 (2001) 155–182



20

43. Hao, T., Zhigang, L., Jinde, L.: An end-to-end scheduling approach for real-time CORBA.
In: Proceedings of the 2002 IEEE Region 10 Conference on Computers, Communications,
Control and Power Engineering (TENCON ’02). Volume 1. (2002) 318–322

44. Zinky, J.A., Bakken, D.E., Schantz, R.: Architectural Support for Quality of Service for
CORBA Objects. Theory and Practice of Object Systems 3 (1997) 1–20

45. Lankes, S., Pfeiffer, M., Bemmerl, T.: Design and Implementation of a SCI-based
Real-Time CORBA. In: Proceedings of the 4th IEEE Int’l Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2001). (2001) 23–30

46. Lankes, S., Jabs, A., Reke, M.: A time-triggered ethernet protocol for real-time corba. In:
Proceedings of the 5th IEEE Int’l Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2002). (2002) 215–222

47. Lankes, S., Jabs, A., Bemmerl, T.: Design and performance of a CAN-based
connection-oriented protocol for Real-Time CORBA. Journal of Systems and Software 77

(2005) 37–45
48. Harrison, T.H., Levine, D.L., Schmidt, D.C.: The design and performance of a real-time

CORBA event service. In: Proceedings of the 12th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’97).
(1997) 184–200

49. Hong, S., Kim, Y., Kweon, M., Min, D., Han, S.: Object-oriented real-time CORBA
naming service on distributed environment. In: Proceedings of the 12th Int’l Conference
on Information Networking (ICOIN-12). (1998) 637–640

50. Gokhale, A., Schmidt, D.C.: Optimizing a CORBA IIOP Protocol Engine for Minimal
Footprint Multimedia Systems. Journal on Selected Areas in Communications - Special
issue on Service Enabling Platforms for Networked Multimedia Systems 17 (1999)

51. Kim, K., Geon, G., Hong, S., Kim, S., Kim, T.: Resource-conscious customization of
CORBA for CAN-based distributed embedded systems. In: Proceedings of the 3rd IEEE
Int’l Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000).
(2000) 34–41

52. Rossi, M., Mandrioli, D.: A formal approach for modeling and verification of
rtcorba-based applications. In: Proceedings of the 2004 ACM SIGSOFT Int’l Symposium
on Software Testing and Analysis (ISSTA ’04). (2004) 263–273

53. Object Management Group: Real-Time CORBA (Static Scheduling). 1.2 edn. (2005)
54. Schmidt, D.C.: TAO. Real-time CORBA with TAO (The ACE ORB).

http://www.cs.wustl.edu/ schmidt/TAO.html (2004)
55. Object Management Group: Common Object Request Broker Architecture: Core

Specification. 3.0.3 edn. (2004)
56. Schmidt, D.C.: CIAO. Real-time CCM with CIAO (Component Integrated ACE ORB).

http://www.cs.wustl.edu/ schmidt/CIAO.html (2004)
57. RWTH Aachen: ROFES. http://www.rofes.de (2005)
58. PrismTech Corporation: OpenFusion e*ORB C Edition for Real-time.

http://www.prismtechnologies.com (2005)
59. Objective Interface Systems, Inc.: ORBexpress RT. http://www.ois.com (2005)
60. Borland Software Corporation: VisiBroker-RT. http://www.borland.com/visibroker/

(2005)
61. Sun Microsystems Inc.: Java Remote Method Invocation (Java RMI).

http://java.sun.com/products/jdk/rmi/ (2004)
62. Borg, A., Wellings, A.: A real-time RMI framework for the RTSJ. In: Proceedings of the

15th Euromicro Conference on Real Time Systems. (2003)


