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To understand the effect of heat and drought on three major cereal crops, the

physiological and biochemical (i.e., metabolic) factors affecting photosynthesis were

examined in rice, wheat, and maize plants grown under long-term water deficit (WD),

high temperature (HT) and the combination of both stresses (HT-WD). Diffusional

limitations to photosynthesis prevailed under WD for the C3 species, rice and wheat.

Conversely, biochemical limitations prevailed under WD for the C4 species, maize,

under HT for all three species, and under HT-WD in rice and maize. These biochemical

limitations to photosynthesis were associated with Rubisco activity that was highly

impaired at HT and under HT-WD in the three species. Decreases in Rubisco activation

were unrelated to the amount of Rubisco and Rubisco activase (Rca), but were

probably caused by inhibition of Rca activity, as suggested by the mutual decrease and

positive correlation between Rubisco activation state and the rate of electron transport.

Decreased Rubisco activation at HT was associated with biochemical limitation of net

CO2 assimilation rate (AN). Overall, the results highlight the importance of Rubisco as a

target for improving the photosynthetic performance of these C3 (wheat and rice) and

C4 (maize) cereal crops under increasingly variable and warmer climates.

Keywords: crops, photosynthesis, Rubisco, Rubisco activase, temperature, water deficit

INTRODUCTION

As a consequence of climate change, global temperatures have increased over the last few decades
and this warming trend is predicted to accelerate in the near future (IPCC, 2013). Increases in
global temperatures are often accompanied by alterations in precipitation patterns, with effects
on the amount, intensity, frequency and type of precipitation (Dore, 2005). The changing global
climate is expected to have a detrimental effect on agriculture by increasing the prevalence of abiotic
stresses.

Heat and drought are the principal abiotic stresses limiting plant growth and crop productivity.
Photosynthesis, the main physiological process driving plant growth, is highly sensitive to
drought and heat stress (Chaves et al., 2009; Mathur et al., 2014; Singh et al., 2014), especially
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when both stresses are imposed together (Carmo-Silva et al.,
2012; Vile et al., 2012; Perdomo et al., 2015). Photosynthetic
CO2 assimilation can be constrained by diffusive and biochemical
limitations (Flexas and Medrano, 2002a; Pinheiro and Chaves,
2011). The diffusive limitations are a consequence of stomatal
closure (i.e., decreased stomatal conductance, gs) and increased
leaf resistance to CO2 transport from the atmosphere to the site
of carboxylation (i.e., decreased mesophyll conductance, gm), as
generally observed under mild to moderate water deficit (WD)
(Chaves et al., 2003, 2009; Flexas et al., 2004; von Caemmerer and
Evans, 2010).

The biochemical or metabolic components that limit
photosynthesis under WD are less well described than the
diffusion limitations (Galmés et al., 2007b). Metabolic limitations
to photosynthesis under drought have been associated with
impaired ATP synthesis (Tezara et al., 1999; Flexas et al., 2004;
Singh et al., 2014), which is due to a decrease in the electron
transport rate (J) (Flexas et al., 1999; Galmés et al., 2007a).
Lower ATP availability, in turn, affects ribulose-1,5-bisphosphate
(RuBP) regeneration, thus limiting the rate of CO2 fixation. The
effects of drought stress on Rubisco vary depending on the plant
species and intensity of stress; some studies reported a dramatic
reduction in Rubisco activity (Parry et al., 2002; Zhou et al.,
2007) while others showed little or no inhibition of the enzyme
(Panković et al., 1999; Pelloux et al., 2001). A meta-analyses
suggested that Rubisco did not limit photosynthesis until severe
or long-term drought stress was encountered (Flexas et al.,
2006a). More recently, Galmés et al. (2011) suggested that low
chloroplastic CO2 concentration (Cc) occurring underWD could
induce de-activation of Rubisco in some Mediterranean species.

High leaf temperatures affect both electron transport capacity
(Jmax) and themaximum rate of carboxylation of Rubisco (Vcmax)
(Dreyer et al., 2001; Yamori et al., 2006, 2008). On the contrary,
data in literature suggest that high temperatures (HTs) do not
sufficiently impair gs and gm to cause diffusion components to
significantly limit photosynthesis (Bernacchi et al., 2002; Evans
and von Caemmerer, 2013; Walker et al., 2013; von Caemmerer
and Evans, 2015). Moderately HTs impair the activation of
Rubisco by its catalytic chaperone, Rubisco activase (Rca), which
becomes the primary cause of the decrease in photosynthesis in
response to elevated temperature (Crafts-Brandner and Salvucci,
2000; Salvucci and Crafts-Brandner, 2004; Kim and Portis,
2005; Galmés et al., 2013). In addition to Rubisco activation,
moderately HTs can also inhibit electron transport activity, ATP
synthesis, and RuBP regeneration (Schrader et al., 2004; Yamori
et al., 2008; Carmo-Silva and Salvucci, 2011). As the temperature
increases further above the thermal optimum and reaches non-
physiological conditions, photosynthesis may be increasingly
limited due to impairment of the physical integrity of electron
transport components of the photosynthetic apparatus (Salvucci
and Crafts-Brandner, 2004).

The above described effects of HT on the photosynthetic
processes are mainly based on studies where measurements were
done at HT in plants grown at a moderate (control) temperature.
Although there is abundant evidence that photosynthesis can
acclimate to temperature (Gunderson et al., 2000; Way and
Yamori, 2014; Yamori et al., 2014), little is known about the

effects of high growth temperature on the relative contribution
of diffusive and biochemical limitations to photosynthesis. If
biochemical limitations prevailing at HTs of measurement also
predominate at HTs of growth, the analysis of Rubisco and
Rca performance and thermal acclimation may provide valuable
information toward the improvement of crop photosynthesis
at HTs.

The activity of Rubisco is regulated by Rca, which facilitates
the dissociation of inhibitory sugar phosphates from the active
site of Rubisco in an ATP-dependent manner (Spreitzer and
Salvucci, 2002). Most species studied to date, including rice
and wheat, contain two isoforms of Rca, a shorter redox-
insensitive β-isoform of 41–43 kDa and a longer redox-sensitive
α-isoform of 46–48 kDa (Zhang and Portis, 1999). Some
species, such as maize and tobacco, however, do not appear
to contain significant amounts of the longer redox-sensitive
α-isoform (e.g., Salvucci et al., 1987). Changes in the redox
status and ADP/ATP ratio of the chloroplast modulate the
activity of Rca, thereby mediating the regulation of Rubisco
activation and net CO2 assimilation in response to the prevailing
irradiance (Salvucci et al., 1985; Mott and Woodrow, 2000;
Carmo-Silva and Salvucci, 2013; Scales et al., 2014). The
activity of Rca is extremely thermally sensitive. This enzyme
becomes inactive, decreasing the rate of net CO2 assimilation at
moderately HTs.

The objective of the present study was to test the hypothesis
that decreased Rubisco activation state limits photosynthesis
under heat stress, and heat stress combined with WD, in the C3

cereals rice and wheat and the C4 cereal maize. The effects of
long-term plant growth under WD, HT and the combination of
both (HT-WD) were therefore investigated on Rubisco activity
and amount, Rubisco activase content and Rubisco activation
state and to relate them with the relative contributions of
biochemical and diffusive limitations to photosynthesis in rice,
wheat and maize.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and
Treatments
Rice (Oryza sativa L. cv. Bomba), wheat (Triticum aestivum L.
cv. Cajeme) and maize (Zea mays L. cv. Carella) plants were
grown from seeds in a greenhouse in 3.5 L pots containing a 70:30
mixture (v:v) of horticultural substrate (60% Fine blonde peat,
40% Fine black peat, granulometry 0–10 mm, 3.5 kg/m3 calcium
dolomite and 1.12% of N – 0.2% of P2O5 – 0.2% of K2O plus
1.45% of microelements; Prohumin 6040, Projar S.A, Spain) and
perlite (granulometry A13, Projar S.A, Spain). After 2 weeks, the
seedlings were selected to uniform size with 1 plant per pot in
maize, and 10 plants per pot in wheat and rice. Thereafter, the
plants were moved to a controlled environment room. Light was
provided by metal halide lamps (OSRAM, Germany) placed at
specific distances from the plants to obtain a photosynthetically
active photon flux density (PPFD) of 500 µmol m−2 s−1, with
a photoperiod of 12 h day/12 h night. The ambient temperature
and the relative humidity were monitored with portable sensors
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Testo 175-H1 data logger (Gerilab, Spain). The relative humidity
was maintained between 40 and 60% using humidifiers.

For logistical reasons, the plants were grown in two sets,
which were subjected to each of the two temperature treatments.
A first set of plants of the three species was grown at
the control temperature (Control, 25/20◦C; VPD, 1.8/1.0 kPa
day/night); and a second set of plants was grown at HT
(38/33◦C; VPD, 3.5/2.3 kPa day/night). Only temperature and
VPD differed between the two sets of plants or experiments,
while all other environmental conditions (e.g., light intensity and
quality, air removal, photoperiod duration) were identical and
computer-controlled.

For each set of plants, i.e., for each growing temperature
and VPD treatment, ten pots per species were grown at soil
field capacity until plants had developed fully expanded leaves
(typically 2 weeks). Thereafter, 20 days after germination,
pots of all species were randomly assigned to two different
irrigation treatments: five pots per species were maintained
at 100% field capacity during the whole experiment
(well-watered treatment, WW) and the other five pots were
maintained at 45% field capacity (moderateWD treatment, WD),
as determined by pot weighing every day and compensating the
daily water losses with 50% Hoagland’s solution that provided all
necessary nutrients for the plant. The soil water availability for
plants under WD was determined with respect to the control by
measuring the water weight in five representative samples of the
substrate mixture used in the experiment. Plants were considered
to be under WD when gs was decreased by 40% compared to
the well-watered plants; gs was considered as a good indicator
of the WD status, as previously demonstrated (Medrano et al.,
2002). Therefore, a total of four treatments were established:
25◦C of growth temperature and well-watered (control), 25◦C
of growth temperature and WD, 38◦C of growth temperature
and well-watered (HT) and 38◦C of growth temperature and
water-deficit (HT-WD).

New leaves were allowed to develop and expand under
the two irrigation treatments for a minimum of 30 days. All
measurements and samples were taken 40–50 days after the water
treatment was initiated (i.e., 60–70 days after germination), on
new leaves developed completely under the temperature and/or
water treatments (Perdomo, 2015). Plants of all three species were
in the vegetative stage and analyses used young fully expanded
leaves.

Leaf samples for biochemical measurements were collected at
mid-morning (4 h after the beginning of the photoperiod). Leaf
disks of 0.5 cm2 were quickly frozen into liquid nitrogen and
stored at −80◦C until extraction. These samples were used for
the following determinations: Rubisco initial and total activity,
activation state and amount, and Rubisco activase amount.

Gas Exchange and Chlorophyll a
Fluorescence Measurements
All leaf gas exchange and chlorophyll a fluorescence
measurements were performed on the youngest fully expanded
leaf of each plant, using a portable photosynthesis system
(Li-6400-40; Li-Cor Inc., USA) equipped with a leaf chamber

fluorometer (Li-6400-40, Li-Cor Inc.), the latter using the multi-
flash protocol (Loriaux et al., 2013). The net CO2 assimilation
rate (AN) and the stomatal conductance (gs) were measured
at mid-morning at a leaf temperature of 25◦C, saturating
PPFD of 1500 µmol m−2 s−1 (provided by the light source
of the Li-6400-40, with 10% blue light), a CO2 concentration
in the leaf chamber (Ca) of 400 µmol CO2 mol−1 air and a
relative humidity between 40 and 50%. A PPFD of 1500 µmol
m−2 s−1 was considered to provide photosynthesis saturation
for the glasshouse grown plants (Makino et al., 1994; Grassi
and Magnani, 2005; Centritto et al., 2009; Ghannoum, 2009;
Tazoe et al., 2009; Zhu et al., 2012; Xiong et al., 2015). The leaf
dark respiration rate (Rdark) was determined at pre-dawn (i.e.,
shortly before the start of the light period) at a Ca of 400 µmol
CO2 mol−1 air. The gross CO2 assimilation rate (AG) was
calculated from the sum of AN and half of Rdark (Bermúdez et al.,
2012).

The photochemical efficiency of photosystem II (8PSII) was
determined according to Genty et al. (1989):

8PSII = (F
′

m − Fs)/F
′

m (1)

where Fs is the steady-state fluorescence yield and F
′

m the
maximum fluorescence yield obtained with a light-saturating
pulse of 8000 µmol m−2 s−1.

The linear rate of electron transport (J) was calculated
according to Krall and Edwards (1992):

J = 8PSII · PPFD · α · β (2)

where α is the leaf absorbance and β is the partitioning of
absorbed quanta between photosystems I and II. β was assumed
to be 0.5 for the C3 species (Laisk and Loreto, 1996; Tosens
et al., 2012) and 0.4 for maize (von Caemmerer, 2000). α was
measured for all species grown under each treatment inside a
dark chamber using the light source from the Li-6400-40 and
a spectroradiometer (HR2000CG-UV-NIR; Ocean Optics Inc.,
USA), as described by Schultz (1996). All values obtained for α

were 0.86–0.87, with non-significant differences between species
and species × treatment combinations.

Estimation of Cc, Cs, and gm
From combined gas-exchange and chlorophyll a fluorescence
measurements, the mesophyll conductance to CO2 (gm) was
estimated for wheat and rice using the so-called variable J method
(Harley et al., 1992). The estimated value of gm for wheat and
rice, both C3 species, was used to calculate Cc by applying the
equation:

Cc = Ci − (AN/gm) (3)

Maize has a C4-based carbon concentrating mechanism, with
inherent complexity that complicates mathematical modeling
(Collatz et al., 1992; von Caemmerer and Furbank, 1999; von
Caemmerer, 2000; Ubierna et al., 2012). In this study, both gm
and gbs (bundle sheath conductance) were considered constant
in maize (von Caemmerer, 2000; Massad et al., 2007; Ghannoum,
2009). Yin et al. (2016) have recently shown large variation in
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gbs in response to measurement temperature in maize plants
grown at a constant temperature of 27◦C. To the best of our
knowledge, there are no reports on the variation of gbs with
growth temperature. Furthermore, a sensitivity analysis (results
not shown) demonstrated that even large changes in gm did
not affect our results; we expect the same would hold true for
gbs. The CO2 concentration in the bundle sheath (Cs) of maize
leaves was estimated from the hyperbolic function describing the
AN-Ci curves using the C4 photosynthesis model described by
von Caemmerer (2000) as detailed by Massad et al. (2007) and
with the modifications of Perdomo et al. (2016).

Quantification of Photosynthetic
Limitations
To compare the relative limitations to CO2 assimilation induced
by WD, HT and the combination of both stresses, the
photosynthetic limitations were partitioned into their functional
components following the approach proposed by Grassi and
Magnani (2005). This approach uses values for AG, gs, and
gm (Supplementary Table S1) and the maximum rate of
Rubisco carboxylation (Vcmax) as references. The maximum
AG, concomitantly with gs and Vcmax, was reached under
control conditions, therefore the control treatment was used as
a reference. In the present study, Vcmax was calculated as the
product of the Rubisco amount, the activation state and the
carboxylase catalytic turnover rate (kcatc) measured in vitro at
25◦C (2.1, 2.2 and 4.1 s−1 for rice, wheat, and maize, respectively;
Perdomo et al., 2016). Thereafter, the photosynthetic limitations
were partitioned into components related to diffusion, i.e.,
stomatal (SL) andmesophyll limitations (MCL), and leaf Rubisco-
based biochemistry (BL), estimated using the next equations:

DL = SL + MCL (4)

BL ∼ Vcmax (5)

The analysis of biochemical limitations in maize was restricted
to the C3 cycle activity. Data obtained under control conditions
was used as the reference.

Rubisco Activity and Amount in Leaf
Crude Extracts
Rubisco was extracted by grinding three leaf disk samples
(total area of 1.5 cm2) in a mortar with 500 µL of ice-
cold extraction buffer containing 50 mM Bicine-NaOH pH
8.0, 1 mM ethylene diamine tetracetic acid (EDTA), 5% (w/v)
polyvinylpyrrolidone (PVP), 6% polyethylene glycol (PEG4000),
50 mM β-mercaptoethanol, 10 mM dithiothreitol (DTT) and 1%
(v/v) protease-inhibitor cocktail (Sigma–Aldrich Co. LLC., USA).
Leaf extracts were then centrifuged at 14000× g for 1 min at 4◦C.
The supernatant was kept at 4◦C and used immediately for the
measurement of Rubisco activity and amount.

The activities of Rubisco were determined by the
incorporation of 14CO2 into acid-stable products at a reaction
temperature of 25◦C for plants grown both at control and HT,
following the protocol described in Parry et al. (1997). The

reaction mixture (500 µL) contained 100 mM Bicine-NaOH pH
8.2, 20 mM MgCl2, 10 mM NaH14CO3 (15.54 kBq µmol−1)
and 0.1 mM RuBP. The initial activity was determined by
adding 10 µL of crude extract to the reaction mixture. The
total activity was measured after incubating 10 µL of the same
extract for 3 min with all the components except RuBP, to
allow carbamylation of all available Rubisco catalytic sites, and
then starting the reaction by adding RuBP. All reactions were
quenched after 60 s by adding 100 µL of 10 M HCOOH. The
activation state of Rubisco was obtained as the ratio between
the initial and total activities. All quenched reaction mixtures
were completely dried at 100◦C, the residues dissolved in 400 µL
H2O, mixed with 3.6 mL of Ultima Gold scintillation cocktail
(PerkinElmer Inc., USA) and radioactivity due to the 14C stable
products determined in a liquid scintillation counter (LS-6500,
Beckman Coulter Inc., USA).

The amount of Rubisco was measured by electrophoresis
(Aranjuelo et al., 2005). One aliquot of the leaf crude extract was
mixed with loading buffer, consisting of 65 mM Tris-HCl pH
6.8, 3 M sucrose, 0.6 M β-mercaptoethanol, 5% (w/v) sodium
dodecyl sulphate (SDS), and 0.01% bromophenol blue. Samples
were heated at 96◦C for 5 min and then allowed to cool at room
temperature. The total soluble protein (TSP) concentration in
the crude extracts was determined by the method of Bradford
(1976). A volume representing 15 µg of TSP per sample (crude
extract mixed with loading buffer) was loaded onto a 12.5% SDS-
polyacrylamide gel (12.5% resolving, 4% stacking; 0.75 mm thick;
Bio-Rad Laboratories Inc., USA). This amount of protein was
within the range of linear response of optical density for known
concentrations of Rubisco purified from wheat (standard used
for calibration). The solubilized proteins were separated by SDS–
PAGE (Laemmli, 1970) with electrophoresis being carried out at
room temperature at a constant voltage (200 V). The gels were
fixed in 500:150:75 (v/v/v) water–methanol–acetic acid mixture
for 1 h, stained in EZ Blue Gel Staining (Sigma–Aldrich Co.
LLC., USA) solution for 1 h and subsequently rinsed in water to
remove excess stain. Finally, the gels were scanned with a high-
resolution scanner (HP Scanjet G3010, Hewlett Packard, Spain)
and the amount of large Rubisco subunit was determined by
densitometry with the image analysis software TotalLab v2005
(Non-linear Dynamics, USA).

Rubisco Activase Protein Amount
The relative amount of Rca was measured by immunoblotting
after separation of proteins by SDS–PAGE (Supplementary
Figure S1; Salvucci et al., 2001). Soluble proteins were extracted
from samples consisting of three leaf disks (total area of
1.5 cm2) by grinding in a mortar with 500 µL of ice-cold
extraction buffer containing 50 mM Tricine-NaOH pH 8.0,
10 mM EDTA, 1% (w/v) PVP, 20 mM β-mercaptoethanol,
1 mM phenylmethylsulfonyl fluoride (PMSF), 10 µM leupeptin
and 1% (v/v) protease-inhibitor cocktail. The leaf extracts were
centrifuged at 14000 × g for 1 min at 4◦C and 25 µL of
the supernatant was rapidly added to 20 µL loading buffer
(described above). After determination of the TSP concentration
in the crude extracts, sample aliquots of extracts plus loading
buffer corresponding to 6 µg of TSP were loaded onto a
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12.5% SDS-polyacrylamide gel (Bio-Rad Laboratories Inc., USA)
and separated by electrophoresis at 100 V. Serial dilutions of
extracts prepared from leaf disks taken from plants of each
species under control conditions were used as standards, by
loading 5, 10, and 15 µg of TSP. SDS-PAGE gels were blotted
onto nitrocellulose membranes in 50 mM Trizma base/50 mM
boric acid for 1 h at 100 V within the Mini-Protean system
(Bio-Rad Laboratories Inc., USA). Following blocking with
4% (w/v) non-fat milk, blots were probed with monospecific
antibodies (Salvucci et al., 2001). Immunodetection of Rca
protein via colorimetry was carried out with the BCIP/NBT
alkaline phosphatase system according to the manufacturer’s
instructions (Sigma–Aldrich Co. LLC., USA). The relative
amount of Rubisco activase in each sample was determined by
whole-band analysis of the membrane using an image acquisition
densitometer (ChemiDoc XRS+ system, Bio-Rad Laboratories
Inc., USA), with the image analysis software Quantity One v4.6.5
(Bio-Rad Laboratories Inc., USA).

Statistical Analysis
The statistical significance of trait variation was tested by
factorial ANOVA, with species, irrigation treatments and growth
temperatures as fixed factors, and the interaction between
treatments. Post hoc comparison between treatments was
performed using the Duncan test (P < 0.05) in the Statistica
6.0 software package (StatStof Inc., USA). Regression coefficients
were calculated with the 11.0 Sigma Plot software package (Systat
Software Inc., Germany).

RESULTS

Photosynthetic Limitations in Cereals
under Water Deficit and High
Temperature
The effects of WD and high growth temperature (HT) on the
growth and physiology of rice, wheat and maize were addressed
in previous studies (Perdomo et al., 2015, 2016). The detrimental
effects of these two stresses on the gross CO2 assimilation
rate (AG) and stomatal (gs) and mesophyll conductance (gm)
are shown in Supplementary Table S1. These data were used,
together with maximum Rubisco carboxylation activity, to
determine the contribution of the different types of limitations
to photosynthesis under WD, HT, and HT-WD combination.

Under WD, the diffusive limitations (DL) accounted for most
of the photosynthetic limitations in wheat, while the biochemical
limitations (BL) were predominant in maize and both types
of limitations had a similar contribution in rice (Figure 1A).
Importantly, the analysis of the biochemical limitations in maize
was restricted to the C3 cycle activity, taking into account those
limitations associated with Rubisco, and not with the C4 cycle
activity, including phosphoenolpyruvate carboxylase (PEPC).
Under HT and the combination of the two stresses (HT-WD),
the contribution of BL was larger than that of DL and explained
most of the inhibition of the photosynthetic CO2 assimilation in
rice and maize, whereas both BL and DL limitations contributed

FIGURE 1 | The diffusive (DL) and biochemical limitations (BL) to CO2

assimilation in rice (A), wheat (B), and maize (C) plants grown under water

deficit (WD), high temperature (HT) and a combination of HT and water deficit

(HT-WD). Values represent means ± SE (n = 4–5). Different letters denote

statistically significant differences by Duncan analysis (P < 0.05) between

types of limitation within each species and treatment.

equally to the inhibition of photosynthesis in wheat under
HT-WD (Figures 1B,C).

The relationship between the net CO2 assimilation rate (AN)
and the in vitro Rubisco activation provided further evidence for
the observed photosynthetic limitations. At HT, the prevalence of
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FIGURE 2 | The relationship between the Rubisco activation state and

the net CO2 assimilation rate (AN) in well-watered plants of rice (A),

wheat (B), and maize (C) grown at 25◦C (control) or 38◦C (HT) and measured

at 25◦C. Each symbol corresponds to one independent sample.

BL in the three species was confirmed by the positive correlation
of AN vs. Rubisco activation state in well-watered plants grown
at 25◦C or 38◦C and measured at 25◦C (Figure 2). Maize and
rice showed decreases in AN and Rubisco activation state with
the increase in temperature (Figure 2). Under WD and HT-WD,
the relationship, AN vs. Rubisco activation state, was positive in
rice (R2 = 0.51, P < 0.05, data not shown), but not in wheat
and maize (P > 0.05, data not shown), in agreement with the
limitation analysis (Figure 1A).

FIGURE 3 | Rubisco amount (A), initial (B) and total (C) activities at 25◦C

measured in plants of rice, wheat, and maize grown at control, WD, HT and a

combination of HT and water deficit (HT-WD) conditions. To unify scales

among the different species, values are means ± SE (n = 4–5) of each

parameter expressed relative to control plants. Different letters denote

statistically significant differences by Duncan analysis (P < 0.05) among

treatments within each species. The control values for rice, wheat, and maize

of Rubisco amount were, respectively, 0.49 ± 0.03, 0.34 ± 0.04,

0.15 ± 0.05 mg Rubisco mg-1 TSP; Rubisco initial activity 0.31 ± 0.02,

0.19 ± 0.04, 0.08 ± 0.01 µmol CO2 mg-1 TSP min-1; and Rubisco total

activity 0.36 ± 0.01, 0.44 ± 0.05, 0.13 ± 0.02 µmol CO2 mg-1 TSP min-1.

Rubisco Amount and Activities in
Cereals under Water Deficit and High
Temperature
Water deficit and HT stresses affected the amount and activities
of Rubisco in rice, wheat and maize differently, depending on
the treatment and the species (Figure 3). Results are relative to
the values obtained for control plants to facilitate comparison
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FIGURE 4 | Total Rubisco activase (Rca) amount (A), Rca large isoform

amount (B) and Rca small isoform amount (C) in plants of rice, wheat, and

maize grown at control, WD, HT and a combination of HT and water deficit

(HT-WD) conditions. Values represent means ± SE (n = 4) of amounts

expressed relative to control plants. Different letters denote statistically

significant differences by Duncan analysis (P < 0.05) among treatments within

each species.

among the three species. While the amount of Rubisco in wheat
was not affected by any of the applied treatments, it decreased
in rice and maize under WD and in rice plants grown at HT
(Figure 3A). The combined HT-WD treatment was no more
detrimental than the each of the individual stresses for any of the
species; rice was the species with the largest decrease in Rubisco
amount, with ca. 50% less Rubisco under HT-WD compared to
the control.

Rubisco initial activity was not affected negatively by WD in
any of the three species (Figure 3B). In fact, maize showed an
increase in the initial activity, to almost the double under WD
compared to the control treatment. By contrast, Rubisco initial

activity decreased severely in plants of the three species grown
under HT. The combination HT-WD was not more detrimental
than HT on its own, which suggests that Rubisco initial activity
is more sensitive to inhibition by HT than by WD in these three
species. As observed with the amount of Rubisco, rice showed
the largest decrease in the initial activity of Rubisco under the
combined stress treatment.

Rubisco total activity was less affected than the initial activity
under the applied treatments (Figure 3C). In rice, Rubisco total
activity decreased only under HT-WD and non-significant effects
were observed in wheat andmaize. Overall, the different response
between the initial and total activities indicates that the applied
treatments affected the Rubisco activation state, particularly
under HT and HT-WD (Figures 3B,C).

Rubisco Activase Amount in Cereals
under Water Deficit and High
Temperature
The total amount of Rca relative to plants grown under control
conditions was not significantly affected by WD and HTs,
except in wheat where Rca increased in plants exposed to the
combination HT-WD treatment (Figure 4A). With the exception
of wheat, the Rca amount was constant under the different
treatments, which indicates that the decrease in Rubisco activity
was not due to a decrease in the total Rca amount. However,
when the large and small Rca isoforms were quantified separately,
some differences among treatments and species became apparent.
The Rca large isoform was observed only in the two C3 species;
in rice the amount was higher at HT than HT-WD, whereas
in wheat the amount was higher under WD and HT-WD
than under HT alone (Figure 4B). The results suggest that the
Rca large isoform is susceptible to HT in wheat. The amount
of the small Rca isoform did not show significant differences
among the treatments in rice and maize. Conversely, in wheat
the amount of the small isoform increased considerably under
the combined stresses HT-WD compared to control plants
(Figure 4C).

Rubisco Activation Dependence on the
CO2 Availability, Rubisco and Rca
Amounts, and Rate of Electron Transport
The activation state of Rubisco was plotted in relation to the ratio
of Rca/Rubisco amounts and to the concentration of CO2 in the
chloroplast of the mesophyll and the bundle sheath cells (Cc and
Cs) in the two C3 species and maize, respectively (Figure 5).
Wheat and rice exhibited a similar pattern; under WD the
decrease in the activation state of Rubisco was minor (in rice)
or non-existent (in wheat), and were accompanied by moderate
increases in the ratio of Rca/Rubisco amounts and decreases in
Cc (Figures 5A–D). Rice and wheat plants grown under HT stress
showed large decreases in Rubisco activation state, alongside with
modest increases in the Rca/Rubisco amounts and no changes
in Cc. Maize presented a similar pattern to that observed in the
C3 species, with the exception of WD plants which exhibited an
increase in the activation state of Rubisco and a large increase in
the ratio of Rca/Rubisco amounts (Figure 5E).
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FIGURE 5 | Rubisco activation state in relation to the ratio of Rubisco activase (Rca) to Rubisco amounts (Rca/Rubisco; A,C,E), the CO2 concentration

in the mesophyll chloroplasts (Cc; B,D) or the bundle sheath (Cs; F) in rice (A,B), wheat (C,D), and maize (E,F). Values represent means ± SE (n = 4–5).

A positive relationship between the activation state of Rubisco
and the ratio of Rca/Rubisco amounts would be expectable as
there is more Rca to activate Rubisco. However, the results above
suggest that changes in the activation of Rubisco are due to
the combined effects of adjustments in the ratio of Rca/Rubisco
amounts and in Cc or Cs. In fact, increases in the ratio of
Rca/Rubisco amounts correlated with decreases in Cc in rice
(P < 0.05) and with decreases in Cs in maize (P < 0.1) (Figure 6).

This correlation, which was not observed in wheat, suggests that
rice and maize adjusted the ratio of Rca/Rubisco amounts to
the concentration of CO2 available for carboxylation, however,
wheat varies Rca but not Rubisco amounts under the different
treatments (Figure 3).

Rubisco activation state showed a significant positive
correlation with the electron transport rate (J) in the two
C3 species (Figures 7A,B). In rice and wheat, J and Rubisco
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FIGURE 6 | The relationship between the CO2 concentration in the

mesophyll chloroplasts (Cc) in rice (A) and wheat (B) and the CO2

concentration in the bundle sheath chloroplasts (Cs) in maize (C) and the ratio

of Rubisco activase (Rca) to Rubisco amounts (Rca/Rubisco). Values

represent means ± SE (n = 4–5).

activation state decreased when the growth temperature
increased, independently of the irrigation treatment. However,
rice showed a slight decrease in J and Rubisco activation state
under WD at both growth temperatures, while wheat did not
show any differences between well-watered and WD within
each growth temperature. Therefore, rice was the species most
affected by the combined HT-WD treatment. Although maize
did not show a significant correlation between Rubisco activation
state and J, the same pattern was apparent, with a decrease in
both parameters at HT independent of the watering treatment
(Figure 7C).

DISCUSSION

Water deficit and heat stress are two main factors adversely
affecting crop productivity. The effects of these stresses,
independently and in combination, on the physiological
responses of three main cereals, wheat, rice and maize were
examined in previous studies (Perdomo et al., 2015, 2016). In
the present manuscript, the focus was on the response of the
CO2-fixing enzyme, Rubisco, and of its molecular chaperone Rca.
Additionally, physiological and biochemical data were combined
to assess the type of limitations to photosynthesis under these two
stresses. Although there was more than one plant per pot in rice
and wheat, all plants had plentiful supply of nutrients for growth
so as to avoid any interference with the effect of the stresses here
studied.

Photosynthesis Is Impaired by Diffusion
Limitations under Water Deficit and
Biochemical Limitations under High
Temperature in Rice, Wheat, and Maize
Plants Subjected to Long-term Stressful
Conditions
The results showed that diffusional limitations (DL) constrained
CO2 assimilation, at least in the two C3 species under WD,
whereas biochemical limitations (BL) were associated with the
inhibition of photosynthesis under heat stress in all three species
(Figure 1). These findings are in agreement with previous reports
for other species (Chaves et al., 2003; Pinheiro and Chaves, 2011;
Carmo-Silva et al., 2012).

Under WD, both of the C3 species exhibited reduced stomatal
conductance (gs), while a decrease in mesophyll conductance
(gm) was also observed in rice (Supplementary Table S1). Hence,
decreased capacity to transfer CO2 from the atmosphere to
the chloroplast stroma under WD imposed a limitation on
photosynthesis in the C3 species (Figure 1). Decreased gs and
gm under WD have been shown to limit the CO2 concentration
at the Rubisco site in the mesophyll cells (Cc) of C3 species
and in the bundle-sheet cells (Cs) in C4 species (Flexas and
Medrano, 2002a; Chaves et al., 2003; Ghannoum, 2009; Lopes
et al., 2011). This finding was confirmed in the present study
(Figure 5). In rice, the lower concentration of CO2 imposed
a biochemical limitation by decreasing the activation state of
Rubisco (Figure 5), which explains the similar contribution of
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FIGURE 7 | The relationship between the Rubisco activation state and

the electron transport rate (J) in rice (A), wheat (B), and maize (C).

DL and BL under WD (Figure 1). On the contrary, decreased Cc

in wheat under WD did not result in lower Rubisco activation
state, which may explain why BL were less prominent in this

species (Figure 1). These results suggest that Rubisco in rice is
more sensitive to de-activation than wheat Rubisco at low CO2

availability. Different sensitivities of Rubisco de-activation under
limiting Cc have been reported among species from contrasting
environments (Galmés et al., 2011). In both C3 species, rice and
wheat, the ratio ETR/AG increased under WD (data not shown).
This behavior is agreement with reports from literature in a
large number of species (Flexas and Medrano, 2002b; Medrano
et al., 2002; Salazar-Parra et al., 2012) indicating an increase in
photorespiration under WD conditions.

Growth at HT did not alter Cc, but decreased the activation
state of Rubisco in rice and wheat (Figure 5), in agreement with
the predominant role of BL under HT (Figure 1). A recent report
indicated that leaf conductances tend to remain unchanged
and/or increase at measuring temperatures up to 40◦C in
rice and wheat plants grown at optimum temperatures (von
Caemmerer and Evans, 2015). In our study, no changes were
observed in gs in rice and wheat plants grown at HT and
measured at 25◦C, and gm decreased only in rice (Supplementary
Table S1).

The analysis of limitations of the C3 cycle – Rubisco
dependent – in maize revealed that BL prevailed both under
WD and HT (Figure 1), suggesting that the observed decrease
in Cs under WD was not limiting to CO2 assimilation rates
(Supplementary Table S1 and Figure 5). Rubisco in maize
was markedly affected by WD (decreased amount) and HT
(decreased Rubisco activation state) (Figure 3). This decrease
in Rubisco activation state in HT-grown maize was related
to marked inhibition of photosynthetic capacity (Figure 2),
as previously reported in this species (Crafts-Brandner and
Salvucci, 2002; Sharwood et al., 2016). Although the analysis
of photosynthetic limitations did not take into account the
enzymes of the C4 cycle in maize, two of the key enzymes
of C4 photosynthesis, pyruvate phosphate dikinase (PPDK)
and PEPC, are insensitive to leaf temperatures up to 40◦C
in maize (Crafts-Brandner and Salvucci, 2002). Therefore, the
results reported in the present study are in agreement with
the notion that Rubisco regulation makes C4 photosynthesis
as sensitive to inhibition by heat stress as C3 photosynthesis
(Crafts-Brandner and Salvucci, 2002; Ghannoum, 2009; von
Caemmerer and Furbank, 2016), despite the fact that the
C4 CO2-concentrating mechanism offers a greater buffering
capacity against HT and the diffusion limitations under water
stress.

Rubisco initial activity was also markedly affected in plants
of all three species under the combined effect of HT-WD
(Figure 3), which has been previously observed in different
cotton cultivars (Carmo-Silva et al., 2012). In rice and maize,
BL were predominant under the combined treatment whereas
in wheat, both DL and BL contributed to inhibit photosynthesis
when the two stresses were imposed together (Figure 1). It is
known that WD and HT limit photosynthesis in C3 (Flexas
et al., 2004; Hu et al., 2010) and C4 species (Ripley et al.,
2007; Ghannoum, 2009). While little is known about the
detrimental effect of the combination of these two stresses,
in the few studies where these effects have been measured,
photosynthesis was highly sensitive to the combination of
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HT-WD (Prasad et al., 2008, 2011; Silva et al., 2010; Vile et al.,
2012).

Biochemical Limitations Are Mainly
Attributed to Changes in the Rubisco
Activation State via Adjustments in the
Concentration of CO2, Rubisco/Rca
Relative Amounts and Rca Activity
To understand the effects of WD and HTs on photosynthesis, it
is important to elucidate the biochemical components that are
affected, particularly those associated with the Rubisco enzyme.
WD effects on Rubisco are still unresolved, with some studies
showing no effect (Vapaavuori, 1986; Pelloux et al., 2001) and
others reporting decreases in Rubisco content and activation
(Flexas et al., 2006b; Galmés et al., 2011). Some reports show
that decreases in the Rubisco content and activity are associated
with the severity of WD and are species-specific (Parry et al.,
2002; Tezara et al., 2002; Bota et al., 2004). In rice and maize,
but not in wheat, the amount of Rubisco decreased under WD,
but Rubisco initial and total activities increased in maize and
rice, respectively (Figure 3). Other authors have reported a
decrease in the initial and total activities of Rubisco that has
been attributed to a decrease in the Rubisco content (Flexas
and Medrano, 2002a; Tezara et al., 2002; Bota et al., 2004;
Galmés et al., 2013). In the present study, the increased Rubisco
activity accompanied by a decrease in the Rubisco content
in WD-maize was associated with a higher Rubisco activation
state, probably triggered by an increased ratio Rca/Rubisco
(Figure 5).

Several authors have reported that Rubisco amount is highly
affected by growth at HTs (Verlag et al., 2002; Gesch et al.,
2003; Pérez et al., 2011). In the present study, the Rubisco
amount was significantly lower at HT only for rice (Figure 3).
However, large decreases in the Rubisco initial activity were
observed at HT in all three species, which were not accompanied
by changes in the Rubisco total activity. Overall, these data
indicate that growth at HT induced a decrease in the Rubisco
activation state in the three species. Further, the decrease
in the Rubisco activation state caused a decrease in the
photosynthetic capacity of the three crop species (Figure 2), in
agreement with previous reports (Crafts-Brandner and Salvucci,
2000; Salvucci and Crafts-Brandner, 2004; Yamori and von
Caemmerer, 2009; Scafaro et al., 2012). This decrease in the
Rubisco activation state at HT was unrelated to variations in
the total amount of Rubisco and Rca in any of the three
species (Figure 5). Rubisco activity was measured at 25◦C for
both control and HT plants and some of the effects of mild-
to-moderate heat stress on Rubisco activity and carbamylation
state could have been lost when performing the assays at an
optimal temperature (Galmés et al., 2013). However, others have
also shown that temperature response of Rubisco activation
does not appear to be strongly dependent on Rca content
(Salvucci et al., 2006; Yamori and von Caemmerer, 2009). The
total Rca amount remained unchanged across treatments in
the three species (Figure 4), with the exception of wheat,

for which Rca amount increased in the combined treatment
HT-WD.

Rca is composed of small and large isoforms (Salvucci et al.,
1987). Changes in the amount of the large Rca isoform in
rice (slight increase) and wheat (slight decrease) at HT did
not explain the large decreases in the Rubisco activation state
(Figures 4, 5). These results are consistent with the hypothesis
that the intrinsic heat sensitivity of Rca is linked with the
observed decrease in Rubisco activation (Salvucci and Crafts-
Brandner, 2004; Barta et al., 2010; Carmo-Silva and Salvucci,
2011; Scafaro et al., 2016). On the other hand, decreased Rubisco
activation state at HT correlated with the electron transport rate
(J) in rice and wheat, irrespective of the watering treatment
(Figure 7). This correlation did not hold for maize, a species
that does not contain significant amounts of the large Rca
isoform (Supplementary Figure S2; Salvucci et al., 1987). Lower
J at HT may result in decreased ATP/ADP ratios and redox
potential in the chloroplast, which in turn, could affect the
activity of Rca and, consequently, the capacity to restore the
activity of Rubisco (Zhang and Portis, 1999; Zhang et al., 2002;
Sage and Kubien, 2007; Carmo-Silva et al., 2015). In addition
to decreased J in plants grown at HT, Rca activity may be also
affected by other processes which have not been measured in
the present study and cannot be ruled out. In particular, at HTs
protons can leak through the thylakoid membrane, impairing
the coupling of ATP synthesis to electron transport (Bukhov
et al., 1999, 2000; Pastenesz and Horton, 2014; Singh et al.,
2014).

CONCLUSION

In summary, photosynthesis was mainly affected by diffusive
limitations under WD and by biochemical limitations at
HT in rice, wheat and maize. Biochemical limitations were
predominant also under the combination WD-HT in rice
and maize. Increased biochemical limitations under HT were
mainly attributed to decreased Rubisco activation state. In turn,
decreased Rubisco activation was not related to altered amounts
of Rca, but correlated with changes in the rate of electron
transport. This result suggests that inhibited Rca activity was
linked with the observed decrease in the Rubisco activation
state, and ultimately, in the photosynthetic CO2 assimilation.
Further research is required to verify whether increasing the
thermal tolerance of Rca activity has the potential to increase
photosynthesis at elevated temperatures. Since Rubisco activity
impacts directly on the photosynthetic potential of plants,
understanding the regulation of Rubisco and photosynthesis
under heat stress is of pivotal importance to predict and mitigate
consequences of future predicted climates on agriculture and
natural ecosystems.
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