
Journal of Experimental Botany, Vol. 59, No. 7, pp. 1569–1580, 2008

doi:10.1093/jxb/ern084 Advance Access publication 23 April, 2008

SPECIAL ISSUE REVIEW PAPER

Rubisco regulation: a role for inhibitors

Martin A. J. Parry1,*, Alfred J. Keys1, Pippa J. Madgwick1, Ana E. Carmo-Silva2 and P. John Andralojc1

1 Centre for Crop Genetics, Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
2 Centro de Engenharia Biológica and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de
Lisboa, Campo Grande, 1749–016 Lisboa, Portugal

Received 25 January 2008; Revised 22 February 2008; Accepted 22 February 2008

Abstract

In photosynthesis Rubisco catalyses the assimilation

of CO2 by the carboxylation of ribulose-1,5-bisphos-

phate. However, the catalytic properties of Rubisco are

not optimal for current or projected environments and

limit the efficiency of photosynthesis. Rubisco activity

is highly regulated in response to short-term fluctua-

tions in the environment, although such regulation

may not be optimally poised for crop productivity. The

regulation of Rubisco activity in higher plants is

reviewed here, including the role of Rubisco activase,

tight binding inhibitors, and the impact of abiotic

stress upon them.
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Introduction

The most abundant protein, Rubisco [ribulose-1,5-

bisphosphate (RuBP) carboxylase/oxygenase; EC 4.1.1.39]

catalyses the assimilation of CO2, by the carboxylation of

ribulose-1,5-bisphosphate (RuBP) in photosynthetic carbon

assimilation (Ellis, 1979). However, the catalytic limita-

tions of Rubisco compromise the efficiency of photosyn-

thesis (Parry et al., 2007). Compared to other enzymes of

the Calvin cycle, Rubisco has a low turnover number,

meaning that relatively large amounts must be present to

sustain sufficient rates of photosynthesis. Furthermore,

Rubisco also catalyses a competing and wasteful reaction

with oxygen, initiating the process of photorespiration,

which leads to a loss of fixed carbon and consumes energy.

Although Rubisco and the photorespiratory enzymes are

a major N store, and can account for more than 25% of

leaf nitrogen, Rubisco activity can still be limiting.

Furthermore, growth studies with transgenic plants with
decreased amounts of Rubisco have confirmed that, under
field conditions with intense or variable irradiance, photo-
synthetic rate is highly correlated with the amount of
Rubisco (Hudson et al., 1992). This relationship cannot be
ignored in attempts to improve resource use, particularly of
nitrogen and water (Lea and Azevedo, 2006, 2007; Parry
et al., 2005, 2007; Parry and Reynolds, 2007; Tambussi
et al., 2007; Tuberosa et al., 2007).
In higher plants, Rubisco has a hexadecameric structure,

being composed of eight large, chloroplast-encoded sub-
units arranged as four dimers and eight small, nuclear-
encoded subunits. This is also known as Form I Rubisco.
Each large subunit has two major structural domains, an
N-terminal domain and a larger C-terminal domain which
is an alpha/beta barrel. Most of the active site residues
(that interact with substrate and/or substrate analogues) are
contributed by loops at the mouth of the alpha/beta barrel
with the remaining residues being supplied by two loop
regions in the N-terminal domain of the second large
subunit within a dimer. The availability of high resolu-
tion 3-D structures has provided detailed insight into
the catalytic mechanisms of the enzyme and enabled
properties to be related to sequences (Parry et al., 1987;
see comprehensive reviews by Andersson, 1996, 2008;
Cleland et al., 1998; Spreitzer and Salvucci, 2002; Portis
and Parry, 2007).
Rubisco is highly regulated to control flux through the

photosynthetic carbon reduction cycle in response to short-
term fluctuations in the environment (Geiger and Servaites,
1994). The potential Rubisco activity is determined by the
amount of Rubisco protein which, in turn, is determined by
the relative rate of biosynthesis and degradation. These
processes are regulated by gene expression (Sheen, 1990;
Krapp et al., 1993), mRNA stability, polypeptide synthesis,
post-translational modification, assembly of subunits into
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an active holoenzyme, and various factors which impact
upon protein degradation (Mehta et al., 1992; Eckardt and
Pell, 1995; Desimone et al., 1996). In the short term,
regulating Rubisco activity is essential to match the
capacity for RuBP regeneration with the prevailing rate of
RuBP utilization. This is not achieved solely by the
availability of substrate (Badger et al., 1984; Mott et al.,
1984) since Rubisco in excess of that needed to sustain
photosynthesis in the prevailing environment is deactivated
(Sage et al., 1990). From an agronomic standpoint,
Rubisco regulation may not be optimallly poised for crop
productivity (Parry et al., 2007). Whilst Rubisco regulation
has been previously reviewed (Portis, 1992, 2003; Parry
et al., 1999b; Spreitzer and Salvucci, 2002) this review
focuses on the regulation of Rubisco activity in higher
plants including the role of Rubisco activase, tight binding
inhibitors, and the corresponding impact of abiotic stress
upon them.
The mechanisms involved in Rubisco regulation are

summarized in Fig. 1. Rubisco (E) activity in vivo is
modulated either by the carbamylation of an essential
lysine residue at the catalytic site and subsequent stabil-
ization of the resulting carbamate by a Mg2+ ion, forming
a catalytically active ternary complex (E.CO2.Mg2+); or
through the tight binding of low molecular weight
inhibitors (I). Note that the CO2 involved in active site
carbamylation is distinct from CO2 reacting with the
acceptor molecule, RuBP, during catalysis. Inhibitors bind
either before (E.I) or after carbamylation (E.CO2.Mg2+.I)

and block the active site of the enzyme, preventing
carbamylation and/or substrate binding. The removal of
tightly bound inhibitors from the catalytic site of the
carbamylated and decarbamylated forms of Rubisco
requires Rubisco activase and the hydrolysis of ATP.
In this way Rubisco activase ensures that the Rubisco
active site is not blocked by inhibitors and so free either
to become carbamylated or to participate directly in
catalysis.

Rubisco inhibitors

The analysis of various 3-D structures has revealed that,
after substrate binding, major structural changes occur in
loop 6, at the mouth of a large subunit alpha/beta barrel,
in which this loop folds or slides over the active site and
loses its mobility. This closed conformation is maintained
by residues of the C-terminal tail and of loops in the N-
terminal domain of the partnering large subunit. In the
reaction between bound (enediol) RuBP and either CO2 or
O2, cleavage of the C2–C3 bond triggers site opening. By
analogy to the high resolution structures for the Rubisco–
carboxyarabinitol-1,5-bisphosphate (E.CO2.Mg2+.CABP)
complex, a number of naturally occurring sugar phos-
phates that are tight binding inhibitors cause the active site
of carbamylated or decarbamylated Rubisco to adopt
a closed conformation and impact on Rubisco regulation
(Fig. 2). Tight binding inhibitors resemble transition state
intermediates of catalysis and prolonged dialysis or gel
filtration are insufficient to release them from the catalytic
site of purified Rubisco. Other sugar phosphates and some
inorganic anions also interact with the catalytic site in vitro
and affect carbamylation. These have been regarded as
effectors and are usually competitive inhibitors with respect
to RuBP at higher concentrations, but either increase
(positive effectors, e.g. 6-phosphogluconate, NADPH and
inorganic orthophosphate), or decrease (negative effectors,
e.g. ribose-5-phosphate and fructose 6-phosphate), the
extent of carbamylation at sub-saturating concentrations
of CO2 and Mg2+ (Hatch and Jensen, 1980; Badger and
Lorimer, 1981; Jordan et al.,1983). Parry et al. (1985)
showed that inorganic orthophosphate (Pi) increased the
activity of wheat Rubisco without increasing the extent of
carbamylation and thus revitalized the idea that allosteric
effects might be involved in the response of Rubisco
activity to effectors. Allosteric effects have been reported
with Rubiscos from spinach (Yokota et al., 1992) and
from cyanobacteria (Marcus and Gurevitz, 2000). A
phosphate binding site on cyanobacterial Rubisco has
been found that is distinct from sites binding the
phosphate groups of substrate RuBP and is involved in
regulation of activity (Marcus et al., 2005). The effectors,
6-phosphogluconate, NADPH, and Pi are of particular
interest for the regulation of Rubisco in vivo as they are

Fig. 1. (A) Principles of regulation of Rubisco catalytic activity. For
full explanation, see text. [E], unmodified enzyme (‘decarbamylated’
Rubisco); [E.I], decarbamylated enzyme with substrate (RuBP) or
misfire product (XuBP) bound at active sites—in this context both
compounds are inhibitors (I); [E.CO2.Mg2+], ternary complex with
catalytically competent active site geometry; [E.CO2.Mg2+ I], carbamy-
lated enzyme with catalytic site occupied by tight binding inhibitor
(CA1P, PDBP and possibly KABP). (B) Reversible inhibition of
carbamylated Rubisco by CA1P, showing the light-dependent removal
and dephosphorylation of CA1P, mediated by Rubisco activase and
CA1P phosphatase, respectively. CA can be rephosphorylated to CA1P
in a subsequent period of darkness.
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present in the chloroplasts. The extent of their involve-
ment in Rubisco regulation still needs to be fully
determined. In vitro, sulphate ions remove such effectors,
as well as tight binding inhibitors, from their respective
sites of interaction (Parry et al., 1997) but the inclusion
of modest concentrations (25–50 mM) of sulphate ions to
Rubisco extraction buffers has been shown to prevent the
binding of the naturally occurring inhibitor, 2-carboxy-D-
arabinitol 1-phosphate (CA1P) by Rubisco, but not to
cause the release of CA1P already bound to Rubisco
(Moore and Seemann, 1994).
Identifying the role of tight binding inhibitors in

Rubisco regulation followed the observation of a diurnal
variation in the total extractable Rubisco activity (McDer-
mitt et al., 1983; Vu et al., 1983) and of the inhibition of
carbamylation by the prior (tight) binding of RuBP
(Jordan and Chollet, 1983). Servaites (1985) and Seemann
et al. (1985) demonstrated that the diurnal variation in
Rubisco activity was caused by the production of
a phosphorylated inhibitor in the dark that was sub-
sequently identified as CA1P (Gutteridge et al., 1986;
Berry et al., 1987).
CA1P is the best characterized of the Rubisco inhib-

itors. CA1P is only found in the chloroplast (Moore et al.,
1995; Parry et al., 1999a) and is formed by phosphory-
lation of 2-carboxy-D-arabinitol (CA) during periods of
low irradiance or darkness (Moore and Seemann, 1992).
Once formed CA1P binds tightly to the active site of
carbamylated Rubisco. The route for the de novo bio-
synthesis of CA1P was unambiguously established by
pulse-chase experiments that sequentially followed the

flow of 14C from newly assimilated 14CO2 into fructose
1,6-bisphosphate followed by hamamelose bisphosphate,
hamamelose monophosphate, hamamelose, and CA
(Andralojc et al., 1994, 1996, 2002) (Fig. 3). At low
irradiances or in darkness, CA is converted into CA1P
(Moore and Seemann, 1992; Andralojc et al., 1996;
Martindale et al., 1997). Measurements using a variety of
species show that the abundance of leaf CA is greater (and
in some cases by at least an order of magnitude) than the
corresponding CA1P concentration (Moore et al., 1991,
1992; Andralojc et al., 1994, 2002). Whilst this may
simply reflect the distribution of CA across several
intracellular compartments, compared to the exclusive
occurrence of CA1P in the chloroplast (Moore et al.,
1992, 1995; Parry et al., 1999a) it is possible that these
intermediates serve other purposes. (Andralojc et al.,
2002).
The extent of carbamylation of Rubisco in vivo may be

determined by comparing the initial activity (determined
immediately following extraction) with the total activity
(determined after incubation with saturating concentra-
tions of CO2 and Mg2+ to carbamylate vacant catalytic
sites fully). Diurnal variation in total Rubisco activity can
occur as a result of RuBP binding to decarbamylated
Rubisco forming E.RuBP (Jordan and Chollet, 1983;
Brooks and Portis, 1988). Diurnal variation can also occur
as a result of CA1P binding to carbamylated Rubisco
forming E.CO2.Mg2+.CA1P (Servaites et al., 1986).
In the light, CA1P is removed from the active site of

Rubisco by Rubisco activase and then dephosphorylated
by a specific CA1P phosphatase. The CA thus liberated is

Fig. 2. Structures of naturally occurring inhibitors of Rubisco. For full explanation, see text. RuBP, ribulose-1,5-bisphosphate; KABP, 3-
ketoarabinitol-1,5-bisphosphate; XuBP, D-xylulose-1,5-bisphosphate; PDBP, D-glycero-2,3-pentodiulose-1,5-bisphosphate; CTBP, 2-carboxytetritol-
1,4-bisphosphate; CA1P, 2-carboxy-D-arabinitol 1-phosphate. Also shown are alternative structures of a transient intermediate of the carboxylase
reaction.
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then available for re-phosphorylation, when the light
intensity falls (Fig. 1b). The overall process of CA1P
removal is light-dependent and is inhibited by DCMU or
methyl viologen, which block photosynthetic electron
transport (Seemann et al., 1985; Salvucci and Anderson,
1987). CA1P phosphatase is redox regulated, activated by
NADPH (Holbrook et al., 1989; Kingston-Smith et al.,
1992), DTT or glutathione (Holbrook et al., 1991) and
reduced thioredoxin (Heo and Holbrook, 1999). The
redox response is mediated by redox sensitive thiol/
disuphide residues (Heo and Holbrook, 1999).
For reasons which are unclear, the amount of CA1P that

accumulates during the night varies from species to
species. Whilst many species (e.g. rice, soya, potato,
tobacco, French bean, and tomato) contain sufficient
CA1P to have a significant effect on Rubisco activity
others (e.g. maize and wheat) do not (Servaites et al.,
1986). Curiously, members of the latter group may still
contain the CA1P-specific phophatase (Charlet et al.,
1997) whilst a wide ranging survey suggests that all
vascular plants contain CA (Moore et al., 1992, 1993).
Such observations imply functions unrelated to the
regulation of Rubisco or the metabolism of CA1P.
As well as the nocturnal decline, a depression in the total

Rubisco activity (Keys et al., 1995; Hrstka et al., 2007)
has been reported during the day and also in response to

stress (Parry et al., 1993, 1997, 2002; Medrano et al.,
1997) (Fig. 4). In wheat and French bean this depression
in total activity was caused by a phosphorylated in-
hibitor, but not by CA1P or xylulose-1,5- bisphosphate
(XuBP) (Keys et al., 1995). This phosphorylated daytime
inhibitor was subsequently identified as pentadiulose-1,5-
bisphosphate (PDBP) (Kane et al., 1998) whose formation
from RuBP had previously been reported in Form II
Rubisco from an autotrophic bacterium (Chen and
Hartman, 1995). Products of catalytic ‘misfire’ arise at
various points in the catalytic pathway of both carboxy-
lation and oxygenation and are themselves potent and
tight binding inhibitors. XuBP is formed by misprotona-
tion of the initial enediol intermediate (Edmondson
et al., 1990). Although XuBP is released from the
catalytic site (Zhu et al., 1998) and has been shown to act
as a (poor) substrate, being slowly carboxylated to form
3-phosphoglycerate by carbamylated Rubisco (Yokota,
1991) it can (like RuBP) also bind tightly to uncarbamy-
lated Rubisco (Edmondson et al., 1990; Zhu and Jensen,
1991; Pearce and Andrews, 2003). 3-Ketoarabinitol-1,5-
bisphosphate (KABP) has been proposed to be derived
from the breakdown of an unstable peroxy intermediate of
the oxygenase reaction (Zhu and Jensen, 1991; Zhu et al.,
1998). However, it has been reported that identification of
KABP as an inhibitor may be incorrect, on account of the

Fig. 3. Biosynthesis of CA1P. The pathway intermediates have been coloured (centre) to highlight the passage of radiolabelled carbon in a pulse-
chase experiment under conditions of steady-state photosynthesis (upper) and the greater abundance of these intermediates (lower) in plants with only
13% of the wt chloroplastic fructose-1,6-bisphosphatase (FBPase) activity. Amounts (lmol m�2) indicated on the ordinate axis apply to the leaves
with less FBPase (Andralojc et al., 2002).
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stereoselective reduction of the true inhibitor in the
presence of borate ions at low ionic strength. Similar
analyses at high ionic strength are regarded to be unbiased
and show a distribution of reduction products consistent
with PDBP as the inhibitor, not KABP (Chen and
Hartman, 1995, and reiterated by Pearce and Andrews,
2003; Kim and Portis, 2004). For this reason, other
identifications of KABP as a physiologically relevant
inhibitor, based on the products of borohydride reduction
(Zhu and Jensen, 1991; Zhu et al., 1998) are open to
question.
The ‘daytime’ inhibitor, pentadiulose 1,5-bisphosphate

(PDBP) is formed by the elimination of H2O2 from
a peroxyketone intermediate of the oxygenation reaction
and, on average, occurs once in every 260 turnovers
(Kane et al., 1998; Pearce and Andrews, 2003; Kim and
Portis, 2004). PDBP is thought to accumulate progres-
sively at the catalytic site causing progressive inhib-
ition, known as ‘fallover’ (Robinson and Portis, 1989a;
Edmondson et al., 1990; Zhu et al., 1998; Kim and Portis,
2004). Therefore, any conditions that favour the oxygen-
ase reaction and photorespiration, such as stomatal closure
(increasing O2/CO2) and high temperature (because of the
increased relative solubility of O2 compared to CO2 and
the decreased specificity of Rubisco) will lead to increased
PDBP production and will promote fallover. Likewise,
Rubiscos with lower specificity factors have been shown
to generate more PDBP (Kim and Portis, 2004). These
properties are consistent with a depression in the total
Rubisco activity reported for drought-stressed wheat and
tobacco (Parry et al., 1993, 2002). Although the pro-
duction of all misfire products (including PDBP) increases
with temperature, the corresponding fallover has been

shown to become less severe, because at the higher
temperatures the structure of Rubisco becomes more
mobile so that the same inhibitors do not bind so tightly
(Schrader et al., 2006). Whilst the enzymes from all
species produce misfire products under RuBP-saturated
conditions these products do not cause fallover in Form I
Rubisco from cyanobacteria and red algae, or the Form II
Rubisco (composed of a single large subunit dimer) from
autotrophic bacteria (Pearce and Andrews, 2003; Pearce,
2006).
While the presence of PDBP is undoubtedly associated

with Rubisco inactivation, 2-carboxytetritol-1,4-bisphos-
phate (CTBP) derived from a benzilic acid-type rearrange-
ment (Harpel et al., 1995) of enzyme bound PDBP
(Pearce and Andrews, 2003) is likely to be a tighter
binding inhibitor than PDBP itself (Pearce and Andrews,
2003). From Fig. 2 it can be seen that CTBP closely
resembles both the transition state intermediate of the
carboxylase reaction and CABP, rationalizing its high
affinity for Rubisco and its potency as an inhibitor.
The structural changes that occur during catalytic

turnover make the protein more compact and protect
Rubisco from proteolytic breakdown in vitro (Houtz and
Mulligan, 1991; Khan et al., 1999). Since tight binding
inhibitors cause similar structural changes involving
immobilization of hitherto exposed structural elements,
it is not surprising that they also protect Rubisco from
degradation by exogenous and endogenous proteases.
Judging by the effect of CA1P (Khan et al., 1999) other
tight binding inhibitors may also confer protection against
inactivation by active oxygen species.

Rubisco activase

The importance of Rubisco activase for complete activa-
tion of Rubisco in vivo, was first recognized during the
analysis of an Arabidopsis (rca) mutant that was unable to
survive under ambient CO2 (Somerville et al., 1982).
Salvucci et al. (1985) showed this to be due to the
absence of a novel enzyme, Rubisco activase. It has
subsequently been shown that Rubisco activase is essen-
tial for the activation and maintenance of Rubisco
catalytic activity by promoting the removal of any tightly
bound, inhibitory, sugar phosphates from the catalytic site
of both the carbamylated and decarbamylated forms of
Rubisco (Robinson and Portis, 1988a, 1989a; Edmondson
et al., 1990; Wang and Portis, 1992; Mate et al., 1993).
Rubisco activase has been detected in all plant species
examined thus far and is a member of the AAA+ super
family whose members perform chaperone like functions
(Spreitzer and Salvucci, 2002).
Although no stable complexes between Rubisco and

Rubisco activase have yet been isolated, Rubisco activase
must interact directly with Rubisco to alter the enzyme

Fig. 4. The relationship between total Rubisco activity and relative
water content (RWC) in field-grown tobacco plants subjected to drought
stress.
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structure, making the active site accessible for carbamyla-
tion or catalysis (Portis et al., 2008). Whilst early electron
micrographs (Büchen-Osmond et al, 1992) suggested
a complex between Rubisco and Rubisco activase, there
is little additional direct evidence for an interaction
between them (Parry et al., 1999b). However, the subunits
of Rubisco activase have been cross-linked to the large
subunit of Rubisco using disuccinimidyl suberate (Yokota
and Tsujimoto, 1992) and the Rubisco large and small
subunits were subsequently co-precipitated using Rubisco
activase antisera (Zhang and Komatsu, 2000) providing
evidence for direct interaction (Spreitzer and Salvucci,
2002). Interactions between Rubisco and Rubisco activase
have been revealed through studies involving genetic
recombination which exploited differences in compatibil-
ity between Rubisco and Rubisco activase from different
species (Li et al., 2005). Studies have shown that the
C-terminus of Rubisco activase is important in Rubisco
recognition (Esau et al., 1998) and that, although the
N-terminus is not needed for ATP hydrolysis, it is nec-
essary for Rubisco activation. A highly conserved
Rubisco activase residue Trp 16 (tobacco) or Trp 12
(spinach) is important in Rubisco recognition (van de Loo
et al., 1996; Esau et al., 1996). Elucidating the mechanism
by which Rubisco activase triggers inhibitor release from
Rubisco remains a major challenge. However, experience
with Rubisco suggests that even high resolution 3-D
structures for Rubisco activase may not provide all the
answers for this dynamic interaction.
In many species, including Arabidopsis, spinach, and

rice (Wernke et al., 1988, 1989; Werneke et al., 1989; To
et al., 1999) Rubsico activase occurs in two isoforms
which result from the alternative splicing of a single gene
transcript. In Arabidopsis the isoforms are of MW 43 kDa
and 46 kDa. The additional amino acids of the larger
isoform occur at the C-terminus. Activase activity is
enhanced by illumination (Lan et al., 1992) and by
electron transport through PSI which provides the basis
for the light regulation of Rubisco (Campbell and Ogren,
1990). Furthermore, the ATP/ADP ratio influences the
activity of Rubisco activase (Robinson and Portis, 1989b)
and this effect is mediated by the C-terminal extension of
the larger activase isoform (Shen et al., 1991) due to an
interaction with the nucleotide-binding pocket (Wang and
Portis, 2006). The report that reactivation of Rubisco in
lysed spinach chloroplasts was dependent on the presence
of ADP and Pi, together with illumination (Parry et al.,
1988) and of the involvement of stromal ATP in intact
chloroplasts (Robinson and Portis, 1988b) are both
consistent with the currently held model for activase
function.
In vitro, the additional residues at the C-terminus of the

46 kDa isoform of Rubisco activase render both ATPase
and Rubisco activation activities responsive to a combina-
tion of the ATP/ADP ratio, and the ambient redox status.

The redox response is mediated by thioredoxin-f, which,
combined with dithiothreitol (DTT), make the ATP/ADP
ratio much less inhibitory, causing an increase in both
activities of this isoform. Conversely, a combination of
thioredoxin-f and oxidized glutathione makes the ambient
ATP/ADP ratio more inhibitory, suppressing activase
activities (Zhang and Portis, 1999). This response
invloves a redox-sensitive disulphide bond formed be-
tween two cysteine residues in the C-terminus unique to
the larger isoform (Zhang and Portis, 1999). Substitution
of either one of these C-terminal cysteine residues for
alanine diminished the ATP/ADP sensitivity of activase
(Zhang and Portis, 1999) and the light responsiveness of
Rubisco activity in vivo (Zhang et al., 2002). Other
manipulations using Arabidopsis rca plants have been
described, with the introduction of either the 43 kDa or
the 46 kDa isoform of Rubisco activase. Rubisco activity
in plants expressing only the shorter isoform was not
down-regulated following a light–dark transition, while
the activity in plants expressing the larger isoform was
strongly down-regulated (Zhang et al., 2002). In vitro,
a ratio of Rubisco activase isoforms of 1:1 displayed
between 4-fold and 6-fold changes in activity in response
to redox status (Zhang and Portis, 1999; Zhang et al.,
2002). However, assayed alone, the 43 kDa isoform was
not redox sensitive. The large change in activity of a 1:1
mixture of the two isoforms in response to redox status
indicates that the 46 kDa isoform allosterically regulates
the activity of the 43 kDa isoform. In vivo, the expression
of both isoforms in rca plants conferred a light-dependent
activation of Rubisco very similar to that observed in the
wild type. Wild-type Arabidopsis (wt) contains roughly
equal amounts of both isoforms (Eckardt et al., 1997) and,
since functional activase is believed to be multimeric, it
has been proposed that the 46 kDa isoform allosterically
modulates the activity of neighbouring 43 kDa isoforms in
activase complexes containing both isoforms.
Manipulation of Rubisco activase expression has also

provided the opportunity to examine the release of CA1P
from Rubisco during light-induction of photosynthesis,
since this process is slowed sufficiently in antisense
Rubisco activase tobacco to be resolved from accompany-
ing changes in the rate of CO2 assimilation attributable
both to the (rapid) onset of RuBP supply and to the (slow)
activation of non-carbamylated Rubisco (Hammond et al.,
1998). Since the dephosphorylation of CA1P subsequent
to its release from Rubisco was slower than Rubisco
activation, it was concluded that Rubisco activase drives
the activation of CA1P-inhibited Rubisco, rather than the
dephosphorylation of CA1P by the CA1P-specific phos-
phatase. This suggests that attempts to manipulate
Rubisco activity by altering the expression of CA1P-
phosphatase alone are unlikely to be successful. By
contrast, a promising role for altered Rubisco activase
expression in enhancing crop performance is apparent
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from the correlation between greatly improved grain yield
in maize grown in the field—obtained after 20 agronomic
selection cycles for improvement of grain yield—and
parallel increases in abundance of Rubisco activase and
activity of Rubisco, both of which were increased more
than 2-fold over the 40 d period following anthesis
(i.e. during grain filling) relative to the initial cultivar
(Martinez-Barajas et al., 1997).

Abiotic stress

The abundance and ease with which Rubisco can be
purified, quantified, and assayed, make it an ideal model
protein in studies of the effects of stress on photosynthetic
metabolism. The extent to which the continual process of
Rubisco protein turnover (a function of synthesis, main-
tenance, and degradation) represents a drain on cellular
resources is uncertain, but on account of its abundance
could be considerable, particularly in the presence of
a relatively oxidising environment induced by stress
(Feller et al., 2008).
In the light, under conditions which might promote heat

and cold stress, an increase in active oxygen species in the
chloroplast is likely to cause increased oxidative damage
to thylakoid-bound and stromal proteins. Stress-induced
oxidative modification of specific residues on Rubisco
mark the enzyme for degradation (Mehta et al., 1992;
Desimone et al., 1996; Ishida et al., 1999; Moreno and
Spreitzer, 1999; Marin-Navarro and Moreno, 2003;
Moreno et al., 2008). For example, the importance of
cysteine 172 of the large subunit was demonstrated by
creating a C172S substitution in Chlamydomonas rein-
hardtii (Moreno and Spreitzer, 1999). While growth rates
under normal conditions were unchanged, the mutated
Rubisco was more resistant to proteinase K at low redox
potential in vitro and also showed delayed stress-induced
degradation (by hydrogen peroxide or mannitol) in vivo
(Moreno and Spreitzer, 1999). The additional observation
that the modified Rubisco inactivation was faster than the
control at elevated temperatures (40 �C and 50 �C) may
have resulted either from inherent differences in the large
subunit or altered interactions with Rubisco activase.
Site-directed mutagenesis was also used to investigate the
role of large subunit residues Cys 449 and Cys 459 in
Chlamydomonas. When both these residues were sub-
stituted by serine, Rubisco degradation and the polymer-
ization of the enzyme during salt stress were both
increased (Marin-Navarro and Moreno, 2006).
Apart from the oxidative modifications which initiate

these processes, the mechanisms involved in such acceler-
ated Rubisco degradation remain obscure, although the
process may involve association of oxidation-damaged
Rubisco with chloroplast membranes (Mehta et al., 1992).
Oxidative stress also impacts on Rubisco abundance

through reduced transcript levels for the small subunit,
possibly as the result of increased ethylene levels (Glick
et al., 1995). It is becoming clear, however, that Rubisco
expression is regulated by elements which also influence
the regulation of other chloroplast and cytosolic enzymes.
For example, in Chlamydomonas, translation of Rubisco
large subunit transcript has been shown to be transiently
arrested by active oxygen species and/or a reduction in
stromal signals, resulting from high-light stress (Irihimo-
vitch and Shapira, 2000). In addition, the drought-induced
decrease of rbcS transcript is accompanied by increased
expression of cytosolic glutamine synthetase (Bauer et al.,
1997). This highlights the co-ordinated changes in
expression of enzymes of primary metabolism initiated by
oxidative stress.
A plausible model for Rubisco turnover in cereal leaves

by Irving and Robinson (2006) was shown to describe
previously published experimental data accurately (Friedrich
and Huffaker, 1980; Mae et al., 1983, 1989; Suzuki et al.,
2001). According to this model, control of Rubisco con-
centration is exerted by altering biosynthesis, with
degradation being regarded as a simple first-order decay
process, where the amount of Rubisco at any time (t)
would be given by [Rubisco]t¼[Rubisco]0e

–kt, where k is
the first-order rate constant for degradation and [Rubisco]0
is the initial concentration of Rubisco. The protection of
Rubisco against proteolysis afforded by CA1P (Khan
et al., 1999) and the variation in protease sensitivity ac-
companying changes in redox status (Moreno and Spreit-
zer, 1999; Marin-Navarro and Moreno, 2003, 2006), both
imply that the rate constant for degradation cannot be
fixed but must assume different values according to
catalytic site occupancy or redox status. Protection of
Rubisco from degradation has only been demonstrated
using CA1P, but it is likely that the fallover inhibitors
would have a similar effect. This may explain why
transformed tobacco with reduced expression of Rubisco
activase contained more Rubisco with lower catalytic
activity, throughout leaf development (He et al., 1997),
the accumulation of inhibitors at the catalytic site would
confer resistance against the normal process of degradation.
Rubisco is exceptionally heat stable, since the purified,

carbamylated spinach enzyme suffers no loss in activity
after incubation for 1 h at 57 �C (Eckardt and Portis,
1997). In contrast, for over a decade it has been known
that Rubisco activase is exceptionally heat labile: both
activities of the purified enzyme (Rubisco activation and
ATP hydrolysis) falling by 80% after only 5 min at 40 �C
(Robinson and Portis, 1989b). Assayed separately, the
smaller activase isoform has been shown to be consider-
ably more heat-labile than the larger isoform, while the
temperature sensitivity of a mixture containing equal
amounts of each isoform resembled that of the larger
isoform (Crafts-Brandner et al., 1997). In other words, the
larger isoform confers increased thermal stability to the
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smaller isoform of activase. The demonstration of in-
creased amounts of the larger isoform during heat shock
in young maize leaves suggests that it may have a pro-
tective effect in vivo (Jimenéz et al., 1995) preventing
large decreases in activase activity during heat stress.
However, the evidence supporting an additional hypothe-
sis that Rubisco activase is a molecular chaperone,
maintaining Rubisco activity during and after heat shock
(Jimenéz et al., 1995) has been questioned by Eckardt and
Portis (1997) who showed that Rubisco activase is likely
to be totally inactivated long before the irreversible loss of
Rubisco activity and that Rubisco activase did not restore
the activity of heat-denatured Rubisco. The report that
elevated temperatures cause the functional association
between Rubisco activase and thylakoid-bound polysomes
(Rokka et al., 2001) and that the bound activase assumed
the role of a molecular chaperone, omitted to demonstrate
this specific function by activase. The demonstration that
such an association was more rapid for the smaller than
for the larger isoform of activase (Rokka et al., 2001) is
reminiscent of the heat-denaturation characteristics of the
two activase isoforms (Crafts-Brandner et al., 1997),
suggesting that this association may be an intermediate
state of activase heat inactivation.
The relationship between the effects of high temperature

on Rubisco activase and Rubisco activity in vivo has been
investigated using leaves of cotton and wheat (Feller
et al., 1998). The very close correlation between CO2

assimilation and Rubisco activity over a range of temper-
atures from 28 �C to 45 �C (Law and Crafts-Brandner,
1999) provides further evidence that elevated temperatures
inhibit Rubisco (and photosynthesis) primarliy as a result
of the temperature sensitivity of Rubisco activase. Fur-
thermore, in agreement with the correlation between
Rubisco activase content and grain yield in maize
(Martinez-Barajas et al., 1997), higher Rubisco activities,
in vitro, were observed between 25 �C and 42 �C in the
presence of higher concentrations of activase (Crafts-
Brandner and Salvucci, 2000). In addition, post-transcrip-
tional mechanisms are involved in modulating Rubisco
activase gene expression in cotton and maize which may
contribute to acclimation of photosynthesis to heat stress
(Vargas-Suarez et al., 2004; DeRidder et al., 2006). Such
studies provide compelling evidence that the activity of
Rubisco is limiting to net photosynthesis at elevated
temperatures and that this is determined by the activity of
Rubisco activase. Indeed, when allowance was made for
the decline in Rubisco activity at elevated temperatures,
the kinetic properties of Rubisco accurately predicted the
experimentally determined rate of photosynthesis over the
same temperature range (Crafts-Brandner and Salvucci,
2000). The potential for improving Rubisco activity, and
therefore photosynthesis, at elevated temperatures by
engineering an increase in the abundance of activase is
clear. Indeed, recent reports have confirmed that photo-

synthesis at elevated temperatures is increased by the
introduction of rca variants [generated by gene shuffling
(Kurek et al., 2007) or chimeric constructs (Portis et al.,
2007)] with improved thermostability even at moderate
temperatures. However, others (e.g. Cen and Sage, 2005;
Sage and Kubien, 2007) have reported that electron
transport, RuBP pool size, and the RuBP-to-PGA ratio
declined with increasing temperature consistent with the
hypothesis that the reduction in the activation state of
Rubisco at high temperature is caused by limitation in
RuBP regeneration. The reasons for the conflicting reports
remain unclear, but may relate species differences and
preconditioning.

Conclusion

Rubisco activity is not always poised for optimal crop
productivity. The effect of naturally occurring inhibitors
on catalytic activity is dependent on the prevailing activity
of Rubisco activase. The production of tight binding
inhibitors and the activity of activase are intricately
choreographed in response to environmental changes.
Manipulating Rubisco activase and the abundance of
inhibitors, by targeting their synthesis or degradation,
offers opportunities to modulate Rubisco activity and also
to control the stability of Rubisco under stress.
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