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ABSTRACT: A Ruddlesden−Popper (RP) type structure is well-known in oxide
perovskites and is related to many interesting properties such as superconductivity
and ferroelectricity. However, the RP phase has not yet been discovered in
inorganic halide perovskites. Here, we report the direct observation of unusual
structure in two-dimensional CsPbBr3 nanosheets which could be interpreted as the
RP phase based on model simulations. Structural details of the plausible RP
domains and domain boundaries between the RP and conventional perovskite
phases have been revealed on the atomic level using aberration-corrected scanning
transmission electron microscopy. The finding marks a major advance toward
future inorganic halide RP phase synthesis and theoretical modeling, as well as
unraveling their structure−property relationship.

KEYWORDS: Ruddlesden−Popper phase, inorganic halide perovskite, aberration-corrected scanning transmission electron microscopy,
two-dimensional, domain

O xide perovskites have been intensively studied for a long
time owing to their wide applications as electronic and

magnetic functional materials. Apart from the original ABO3

structure, the oxide compounds show an enormous variety of
structural modifications and variants. For example, one of the
important variants is the layered perovskite oxides An+1BnO3n+1

(n = 1, 2, ...), consisting of alternated ABO3 and AO layers,
which is also known as the Ruddlesden−Popper (RP) phase.1

Remarkably, many interesting properties in oxide perovskites
are introduced by the layered RP variants. From high TC

superconductors2 to colossal magnetoresistance materials,3 and
to ferroelectrics,4,5 although the understanding of the under-
neath structure−property relationship has not been fully
reached yet, it is believed that RP structure plays a key role
in it. Over the years, research on RP phase oxide perovskites is
still ongoing, however, getting slower. On the other hand,
halide perovskites ABX3 (X = Cl, Br, I) have recently seen a
significant revival based on the discovery of their enormous
potential for photovoltaic cells. In particular, high-efficiency
solar cells with improved stability based on hybrid RP phase
halide perovskites have been reported very recently.6 Therefore,
it could be fascinating to pursue the research on RP phase in
halide perovskites. Currently, for the synthesis of RP phase
halide perovskites, there are only reports on hybrid organic−
inorganic compounds.6−8 In the past two years, hybrid halide
perovskite bulk crystals7 and thin films6 have been successfully
fabricated, and atomically thin two-dimensional (2D) hybrid

nanosheets were also reported.8 However, in the hybrid RP
phase, due to the long organic chains in the organic spacing
layer, the adjacent inorganic perovskite layers show hardly any
electronic coupling when the organic chain is longer than
propyl amine,9 rendering similar optical properties between the
bulk and the atomically thin hybrid RP phase samples.8

Replacing the thick organic spacing layer with a thinner
inorganic rock-salt layer will provide moderate interaction
between the adjacent perovskite layers, thus may result in new
intriguing properties that are distinct from both the three-
dimensional (3D)-connected conventional perovskite and the
electronically uncoupled hybrid layered RP phase. So far, all-
inorganic RP phase halide perovskites have not been discovered
yet. In addition, as to the atomic-scale characterization of RP
phase, transmission electron microscopy (TEM) has only been
demonstrated on the RP phase of oxide perovskites.10−12 By
contrast, atomic-level characterization of RP phase halide
perovskites is still missing, no matter hybrid or inorganic cases.
In this work, we report the direct observation of an unusual

structure in 2D all-inorganic CsPbBr3 nanosheets (NSs) which
cannot be interpreted as simple perovskite but could plausibly
be RP phase. Atomic structures of the conventional perovskite
phases as well as the plausible RP phases are clearly revealed by
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state-of-the-art aberration-corrected scanning transmission
electron microscopy (AC-STEM). The RP domains and
domain boundaries are studied in detail. Combined with
image simulations, further support of RP phases is achieved,
while the connection and configuration of the coexisting RP
and perovskite phases are discussed.
Schematics of the 3D structure models as well as the [001]

projections of both conventional CsPbBr3 perovskite phases
and RP phases are shown in Figure 1. For CsPbBr3, the crystal

structure undergoes a transition from cubic to orthorhombic
phase as the temperature decreases to room temperature,
accompanied by the tilting of PbBr6 octahedrons. For RP
phases, similar to the oxide case, the general formula for halide
system is An+1BnX3n+1. Specific to the Cs−Pb−Br system, the
parent structure of the RP compounds is the cubic perovskite
CsPbBr3 and the cubic rock-salt type CsBr. Therefore, the
formula Csn+1PbnBr3n+1 can also be written as CsBr(CsPbBr3)n,
which is composed of layers of n CsPbBr3 unit cells that are
separated by an additional CsBr layer. This structural feature is
clearly seen from the n = 1 and n = 2 RP phases as
demonstrated in Figure 1. The RP phases can also be
considered as a regularly built-in extrinsic stacking fault, created
by shifting two adjacent CsPbBr3 units by an in-plane lattice
vector (1/2 1/2) against each other. Since there is no any
experimental report of inorganic RP phase halide perovskites so
far, the RP structures shown here were obtained from first-
principle calculations based on the density-functional theory
(DFT).13

In our experiments, 2D CsPbBr3 NSs were synthesized via a
catalyst-free, solution-phase method, in which case most of the
2D NSs were crystallized in conventional perovskite phases.14,15

Figure 2a shows the typical low magnification STEM
morphology of the squared 2D NSs. As halide perovskites are
beam-sensitive materials so that the electron beam−sample
interaction should be carefully controlled, which is discussed in
detail in the SI and also ref 15. According to our preliminary
observations, many of the 2D thin NSs are crystallized in the
cubic perovskite phase, and domains of orthorhombic phase
also exist.15 Surprisingly, in our follow-up research, we have
discovered unusual domains in some of the thick NSs, which
show different patterns in high-resolution STEM images
compared to conventional perovskite phases. Figure 2b depicts
the high-resolution AC-STEM image of the conventional
CsPbBr3 perovskite phase within a NS. In this Z-contrast image,
heavier Pb−Br atom columns show the highest brightness, and
lighter Cs atom columns are located at the center of the cube of
four Pb−Br columns, showing weaker brightness. As can be
seen from Figure 1, the distinguishable feature between cubic
and orthorhombic perovskite phases in the [001] projection is
the positions of Br atom columns. In the cubic structure the Br
atom columns locate in the center of two neighboring Cs atom
columns while they are off-center in the orthorhombic phase
owing to the tilting of PbBr6 octahedrons. A comparison
between cubic and orthorhombic structures has been detailed
in our early report.15 Moreover, distinguishing the Br positions
is not an easy task here as Br atom columns in the STEM
images show very weak contrast and sometimes even invisible.
Since we focus on the RP phases in the present work, in the
following we do not make deliberate distinction of these two
conventional perovskite phases and simply treat them as one
perovskite phase in general. Different from the perovskite
phase, Figure 2c shows the AC-STEM image of an unusual
phase region, in which both the cation atom columns show
high contrast. This agrees with the feature of RP phases and can
be understood from the structural projections shown in Figure
1. For RP phases, as there is an in-plane (1/2 1/2) shift
between two adjacent CsPbBr3 units; therefore, in the [001]
projection, the cation atom columns all become Cs−Pb−Br
columns, despite the number n. Hence, the difference between
RP and perovskite phases can be distinguished from the cation
atom column intensities.
Upon knowing the structural features of both perovskite and

RP phases, we further explore their distribution within the NSs.
A typical morphology of the atomic structure of the NS is
depicted in Figure 3a. Domain patterns can be observed, where
the lower region is perovskite phase and the plausible RP phase
occupies the upper region. Domain boundaries between
different phases can be clearly seen. Here, we label four typical

Figure 1. Schematics of the crystal structures of conventional CsPbBr3
perovskite phases (cubic and orthorhombic) and RP phases (n = 1, 2).
Unit cells as well as their corresponding [001] structural projections
are provided. In conventional perovskite phases, the [001]-projected
cation atom columns are pure Cs and Pb−Br columns, respectively. In
RP phases, all the [001]-projected cation atom columns are composed
of Cs−Pb−Br columns.

Figure 2. STEM images of the conventional perovskite phase and plausible RP phase. (a) Low magnification morphology of the 2D NSs. (b,c)
Atomic-scale AC-STEM image of the conventional perovskite phase (b) and RP phase (c). [001] structure projections are overlaid in the center.
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regions and the enlarged images are shown in Figure 3b−e. In
region I, a sharp boundary separates the perovskite phase into
two regions, and there is a 1/2 offset of the lattice parameter
along the vertical direction between adjacent regions. There-
fore, this is a typical antiphase boundary, and it is regarded as a
translation boundary defect in the perovskite phase.16 Regions
II and III are the boundary regions between perovskite and RP
phase. At first glance from Figure 3a, the domain boundary can
be either straight (region III) or zigzag (region II). Looking
into details as shown in Figure 3c, one may notice that the
zigzag domain boundary is composed of many vertical and
horizontal atomic steps. Hence, we can conclude that the sharp
domain boundaries between perovskite and RP phase all lay in
the ⟨100⟩ direction at the atomic-level. Moreover, we have also
observed island-like feature in the NSs. One example is
demonstrated in Region IV, where an island of perovskite phase
is embedded in the RP phase (highlighted by red).
On the basis of the above observations, we propose the

configuration of the 3D domain structure that is shown in
Figure 4. For a simple illustration, we have shown the match
between one-layer n = 2 RP phase and five-layer perovskite
phase, in which case the whole sheet structure has a flat surface.
However, it is noteworthy that there is no requirement of flat
surface in reality and surface steps could be existed in the NSs.
Compared with the cubic structure, the atomic site symmetries
are lower in the RP phase. The altered atomic environment

leads to distortions of the atomic distances and of the PbBr6
octahedrons, which is also reflected from our relaxed RP
structures obtained by DFT calculations. Such structural
alternation is also similar to the case in oxide RP structure.1

It would be helpful if the side view structure can be directly
observed experimentally, as the cases in cross-sectional oxide
thin films.10−12 However, in the 2D NS system, only vertical
view can be obtained. Owing to such limitation, further
information has to be dug out by quantitative intensity analysis
and image simulation.
Figure 5a depicts another typical image where perovskite and

plausible RP phase coexist. The domain boundaries have been
highlighted, and corresponding regions are labeled. Interest-
ingly, one may notice that the perovskite I region has weak
contrast compared with perovskite II region, although they
both show the same type of pattern. Meanwhile, although we
have demonstrated the atomic-scale imaging of the plausible RP
phase, it is still not clear about the exact number of n and the
layer thickness. Quantification of the atom column intensities in
the AC-STEM image may provide the answers.17−19 Generally
speaking, quantitative elemental and thickness determination
can be obtained by either hardware-assisted absolute intensity
measurement17 or model-based postponed data analysis.18 As
to specific materials systems, local thickness measurement in
nanostructures could be more challenging than general
thickness determination in bulk crystals and thin films.
However, without absolute intensity calibration, it is still
possible to determine the thickness in certain cases by
combining intensity ratio counting and image simulations.19

To be noted that a full-structure determination including local
thickness is really difficult to achieve by intensity counting, and
it is still an ongoing topic in the electron microscopy
community. Meanwhile, absolute matching between exper-
imental and simulated images are also rather difficult as there
are many affecting factors in terms of the experimental contrast
as well as the shape of local atom columns. Therefore, we only
compared the experimental and simulated images in a
semiquantitative way, aiming at digging out more information
from our experiments for a better understanding of this system.
Here, STEM image simulations were performed using the
multislice method.20,21 The left column of Figure 5b shows the
enlarged experimental images from perovskite I, RP, and
perovskite II regions, respectively. Correspondingly, the right
column of Figure 5b depicts the simulated images showing the

Figure 3. Domain configurations in 2D NSs. (a) AC-STEM image of a typical domain pattern. Four regions are labeled as I−IV. (b) Enlarged image
of Region I. Arrows indicate the domain boundary, and the red lines indicate the vertical shift between adjacent lattice planes. (c,d) Enlarged image
of Region II and III. Domain boundaries are indicated by yellow dot lines. (e) Enlarged image of Region IV. The perovskite island is highlighted in
red.

Figure 4. Proposed domain configuration between the conventional
perovskite phase and the RP phase. As an example, the match between
one-layer RP (n = 2) and cubic perovskite phase (layer thickness m =
5) is demonstrated.
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best fit. The simulated intensities have been normalized to the
incident probe. Details of the fittings are as follows.
Different thicknesses of perovskite and RP phases have been

simulated, and all of the simulated atom column intensities
were obtained by 2D Gaussian fitting.22 The result is shown in
Figure 6a. Here we only compare the cation atom column
intensities, and the weak Br atom columns are ignored. For the
perovskite phase, simulations have been performed from one to
ten layers. For RP phases, we only simulate the cases of n = 1
and n = 2 as RP phases with n > 3 may not be
thermodynamically stable, according to the lessons we learnt
from oxide RP phases.10 Meanwhile, considering our 2D thin
NS system, it is less possible to have RP phases with a higher n
number, which would cause a large thickness.
Theoretically, for RP n = 1 phase, from one- to two-layer,

intensities of two types of cation atom columns, i.e., I1 and I2,
are not equal. The difference becomes smaller as the thickness
increases from one- to two-layer. Whereas for RP n = 2 phase,
I1 equals to I2. Besides, both two-layer n = 1 and one-layer n = 2
RP columns show similar but a little weaker intensities
compared to the Pb−Br column intensities of four- to six-
layer perovskite phase (about 25−35 Å in thickness).
Experimentally, within the measurement errors, RP regions
show that I1 equals to I2, and the experimental intensities of RP
atom columns are also a little weaker than the Pb−Br column
intensities of perovskite regions. Therefore, it could be possible
that the NS in Figure 5a composes of one-layer n = 2 RP phase
and 4−6 layers of perovskite phase, so that the thickness of the
NS is around 3 nm. To be noted that here we cannot
exclusively rule out the possibility of two-layer n = 1 RP phase.

However, for a semiquantitative discussion, one-layer n = 2 RP
phase is assumed in the following analysis for simplicity.
A further deduction of the thickness can be obtained from

the intensity ratio as depicted in Figure 6b. Here, the
comparison is made between the perovskite I region and RP
region. Three types of intensity ratios have been calculated
from one- to ten-layer perovskite phases, while the RP phase is
fixed as one-layer n = 2 phase. The experimental values are
shown in red, and the error regions, which stand for the
standard deviations, are highlighted by orange. As can be seen,
the simulations agree well with experiments when the thickness
of perovskite phase turns to be five- and six-layer.
For the perovskite II region, it is found that the Pb−Br atom

columns show higher intensities compared to perovskite I
region while the Cs atom column intensities vary little. Such
contrast difference cannot be interpreted by the changes of
crystal thickness with integer perovskite layers. Hence, we
consider the effect of surface termination.23 If the perovskite
phase does not terminate with integer unit cells, then in the
[001] projection, extra Pb and Br atoms will be added into the
Pb−Br columns, while the numbers of Cs atoms in Cs columns
do not change. In this way, the abnormal intensity features in
the perovskite II region can be interpreted. Assuming
Perovskite I region is terminated with integer six-layer, we
vary the surface terminations of Perovskite II region to best fit
the experimental intensity ratio. As depicted in Figure 6c,
within the measurement errors, the experimental intensity
ratios (red) agree with the simulation of six-layer perovskite
phase with either −PbBr2 or −PbBr3 termination. The
structures of −PbBr2 or −PbBr3 terminations are demonstrated
in the upper region in Figure 6c. Therefore, the perovskite II

Figure 5. Comparison between experimental and simulated STEM images. (a) Another typical domain region in the NSs. Domain boundaries are
indicated by yellow dot lines, and different domains are labeled. (b) Comparison between experimental and simulated images. The left column is the
enlarged images from different domains in panel a, and the right column is the corresponding simulated images (six-layer perovskite phase, one-layer
n = 2 RP phase, and six-layer perovskite phase with −PbBr3 termination). The simulated intensities have been normalized to the incident probe.
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region could have six-layer perovskite phase in thickness with
Pb and Br-rich surface terminations.
As mentioned, the above comparisons between experiments

and simulations are semiquantitative, and the result is not
exclusive. On the material side, an assumption has been made
that the NSs are not too thick, which is proposed based on the
atomic force microscopy measurements15 and the fact of fast
sample damage process under the electron beam. Hence the

fittings are restricted in few-layer structures. On the simulation
side, residual spherical aberrations and several other trivial
effects are not taken into consideration. Even though exclusive
composition and thickness determination can not be achieved,
the above semiquantitative results may still be helpful, which
provide frameworks to help understand the RP structures in
this system, at least one possible configuration has been
proposed here. Looking ahead, there is pressing need for the
synthesis of high yield RP phase inorganic halide perovskites,
either in the form of nanostructure or thin film. On one hand,
new insights could be gained via microscopic observations from
the side view (Figure 4a) in other types of nanostructures. On
the other hand, it is expected that, combining low dose
techniques to better protect the pristine samples, further
structural or spectroscopic information could be obtained for
the RP phases. Finally, the successful synthesis and deep
structural understanding will make future property measure-
ment and device design possible.
In summary, the plausible existence of RP phases in 2D

CsPbBr3 NSs has been supported by atomic-level AC-STEM
observations. RP phases and conventional perovskite phases
form a domain structure in the 2D NSs system. The features of
the domain and domain boundaries have been discussed in
detail. RP domains and perovskite domains are well-connected
due to their similarity in crystal structures, and all of the domain
boundaries lie in the ⟨100⟩ directions at atomic-scale.
Combined with simulations, an example of phase and thickness
determination within the NSs has been shown, and semi-
quantitative results could be obtained based on reasonable
assumptions. Considering there has been no report of RP
phases in inorganic halide perovskites so far, our discovery may
open the door for future synthesis of inorganic RP phase halide
perovskites and push forward further explorations in this
intriguing system.
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Figure 6. Semiquantitative comparison between experimental and
simulated intensity ratios. (a) Simulated cation atom column intensity
vs crystal thickness. For perovskite phase, simulations have been
performed from one- to ten-layer. For RP phases, one- and two-layer
RP (n = 1) and one-layer RP (n = 2) have been simulated. Intensities
of two types of cation columns in RP phases are denoted as I1 and I2,
respectively. (b) Comparison between experimental (red) and
simulated (black) intensity ratios (perovskite I and RP regions). In
the simulations, the RP phase is fixed as one-layer RP (n = 2), and the
perovskite phase thickness ranges from one- to ten-layer. The error
bars, representing the standard deviations, are highlighted in orange.
The best fit to the perovskite thickness is highlighted in red. (c)
Comparison between experimental and simulated intensity ratios
(perovskite I and perovskite II regions). Two types of surface
terminations, denoted as −PbBr2 and −PbBr3, are considered for
Perovskite II region, and their structural models are shown in the inset.
The error bars stand for the standard deviations.
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