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Abstract

A simple proof of the asymptotic formula for the ruin probability of a risk process with a positive constant interest force
[derived earlier by Asmussen (Asmussen, S., 1998. The Annals of Applied Probability 8, 354–374)] is given. The proof is
based on a formula obtained by Sundt and Teugels (Sundt, B., Teugels, J.L., 1995. Insurance: Mathematics and Economics
16, 7–22). © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this note we deal with the classical risk model with a Poisson claims occurrence process, constant premium
rate, and a constant interest force. Such a model was considered by Sundt and Teugels (1995, 1997) where the
probability of ultimate ruin was examined under an analogue of the Cramér condition. Klüppelberg and Stadtmüller
(1998) used sophisticated analytical arguments to derive, asymptotic formula for the ruin probability in the presence
of claims having a distribution with a regularly varying tail. This result was refined by Asmussen (1998) who used
the reflected random walk theory for obtaining asymptotic formulae for the ruin probability in the presence of
subexponentially distributed claim sizes. The purpose of this paper is to give an elementary proof of the Asmussen
result, using equations derived in Sundt and Teugels (1995, 1997).

Let u > 0 be the initial capital of an insurance company. The claim sizes(Yk)k∈N are positive i.i.d. random
variables with the common distributionB with the meanb1 = EY1. Denote by

F(x) = 1

b1

∫ x

0
(1 − B(z))dz

the integrated tail of the claim size distribution. In this paper, we will only assume thatF is a subexponential
distribution (see Embrechts et al., 1997). Let the claims occur at random times forming a homogeneous Poisson
process with the intensityλ > 0 that is independent of{Yk}. Let c > 0 be the constant gross premium rate
(not necessarily positive) and denote byX(t) a compound Poisson process representing the total claim amount
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accumulated until timet . Assume also that a constant interest forceδ > 0 affects the risk process. In this case the
risk reserve(Uδ(t))t≥0 satisfies the equation (see Sundt and Teugels, 1995)

Uδ(t) = ueδt + c

∫ t

0
eδy dy −

∫ t

0
eδ(t−y) dX(y).

Let

ψδ(u) = P
(

inf
t≥0
Uδ(t) < 0|Uδ(0) = u

)

be the ultimate ruin probability for this risk process.
Our goal is to give a simple proof of the following Asmussen’s result (see Asmussen, 1998, Section 4).

Theorem 1. If F is a subexponential distribution, then

ψδ(u) ∼ λ

δ

∫ ∞

u

1 − B(z)

z
dz. (1)

We show, in particular, that this result follows immediately from Eq. (2) derived in Sundt and Teugels (1995).
Hopefully, our approach can be applied to more general models.

2. Auxiliary relations

Let us use the following notation:

ρ = λb1, the expected claim amount per time unit;
φδ(u) = 1 − ψδ(u), the survival probability;
Gδ(u) = 1 − ψδ(u)/ψδ(0), an auxiliary distribution function;

kδ(u) =
∫ ∞

u

z dGδ(z).

The Laplace–Stieltjes transform will be denoted by equipping the corresponding original function with hat and
usings as its argument. For example,

k̂δ(s) =
∫ ∞

0
e−su dkδ(u).

Let us assume, for a while, that the positive safety loading conditionρ < c takes place (later we will get rid of it).
Then the following equation is valid (see Sundt and Teugels, 1995, p. 14):

Gδ(u) = −δ
c

∞∑
n=0

(ρ
c

)n
Fn∗ ∗ (kδ(0)− kδ(u))+ Kδ

c

∞∑
n=0

(ρ
c

)n
F (n+1)∗(u), (2)

where∗ stands for the Stieltjes convolution,

Kδ = ρ(1 − ψδ(0))

ψδ(0)
, (3)

kδ(0) = Kδ − c + ρ

δ
.
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Eq. (2) was used by Teugels and Sundt in order to investigate the behaviour of the ruin probability via behaviour
of the auxiliary functionGδ(u) (see Sundt and Teugels, 1995). One of the difficulties they encountered was the
fact that 1−Gδ(u) = o(kδ(u)). We propose to use (2) in order to investigatekδ(u) and, via this function, the ruin
probability. This allows us to obtain the desired results directly, without complex analytical arguments.

By the Beekman convolution formula (or, which is the same, by the Pollaczek–Khinchine formula), the probability
of ruinψ0(u) (without interest rate) can be expressed as

ψ0(u) =
(
1 − ρ

c

) ∞∑
n=0

(ρ
c

)n
(1 − Fn∗(u)). (4)

Using (4), we can rewrite (2) in the form

1 −Gδ(u) =
(

1 + Kδ

ρ

)
ψ0(u)− δ

c − ρ
φ0 ∗ kδ(u). (5)

The following equation is a corollary of (5):

kδ(u) = ρ +Kδ

δ
(1 − F(u))− c

δ
(1 −Gδ(u))+ ρ

δ
F ∗ (1 −Gδ)(u). (6)

Actually, taking the Laplace–Stieltjes transform of (5) and using the representation (4), we arrive at

(1 − Ĝδ(s))

(
1 − ρF̂ (s)

c

)
= ρ +Kδ

c
(1 − F̂ (s))− δk̂δ(s)

c
.

Upon inverting, this relation yields (6).

3. Basic results

Firstly, let us estimatekδ(u). We will not tend to give estimates as accurate as possible, but restrict ourselves to
bounds that are sufficient to get the desired asymptotic result.

Lemma 1. If ρ < c, then

k∗(u) ≤ kδ(u) ≤ k∗(u), (7)

where

k∗(u) =
(
1 + c

δu

)−1 ρ +Kδ

δ
(1 − F(u)), (8)

k∗(u) =
(
c − ρ

ρ

)
(ρ +Kδ)ψ0(u)

δφ0(u)
. (9)

Proof. The evident inequality

kδ(u) ≥ u(1 −Gδ(u))

and the relation (6) yield the lower bound in (7).
Eq. (5) and the inequality

φ0 ∗ kδ(u) ≥ φ0(u)kδ(u)

yield the upper bound in (7). �
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Lemma 2. For subexponential F andρ < c,

kδ(u) ∼ ρ +Kδ

δ
(1 − F(u)), u → ∞. (10)

Proof. Evidently,

k∗(u) ∼ ρ +Kδ

δ
(1 − F(u)).

As F is a subexponential distribution,

ψ0(u) ∼ ρ

c − ρ
(1 − F(u))

(see Theorem 1.3.8 in Embrechts et al., 1997). Therefore,

k∗(u) ∼ ρ +Kδ

δ
(1 − F(u)),

which completes the proof. �

The following two lemmas prove Theorem 1.

Lemma 3. If ρ < c and F is subexponential, then(1) holds true.

Proof. We have

ψδ(u)

ψδ(0)
= −

∫ ∞

u

dkδ(z)

z
= kδ(u)

u
−
∫ ∞

u

kδ(z)

z2
dz (by integration by parts)

∼ ρ +Kδ

δ

(
1 − F(u)

u
−
∫ ∞

u

1 − F(z)

z2
dz

)
(by Lemma 2)

= ρ +Kδ

δ

∫ ∞

u

dF(z)

z
= ρ +Kδ

δb1

∫ ∞

u

1 − B(z)

z
dz.

Using the definition (3) ofKδ, we get (1). �

The following remark was made by the referee and we reproduce it with gratitude.

Remark. If one has information on the difference inkδ values rather than on the values themselves, then it is neater
to use the following steps in the proof above:

ψδ(u)

ψδ(0)
=
∫ ∞

u

kδ(u)− kδ(z)

z2
dz = 1

u

∫ ∞

1

kδ(u)− kδ(uv)

v2
dv ∼ ρ +Kδ

δu

∫ ∞

1

F(uv)− F(u)

v2
dv

= ρ +Kδ

δb1

∫ ∞

1

dv

uv2

∫ uv

u

(1 − B(z))dz.

The last term is, evidently, equal to the right-hand side of(1).

Let us now get rid of the assumptionρ < c. Note that we impose no further restriction on the premium ratec,
which may even be non-positive.

Lemma 4. If ρ ≥ c and F is subexponential, relation(1) still holds true.
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Proof. Let us re-denote the ruin probability as follows:

ψδ(u) = ψδ(u, c).

That is, we indicate the value of the premium rate in the notation regardingλ andB(z) as fixed. Then

c ≤ c′ ⇒ ψδ(u, c) ≥ ψδ(u, c
′).

Takec′ such thatρ < c′. Then, by Lemmas 1–3,

ψδ(u, c
′) ∼ λ

δ

∫ ∞

u

1 − B(z)

z
dz.

Furthermore, for anyu∗ > 0 andu ≥ u∗,

ψδ(u, c) ≤ ψδ(u− u∗, c + δu∗) = P
(
inf t≥0Uδ(t) < u∗|Uδ(0) = u

)
.

Takeu∗ such thatc + δu∗ > ρ. Then, by Lemmas 1–3,

ψδ(u− u∗, c + δu∗) ∼ λ

δ

∫ ∞

u−u∗

1 − B(z)

z
dz ∼ λ

δ

∫ ∞

u

1 − B(z)

z
dz. (11)

The second equivalence in (11) is due to the subexponentiality ofF . Thus, upper and lower bounds ofψδ(u) are
equivalent to the same function. Therefore, (1) is true. �

Note that Lemma 1 can help in bounding of the ruin probability provided that one can estimateψ0(u), but this
subject is out of the scope of this communication.
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