
Rule-Based Form for Stream Constraints

Kasper Dokter(B) and Farhad Arbab

Centrum Wiskunde & Informatica, Amsterdam, Netherlands
K.P.C.Dokter@cwi.nl

Abstract. Constraint automata specify protocols as labeled transition
systems that preserve synchronization under composition. They have
been used as a basis for tools, such as compilers and model checkers.
Unfortunately, composition of transition systems suffers from state space
and transition space explosions, which limits scalability of the tools based
on constraint automata. In this work, we propose stream constraints as
an alternative to constraint automata that avoids state space explosions.
We introduce a rule-based form for stream constraints that can avoid
transition space explosions. We provide sufficient conditions under which
our approach avoids transition space explosions.

1 Introduction

Over a decade ago, Baier et al. introduced constraint automata for the specifi-
cation of interaction protocols [6]. Constraint automata feature a powerful com-
position operator that preserves synchrony: composite constructions not only
yield intuitively meaningful asynchronous protocols but also synchronous pro-
tocols. Constraint automata have been used as basis for tools, like compilers
and model checkers. Jongmans developed Lykos: a compiler that translates con-
straint automata into reasonably efficient executable Java code [13]. Baier, Blech-
mann, Klein, and Klüppelholz developed Vereofy, a model checker for constraint
automata [4,19]. Unfortunately, like every automaton model, composition of con-
straint automata suffers from state space and transition space explosions. These
explosions limit the scalability of the tools based on constraint automata.

To improve scalability, Clarke et al. developed a compiler that translates a
constraint automaton to a first-order formula [9]. The transitions of the con-
straint automaton correspond to the solutions of this formula. At run time, a
generic constraint solver finds these solutions and simulates the automaton. Since
composition and abstraction for constraint automata respectively correspond to
conjunction and existential quantification, the first-order specification does not
suffer from state space or transition space explosion. However, the approach pro-
posed by Clarke et al. only delays the complexity until run time: calling a generic
constraint solver at run time imposes a significant overhead.

Jongmans realized that the overhead of this constraint solver is not always
necessary. He developed a commandification algorithm that accepts constraints
without disjunctions (i.e., conjunctions of literals) and translates them into a

c© IFIP International Federation for Information Processing 2018

Published by Springer International Publishing AG 2018. All Rights Reserved

G. Di Marzo Serugendo and M. Loreti (Eds.): COORDINATION 2018, LNCS 10852, pp. 142–161, 2018.

https://doi.org/10.1007/978-3-319-92408-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92408-3_6&domain=pdf

Rule-Based Form for Stream Constraints 143

small imperative program [14]. The resulting program is a light-weight, tailor-
made constraint solver with minimal run time overhead. Since commandification
accepts only constraints without disjunction, Jongmans applied this technique
to data constraints on individual transitions in a constraint automaton. Relying
on constraint automata, his approach still suffers from scalability issues [17].

We aim to prevent state space and transition space explosions by combining
the ideas of Clarke et al. and Jongmans. To this end, we present the language of
stream constraints: a generalization of constraint automata based on temporal
logic. A stream constraint is an expression that relates streams of observed data
at different locations (Sect. 2). We identify a subclass of stream constraints, called
regular (stream) constraints, which is closed under composition and abstraction
(Sect. 3). Regular constraints can be viewed as a constraint automata, and con-
junction of reflexive regular constraints is similar to composition of constraint
automata (Sect. 4).

A straightforward application of the commandification algorithm of Jong-
mans to regular stream constraints entails transforming a stream constraint into
disjunctive normal form and applying the algorithm to each clause separately.
However, the number of clauses in the disjunctive normal form may grow expo-
nentially in the size of the composition. To prevent such exponential blowups of
the size of the formula, we recognize and exploit symmetries in the disjunctive
normal form. Each clause in the disjunctive normal form can be constructed
from a set of basic stream constraints, which we call rules. This idea allows us
to represent a single large constraint as certain combination of a set of smaller
constraints, called the rule-based form (Sect. 5). We express the composition of
stream constraints in terms of the rule-based normal form (Sect. 6), and show
that, for simple sets of rules, the number of rules to describe the composition
is only linear in the size of the composition (Sect. 7). The class of stream con-
straints defined by a simple set of rules contains constraints for which the size of
the disjunctive normal form explodes, which shows that our approach improves
upon existing approaches by Clarke et al. and Jongmans. We express abstrac-
tion on stream constraints in terms of the rule-based normal form and provide a
sufficient condition under which the number of rules remains constant (Sect. 8).
Finally, we conclude and point out future work (Sect. 10).

Related work. Representation of stream constraints in rule-based form is part of
a larger line of research on symbolic approaches, such a symbolic model check-
ing [5,8,20] and symbolic execution [10]. These approaches not only use logic
(cf., SAT solving techniques [12,18] for verification), but also other implicit rep-
resentations, like binary decision diagrams [7] and Petri nets [21]. Petri nets
offer a small representation of protocols with an exponentially large state space.
While our focus is more on compilation, Petri nets have been studied in the
context of verification. As inspiration for future work, it is interesting to study
the similarities between Petri nets and stream constraints.

Since regular stream constraints correspond to constraint automata, we can
view regular stream constrains as a restricted temporal logic for which dis-
tributed synthesis is easy. In general, distributed (finite state) synthesis of

144 K. Dokter and F. Arbab

protocols is undecidable [22,23]. Pushing the boundary from regular to a larger
class of stream constraints can be useful for more effective synthesis methods.

2 Syntax and Semantics

The semantics of constraint automata is defined as a relation over timed data
streams [3], which are pairs, each consisting of a non-decreasing stream of time
stamps and a stream of observed (exchanged) data items. The primary signifi-
cance of time streams is the proper alignment of their respective data streams,
by allowing “temporal gaps” during which no data is observed. For convenience,
we drop the time stream and model protocols as relations over streams of data,
augmented by a special symbol that designates “no-data” item.

We first define the abstract behavior of a protocol C. Fix an infinite set X
of variables, and fix a non-empty set of user-data Data ⊇ {0} that contains a
datum 0. Consider the data domain D = Data∪{∗} of data stream items, where
we use the “no-data” symbol ∗ ∈ D \ Data to denote the absence of data. We
model the a single execution of protocol C as a function

θ : X −→ DN (1)

that maps every variable x ∈ X to a function θ(x) : N −→ D that represents a
stream of data at location x. We call θ a data stream tuple (over X and D). For
all n ∈ N and all x ∈ X, the value θ(x)(n) ∈ D is the data that we observe at
location x and time step n. If θ(x)(n) = ∗, we say that no data is observed at x
in step n (i.e., we may view θ as a partial map N × X ⇀ Data). The behavior
of protocol C consists of the set

L(C) ⊆ (DN)X (2)

of all possible executions of C, called the accepted language of C. We can think
of accepted language L(C) as a relation over data streams. In this paper, we
study protocols that are defined as a stream constraint:

Definition 1 (Stream constraints). A stream constraint φ is an expression
generated by the following grammar

φ ::= ⊥ | t0
.= t1 | φ0 ∧ φ1 | ¬φ | ∃xφ | �φ

t ::= x | d | t′

where x ∈ X is a variable, d ∈ D is a datum, and t is a stream term.

We use the following standard syntactic sugar: � = ¬⊥, φ0 ∨ φ1 = ¬(¬φ0 ∧
¬φ1), ♦φ = ¬�¬φ, ¬(t1

.= t2) = (t1 .= t2), (t1
.= t2 ∧ · · · ∧ tn−1

.= tn) = (t1
.=

· · · .= tn), t(0) = t, and t(k+1) = (t(k))′, for all k ≥ 0. Following Rutten [25], we
call t(k), k ≥ 0, the k-th derivative of term t.

We interpret a stream constraint as a constraint over streams of data in DN.
For a datum d ∈ D, d is the constant stream defined as d(n) = d, for all n ∈ N.
The operator (−)′, called stream derivative, drops the head of the stream and

Rule-Based Form for Stream Constraints 145

is defined as σ′(n) = σ(n + 1), for all n ∈ N and σ ∈ DN. Streams can be
related by .= that expresses equality of their heads: x

.= y iff x(0) = y(0), for all
x, y ∈ DN. The modal operator � allows us to express that a stream constraint
holds after applying any number of derivatives to all variables. For example,
�(x .= y) iff x(k)(0) = y(k)(0), for all k ∈ N and x, y ∈ DN. Stream constraints
can be composed via conjunction ∧, or negated via negation ¬. Streams can be
hidden via existential quantification ∃.

Each stream term t evaluates to a data stream in DN. Let θ : X −→ DN be
a data stream tuple. We extend the domain of θ from the set of variables X to
the set of terms T ⊇ X as follows: we define θ : T −→ DN via θ(d) = d and
θ(t′) = θ(t)′, for all d ∈ D and terms t ∈ T .

Next, we interpret a stream constraint φ as a relation over streams.

Definition 2 (Semantics). The language L(φ) ⊆ (DN)X of a stream con-
straint φ over variables X and data domain D is defined as

1. L(⊥) = ∅;
2. L(t0

.= t1) = {θ : X −→ DN | θ(t0)(0) = θ(t1)(0)};
3. L(φ0 ∧ φ1) = L(φ0) ∩ L(φ1);
4. L(¬φ) = (DN)X \ L(φ);
5. L(∃xφ) = {θ : X −→ DN | θ[x �→ σ] ∈ L(φ), for some σ ∈ DN};
6. L(�φ) = {θ : X −→ DN | θ(k) ∈ L(φ), for all k ≥ 0},
where θ[x �→ σ] : X −→ DN is defined as θ[x �→ σ](x) = σ and θ[x �→ σ](y) =
θ(y), for all y ∈ X \ {x}; and θ(k) : X −→ DN is defined as θ(k)(x) = θ(x(k)),
for all x ∈ X.

Let φ and ψ be two stream constraints and θ : X −→ DN a data stream
tuple. We say that θ satisfies φ (and write θ |= φ), whenever θ ∈ L(φ). We say
that φ implies ψ (and write φ |= ψ), whenever L(φ) ⊆ L(ψ). We call φ and ψ
equivalent (and write φ ≡ ψ), whenever L(φ) = L(ψ).

Example 1. One of the simplest stream constraints is sync(a, b), which is defined
as �(a .= b). Constraint sync(a, b) encodes that the data streams at a and b are
equal: θ(a)(k) = θ(b)(k), for all k ∈ N and all θ ∈ (DN)X . Therefore, sync(a, b)
synchronizes the data flow observed at ports a and b.

Conjunction ∧ and existential quantification ∃ provide natural operators for
composition and abstraction for stream constraints. For example, the composi-
tion sync(a, b) ∧ sync(b, c) synchronizes ports a, b, and c. Hiding port b yields
∃b(sync(a, b) ∧ sync(b, c)), which is equivalent to sync(a, c). �
Example 2. Recall that x(k), for k ≥ 0, is the k-th derivative of x. We can
express that a stream x is periodic via the stream constraint �(x(k) .= x), for
some k ≥ 1. For k = 1, stream x is constant, like 0 and ∗. �
Example 3. The stream constraint fifo(a, b,m) defined as m

.= ∗ ∧ �((a .= m′ .=
0 ∧ b

.= m
.= ∗) ∨ (a .= m′ .= ∗ ∧ b

.= m
.= 0) ∨ (a .= b

.= ∗ ∧ m′ .= m)) models a
1-place buffer with input location a, output location b, and memory location m
that can be full (m .= 0) or empty (m .= ∗). �

146 K. Dokter and F. Arbab

Example 4. Recall that ∗ models absence of data. Stream constraint �♦(a .= ∗)
expresses that always eventually we observe some datum at a. A constraint of
such form can be used to define fairness. �

3 Regular Constraints

We identify a subclass of stream constraints that naturally correspond to con-
straint automata. We first introduce some notation.

To denote that a string s occurs as a substring in a stream constraint φ or a
stream term t, we write s ∈ φ or s ∈ t, respectively.

Every stream constraint φ admits a set free(φ) ⊆ X of free variables, defined
inductively via free(⊥) = ∅, free(t0

.= t1) = {x ∈ X | x ∈ t0 or x ∈ t1},
free(φ0 ∧ φ1) = free(φ0) ∪ free(φ1), free(¬φ) = free(�φ) = free(φ), and
free(∃xφ) = free(φ) \ {x}.

For every variable x ∈ X, we define the degree of x in φ as

degx(φ) = max({−1} ∪ {k ≥ 0 | x(k) ∈ φ}),

and the degree of φ as deg(φ) = maxx∈X degx(φ). Note that for x /∈ φ we have
degx(φ) = −1. For k ≥ 0, we write freek(φ) = {x ∈ free(φ) | degx(φ) = k} for
the set of all free variables of φ of degree k.

We call a variable x of degree zero in φ a port variable and write P (φ) =
free0(φ) for the set of port variables of φ. We call a variable x of degree one or
higher in φ a memory variable and write M(φ) =

⋃
k≥1 freek(φ) for the set of

memory variables of φ.

Definition 3 (Regular). A stream constraint φ is regular if and only if
φ = ψ0 ∧ �ψ, such that � /∈ ψ0 ∧ ψ and degx(ψ0) < degx(ψ) ≤ 1, for all x ∈ X.

For a regular stream constraint φ = ψ0∧�ψ, we refer to ψ0 as the initial con-
dition of φ and we refer to ψ as the invariant of φ. Stream constraints sync(a, b)
and fifo(a, b,m) in Examples 1 and 3 are regular stream constraints.

A regular stream constraint φ has an operational interpretation in terms of
a labeled transition system �φ�. States of the transition system consist of maps
q : M(φ) −→ D that assign data to memory locations, and its labels consist of
maps α : P (φ) −→ D that assign data to ports. We write Q(φ) for the set of
states of φ and A(φ) for the set of labels of φ.

Definition 4 (Operational semantics). The operational semantics �φ� of a
regular stream constraint φ = ψ0 ∧ �ψ consists of a labeled transition system
(Q(φ), A(φ),→, Q0), with set of states Q(φ), set of labels A(φ), set of transitions
→ = {(qφ(θ), qφ(θ′), αφ(θ)) | θ ∈ L(ψ)}, and set of initial states Q0 = {qφ(θ) |
θ ∈ L(ψ0 ∧ ψ)}, where

1. qφ(θ) : M(φ) −→ D is defined as qφ(θ)(x) = θ(x)(0), for x ∈ M(φ); and
2. αφ(θ) : P (φ) −→ D is defined as αφ(θ)(x) = θ(x)(0), for x ∈ P (φ).

and θ′ is defined as θ′(x)(n) = θ(x)(n + 1), for all x ∈ X and n ∈ N.

Rule-Based Form for Stream Constraints 147

[a �→ 0, b ∗→�]

[a ∗→� , b �→ 0]

[a �→ ∗, b ∗→�] [a ∗→� , b ∗→�]

Fig. 1. Semantics of fifo(a, b, m) over the trivial data domain {0, ∗}.

Example 5. Consider the regular stream constraint fifo(a, b,m) from Example 3.
Note that in this example, the set of ports equals free0(fifo) = {a, b} and the set
of memory locations equals free1(fifo) = {m}. The semantics of fifo(a, b,m) over
the trivial data domain D = {0, ∗} consists of 4 transitions:

1. ([m �→ ∗], [m �→ 0], [a �→ 0, b �→ ∗]);
2. ([m �→ 0], [m �→ ∗], [a �→ ∗, b �→ 0]); and
3. ([m �→ d], [m �→ d], [a �→ ∗, b �→ ∗]), for every d ∈ {∗, 0}.

Figure 1 shows the semantics of fifo over the trivial data domain. �
Equivalent stream constraints do not necessarily have the same operational

semantics. We are, therefore, interested in operational equivalence of constraints:

Definition 5 (Operational equivalence). Stream constraints φ and ψ are
operationally equivalent (φ � ψ) iff φ ≡ ψ and freek(φ) = freek(ψ), for k ≥ 0.

Example 6. Let φ be a stream constraint, let t be a term and let x /∈ t be a
variable that does not occur in t. Then, we have ∃x(x .= t ∧ φ) ≡ φ[t/x], where
φ[t/x] is obtained from φ by substituting t for every free occurrence of x. Observe
that ∃x(x .= t ∧ φ) and φ[t/x] may admit different sets of free variables: if φ is
just � and t is a variable y, the equivalence amounts to ∃x(x .= y) ≡ �. To
ensure that the free variables coincide, we can add the equality t

.= t and obtain
the operational equivalence ∃x(x .= t ∧ φ) � φ[t/x] ∧ t

.= t. �
Operational equivalence of stream constraints φ and ψ implies that their

operational semantics are identical, i.e., �φ� = �ψ�. It is possible to introduce
weaker equivalences by, for example, demanding that �φ� and �ψ� are only weakly
bisimilar. Such weaker equivalence offer more room for simplification of stream
constraints than operational equivalence does. As our work does not need this
generality, we leave the study of such weaker equivalences as future work.

The most important operations on stream constraints are composition (∧)
and hiding (∃). The following result shows that regular stream constraints are
closed under conjunction and existential quantification of degree zero variables.

Theorem 1. For all stream constraints φ and ψ and variables x, we have

1. �φ ∧ �ψ ≡ �(φ ∧ ψ); and
2. ∃x�φ ≡ �∃xφ, whenever degx(φ) ≤ 0 and � /∈ φ.

148 K. Dokter and F. Arbab

Proof. For assertion 1, L(�φ ∧ �ψ) = {θ ∈ (DN)X | ∀k ≥ 0 : θ(k) |= φ ∧ ψ} =
L(�(φ ∧ ψ)) shows that �φ ∧ �ψ ≡ �(φ ∧ ψ).

For assertion 2, suppose that degx(φ) ≤ 0 and � /∈ φ. We show that θ ∈
L(�∃xφ) if and only if θ ∈ L(∃x�φ), for all θ ∈ (DN)X . By Definition 2, this
equivalence can be written as

θ(k)[x �→ μk] |= φ ⇔ (θ[x �→ σ])(k) |= φ, (3)

for all k ≥ 0, σ ∈ DN, and μk ∈ DN such that μk(0) = σ(k)(0).
To prove Eq. (3), we proceed by induction on the length of φ:
Case 1 (φ := ⊥): Since L(⊥) = ∅, Eq. (3) holds trivially.
Case 2 (φ := t0

.= t1): Observe that, since degx(φ) ≤ 0, for all terms t, we
have x ∈ t iff t = x. We conclude Eq. (3) from μk(0) = σ(k)(0) and

θ(k)[x �→ μk](t)(0) =

{
μk(0) if t = x

θ(k)(t)(0) if t = x

}

= (θ[x �→ σ])(k)(t)(0).

Case 3 (φ := ψ0 ∧ ψ1): By the induction hypothesis, Eq. (3) holds for ψ0 and
ψ1. By conjunction of Eq. (3), we conclude Eq. (3) for φ.

Case 4 (φ := ¬ψ): By the induction hypothesis, Eq. (3) holds for ψ. By
contraposition of Eq. (3), we conclude Eq. (3) for φ.

Case 5 (φ := ∃yψ): If y = x, then x /∈ free(φ) and both sides in Eq. (3) are
equivalent to θ(k) |= φ. Hence, Eq. (3) holds for y = x. Suppose y = x. Then,
θ(k)[x �→ μk] |= φ is equivalent to (θ[y �→ τ])(k)[x �→ μk] |= ψ, for some τ ∈ DN.
Applying the induction hypothesis for θ equal to θ[y �→ τ], we conclude that
θ(k)[x �→ μk] |= φ is equivalent to (θ[y �→ τ][x �→ σ])(k) |= ψ, for some τ ∈ DN.
Since y = x, we conclude that Eq. (3) holds.

We conclude that the claim holds for all φ with degx(φ) ≤ 0 and � /∈ φ. �

4 Reflexive Constraints

Conjunction of stream constraints is a simple syntactic composition operator
with clear semantics: a data stream tuple θ satisfies a conjunction φ0 ∧φ1 if and
only if θ satisfies both φ0 and φ1. In view of the semantics of regular stream
constraints in Definition 2, it is less obvious how �φ0 ∧ φ1� relates to �φ0� and
�φ1�. The following result characterizes their relation when no memory is shared.

Theorem 2. Let φ0 and φ1 be regular stream constraints such that free(φ0) ∩
free(φ1) ⊆ P (φ0 ∧ φ1), and let (qi, q

′
i, αi) ∈ Q(φi)2 × A(φi), for i ∈ {0, 1}. The

following are equivalent:

1. q0
α0−→ q′

0 in �φ0�, q1
α1−→ q′

1 in �φ1�, and α0|P (φ1) = α1|P (φ0);
2. q0 ∪ q1

α0∪α1−−−−→ q′
0 ∪ q′

1 in �φ0 ∧ φ1�,

where | is restriction of maps, and ∪ is union of maps.

Rule-Based Form for Stream Constraints 149

Proof. Write φi = ψi0 ∧ �ψi, with � /∈ ψi0 ∧ ψi and degx(ψi0) < degx(ψi) ≤ 1,
for all x ∈ X. Then, freek(φi) = freek(ψi), for all i, k ∈ {0, 1}.

Suppose that assertion 1 holds. By Definition 2, we find, for all i ∈ {0, 1},
some θi ∈ L(ψi) such that qi = qφi

(θi), q′
i = qφi

(θ′
i), and αi = αφi

(θi). Define
θ : X −→ DN by θ(x) = θi(x), if x ∈ free(φi), and θ(x) = ∗, otherwise. Since
free(φ0) ∩ free(φ1) ⊆ P (φ0 ∧ φ1) and α0|P (φ1) = α1|P (φ0), we have that θ0(x) =
θ1(x), for all x ∈ free(φ0) ∩ free(φ1). Hence, θ is well-defined. By construction,
θ |= ψ0 and θ |= ψ1. By Definition 2, we have θ |= ψ0∧ψ1. By Theorem 1, we have
φ0 ∧φ1 = ψ00 ∧ψ10 ∧�(ψ0 ∧ψ1). Since q0 ∪ q1 = qφ0∧φ1(θ), q′

0 ∪ q′
1 = qφ0∧φ1(θ

′),
and α0 ∪ α1 = αφ0∧φ1(θ), we conclude assertion 2.

Suppose that assertion 2 holds. We find some θ ∈ L(ψ0 ∧ ψ1), such that
q0 ∪ q1 = qθ, q′

0 ∪ q′
1 = qθ′ , and α0 ∪ α1 = αθ. Then, we conclude assertion 1, for

qi = qφi
(θ), q′

i = qφi
(θ′), and αi = αφi

(θ). �

Stream constraints φ0 and φ1 without shared variables (free(φ0)∩ free(φ1) =
∅) seem completely independent. However, Theorem 2 shows that their com-
position φ0 ∧ φ1 admits a transition only if φ0 and φ1 admit respective local
transitions (q0, q′

0, α0) and (q1, q′
1, α1), such that α0|P (φ1) = α1|P (φ0). Since φ0

and φ1 do not share variables, the latter condition on α0 and α1 is trivially
satisfied. Still, for one protocol φi, with i ∈ {0, 1}, to make progress in the
composition φ0 ∧ φ1, constraint φ1−i must admit an idling transition.

To allow such independent progress, we assume that φ1−i admits an idling
transition (q, q, τ), where τ is the silent label over P (φ1−i). The silent label over
a set of ports P ⊆ X is the map τ : P −→ D that maps x ∈ P to ∗ ∈ D. If such
idling transitions are available in every state of φ1, we say that φ1 is reflexive:

Definition 6 (Reflexive). A stream constraint φ is reflexive if and only if
q

τ−→ q in �φ�, for all q ∈ Q(φ).

For regular constraints, we can define reflexiveness also syntactically, for
which we need some notation. For a variable x ∈ X and an integer k ∈ N∪{−1},
we define the predicate x†k (pronounced: “x is blocked at step k”) as follows:

x†k := (x(k) .= x(k−1)), with x(k) .= ∗, for all k < 0.

Predicate x†−1 ≡ � is trivially true. Predicate x†0 ≡ (x .= ∗) means that we
observe no data flow at port x. Predicate x†1 ≡ (x′ .= x) means that the data
in memory variable x remains the same.

We now provide a syntactic equivalent of Definition 6 for regular constraints.

Lemma 1. A regular stream constraint φ = ψ0 ∧ �ψ is reflexive if and only if∧
x∈X x†d(x) |= ψ, where d(x) = degx(φ), for all x ∈ X.

Proof. Since d(x) = −1, for all but finitely many x ∈ X, the stream constraint∧
x∈X x†d(x) is well-defined. By definition,

∧
x∈X x†d(x) |= ψ if and only if, for

all q ∈ Q(φ), there exists some θ ∈ L(ψ), such that qθ = qθ′ = q and αθ = τ . �

150 K. Dokter and F. Arbab

Example 7. The stream constraint sync(a, b) := �(a .= b) from Example 1 is
reflexive, because

∧
x∈X x†d(x) = a

.= ∗ ∧ b
.= ∗ implies a

.= b. The stream
constraint fifo from Example 3 is reflexive, because

∧
x∈X x†d(x) = a

.= ∗ ∧ b
.=

∗ ∧ m′ .= m is one of the clauses of fifo. �
Theorem 2 suggests a composition operator × on labeled transition systems,

satisfying �φ0�×�φ1� = �φ0∧φ1�. For reflexive constraints φ0 and φ1, composition
× simulates composition of constraint automata [6]. Constraint automata also
feature a hiding operator that naturally corresponds to existential quantification
∃ for stream constraints. We leave a full formal comparison between stream
constraints and constraint automata as future work.

5 Rule-Based Form

The commandification algorithm developed by Jongmans accepts only conjunc-
tions of literals [14]. To apply commandification to the invariant ψ of an arbitrary
regular stream constraint ψ0∧�ψ, we can first transform ψ into disjunctive nor-
mal form (DNF). However, the number of clauses in the disjunctive normal form
may be exponential in the length of the constraint. In this section, we introduce
an alternative to the disjunctive normal form that prevents such exponential
blow up, for a strictly larger class of stream constraints. Our main observation is
that the clauses of the disjunctive normal form may contain many symmetries,
in the sense that we may generate all clauses from a set of stream constraints R,
called a set of rules. A rule is a stream constraint ρ, such that deg(ρ) ≤ 1 and
� /∈ ρ.

Definition 7 (Rule-based form). A reflexive stream constraint φ is in rule-
based form iff φ equals

rbf(R) =
∧

x∈free(R)

x†d(x) ∨
∨

ρ∈R:x∈free(ρ)

ρ (4)

with R a finite set of rules, free(R) =
⋃

ρ∈R free(ρ), and d(x) = maxρ∈R degx(ρ).
A stream constraint φ is defined by R iff φ � rbf(R).

We apply the rule-based form to the invariant of regular constraints, via
ψ0 ∧ � rbf(R), for some degree zero stream constraint ψ0 and set of rules R.
Intuitively, R remains smaller than the DNF of rbf(R) under composition.

Example 8. ψ � rbf({ψ}), for all reflexive stream constraints ψ, with deg(ψ) ≤ 1
and � /∈ ψ. Hence, Example 7 shows sync(a, b) = �(a .= b) � � rbf({a

.= b}). �
Example 9. The stream constraint lossy(a, b) := � rbf({a

.= a, a
.= b}) is equiv-

alent to �(b .= ∗ ∨ a
.= b). Note that � rbf({�, a

.= b}) � � rbf({a
.= b}) �

sync(a, b). Hence, rules a
.= a and � are very different. �

Rule-Based Form for Stream Constraints 151

Example 10. The set of rules that define a stream constraint is not unique.
Consider the stream constraint fifo from Example 3. On the one hand, we have
fifo(a, b,m) � m

.= ∗∧� rbf({ϕ,ψ}), where ϕ � a
.= m′ .= 0∧m

.= ∗ models the
action that puts data in the buffer and ψ � m′ .= ∗∧b

.= m
.= 0 models the action

that takes data out of the buffer. On the other hand, we have fifo(a, b,m) � m
.=

∗ ∧ � rbf({a
.= m′ .= 0 ∧ b

.= m
.= ∗, a

.= m′ .= ∗ ∧ b
.= m

.= 0}). �
Example 11. Rule-based forms are an alternative to disjunctive normal forms.
Consider the reflexive constraint φ :=

∨n
i=1 ρi in DNF for which the first con-

junctive clause ρ1 is equivalent to
∧

x∈free(φ) x†d(x), with d(x) = degx(φ). By
adding equalities of the form x

.= x, we assume without loss of generality that
free(ρi) = free(φ), for all 2 ≤ i ≤ n. For R = {ρi | 2 ≤ i ≤ n}, it follows from

rbf(R) ≡
∧

x∈free(R)

⎛

⎝x †d(x) ∨
∨

ρ∈R

ρ

⎞

⎠ ≡
⎛

⎝
∧

x∈free(φ)

x†d(x)

⎞

⎠ ∨
∨

ρ∈R

ρ ≡ φ (5)

that φ is defined by the set R. �
Definition 7 presents the rule-based form as a conjunctive normal form. The

following result computes the disjunctive normal form of rbf(R).

Lemma 2. For every set of rules R, we have

rbf(R) � dnf(R) :=
∨

T⊆R

∧

ρ∈T

ρ ∧
∧

x∈free(R)\free(T)

x†d(x).

Proof. Let x ∈ X be arbitrary. By construction, we have degx(dnf(R)) ≤
maxρ∈R degx(ρ). Since d(x) = maxρ∈R degx(ρ), the clause for T = ∅ shows
that degx(dnf(R)) ≥ d(x). By Lemma 4, degx(rbf(R)) = degx(dnf(R)), for all
x ∈ X. Hence, freek(rbf(R)) = freek(dnf(R)), for all k ≥ 0.

Next, we show that rbf(R) |= dnf(R). Let θ ∈ L(rbf(R)). We find, for every
x ∈ free(R), some rule ρx ∈ R, such that θ |= ρ and x ∈ free(ρ). Now, define Tθ :=
{ρx | x ∈ free(R) and θ /∈ L(x†d(x))}. By construction, θ |= ρx, for every ρx ∈ Tθ.
If x ∈ free(R) and θ /∈ L(x†d(x)), then ρx ∈ Tθ and x ∈ free(ρx) ⊆ free(Tθ). By
contraposition, we conclude that θ |= x†d(x), for all x ∈ free(R)\ free(Tθ). Hence,
θ |= dnf(R), and L(rbf(R)) ⊆ L(dnf(R)).

Finally, we show that dnf(R) |= rbf(R). Let θ ∈ L(dnf(R)). By definition of
dnf(R), we find some T ⊆ R with θ |= ρ, for all ρ ∈ T , and θ |= x†d(x), for all
x ∈ free(R)\ free(T). Suppose that x ∈ free(R) and θ |= x†d(x). Since θ |= x†d(x),
for all x ∈ free(R) \ free(T), we find by contraposition that x ∈ free(T). Hence,
we find some ψ ∈ T with x ∈ free(ψ). Since θ |= ρ, for all ρ ∈ T , we find that
θ |= ψ. Hence, θ |= rbf(R) and we conclude that rbf(R) � dnf(R). �

6 Composition

We express conjunction of stream constraints in terms of their defining sets of
rules. That is, for two sets of rules R0 and R1, we define the composition R0∧R1

152 K. Dokter and F. Arbab

of R0 and R1, such that rbf(R0 ∧ R1) � rbf(R0) ∧ rbf(R1). If R0 and R1 do not
share any variable (i.e., free(R0) ∩ free(R1) = ∅), composition R0 ∧ R1 is given
by the union R0 ∪ R1. In this section, we define the composition R0 ∧ R1 of R0

and R1 for free(R0) ∩ free(R1) = ∅.
In view of Example 11, consider the normal form dnf(R0∧R1). Since dnf(R0∧

R1) equals dnf(R0) ∧ dnf(R1), it suffices to characterize the set of clauses of
dnf(R0)∧dnf(R1). Every such clause is a conjunction of a clause in dnf(R0) and
a clause in dnf(R1). Lemma 2 shows that the clauses of dnf(Ri) correspond to
subsets Ti of Ri, for all i ∈ {0, 1}. Not every pair of subsets T0 ⊆ R0 and T1 ⊆ R1

yields a clause of dnf(R0) ∧ dnf(R1), but only if S = T0 ∪ T1 is synchronous:

Definition 8 (Synchronous). A synchronous set over sets of rules R0 and R1

is a subset S ⊆ R0 ∪R1, with free(S)∩ free(Ri) ⊆ free(S ∩Ri), for all i ∈ {0, 1}.
Example 12. For any integer i ≥ 1, let ϕi := ai

.= m′
i

.= 0 ∧ mi
.= ∗ and

ψi := m′
i

.= ∗∧ai+1
.= mi

.= 0 be the two rules that define fifo(ai, ai+1,mi), from
Example 10. The synchronous sets consist of exactly those sets S ⊆ {ϕ1, ψ1} ∪
{ϕ2, ψ2} that satisfy ψ1 ∈ S iff ϕ2 ∈ S. That is, the synchronous sets are given
by ∅, {ϕ1}, {ψ2}, {ψ1, ϕ2}, {ϕ1, ψ1, ϕ2}, {ψ1, ϕ2, ψ2}, {ϕ1, ψ1, ϕ2, ψ2}. �

Next, we recognize symmetries in the collection of synchronous sets. We can
construct every synchronous set as a union of irreducible synchronous subsets:

Definition 9 (Irreducibility). A non-empty synchronous set ∅ = S ⊆ R0∪R1

is irreducible if and only if S = S0 ∪ S1 implies S = S0 or S = S1, for all
synchronous subsets S0, S1 ⊆ R0 ∪ R1.

Example 13. Let R0 and R1 be sets of rules, and let ρ ∈ R0 be a rule, such
that free(ρ) ∩ free(R1) = ∅. We show that {ρ} is irreducible synchronous. Since
free({ρ}) ∩ free(R0) = free(ρ) = free({ρ} ∩ R0) and free({ρ}) ∩ free(R1) = ∅ ⊆
free({ρ} ∩ R1), we conclude that {ρ} is synchronous. Suppose {ρ} = S0 ∪ S1.
Then, ρ ∈ Si, for some i ∈ {0, 1}. Hence, {ρ} ⊆ Si ⊆ {ρ}, which shows that
Si = {ρ}. We conclude that {ρ} is irreducible synchronous in R0 ∪ R1. �
Example 14. Consider ϕi and ψi, for i ∈ {1, 2}, from Example 12. The irre-
ducible synchronous sets of {ϕ1, ψ1}∪{ϕ2, ψ2} are {ϕ1}, {ψ2}, and {ψ1, ϕ2}. �
Definition 10 (Composition). The composition of sets of rules R0 and R1 is
R0 ∧ R1 := {∧

ρ∈S ρ | S ⊆ R0 ∪ R1 irreducible synchronous}.
Example 15. Let R0 and R1 be sets of rules, with free(R0) ∩ free(R1) = ∅. By
Example 13, we find that {ρ} ⊆ R0 ∪ R1, for all ρ ∈ R0 ∪ R1, is irreducible syn-
chronous. Hence, every synchronous set S ⊆ R0 ∪ R1, with |S| ≥ 2, is reducible.
Therefore, S ⊆ R0 ∪ R1 is irreducible synchronous if and only if S = {ρ}, for
some ρ ∈ R0 ∪ R1. We conclude that R0 ∧ R1 = R0 ∪ R1. Consequently, ∅ is a
(unique) identity element with respect to composition ∧ of sets of rules. �

To show that the composition of sets of rules coincides with conjunction of
stream constraints, we need the following result that shows that every non-empty
synchronous set can be covered by irreducible synchronous sets.

Rule-Based Form for Stream Constraints 153

Lemma 3. Let R0 and R1 be sets of rules, and let S ⊆ R0 ∪R1 be a non-empty
synchronous set. Then, S =

⋃n
i=1 Si, where Si ⊆ R0 ∪ R1, for 1 ≤ i ≤ n, is

irreducible synchronous.

Proof. We prove the lemma by induction on the size |S| of S. For the base
case, suppose that |S| = 1. We show that S is irreducible synchronous, which
provides a trivial covering. Suppose that S = S0 ∪S1, for some synchronous sets
S0, S1 ⊆ R0∪R1. Since, |S| = 1, we have S ⊆ Si ⊆ S, for some i ∈ {0, 1}. Hence,
S = Si, and S is irreducible. We conclude that the lemma holds, for |S| = 1.

For the induction step, suppose that |S| = k > 1, and suppose that the
lemma holds, for |S| < k. If S is irreducible, we find a trivial covering of S.
If S is reducible, we find S = S0 ∪ S1, where S0 = S = S1 are synchronous
sets in R0 ∪ R1. Since |Si| < |S|, for i ∈ {0, 1}, we find by the hypothesis that
Si =

⋃ni

j=1 Sij . Hence, S = S0 ∪ S1 =
⋃1

i=0

⋃ni

j=1 Sij . We conclude that the
lemma holds, for |S| = k. By induction on |S|, we conclude the lemma. �

Lemma 4. degx(rbf(R)) = maxρ∈R degx(ρ), for all sets of rules R and x ∈ X.

Proof. For any set of rules R and y ∈ X, we have

degy(rbf(R)) = max
x∈free(R)

max(degy(x†d(x)), max
ρ∈R:x∈free(ρ)

degy(ρ)).

Note that degy(x†d(x)) = d(y), if y = x, and degy(x†d(x)) = −1, otherwise. Since
d(y) = maxρ∈R degy(ρ), we have degy(rbf(R)) = maxρ∈R degy(ρ). �

Theorem 3. rbf(R0 ∧R1) � rbf(R0)∧ rbf(R1), for all sets of rules R0 and R1.

Proof. By Lemma 4 and Definition 10, degx(rbf(R0 ∧ R1)) = degx(rbf(R0) ∧
rbf(R1)), for all x ∈ X. Hence, freek(rbf(R0 ∧ R1)) = freek(rbf(R0) ∧ rbf(R1)),
for all k ≥ 0.

Next, we show rbf(R0) ∧ rbf(R1)) |= rbf(R0 ∧ R1). Let θ ∈ L(rbf(R0) ∧
rbf(R1)). By Definition 7, we must show that for every x ∈ free(R0 ∧ R1) there
exists some ρx ∈ R0 ∧R1 such that x ∈ free(ρx) and either θ |= x†d(x) or θ |= ρx.
Hence, suppose that θ /∈ L(x†d(x)), for some variable x ∈ free(R0 ∧ R1). Since
free(R0 ∧ R1) = free(R0) ∪ free(R1) and θ |= free(R0) ∧ free(R1), we find from
Definition 7 some ψ ∈ R0 ∪ R1, with θ |= ψ and x ∈ free(ψ). We now show
that there exists an irreducible synchronous set S ⊆ R0 ∪ R1, such that, for
ρx :=

∧
ρ∈S ρ, we have θ |= ρx and x ∈ free(ρx). By repeated application of

Definition 8, we construct a finite sequence

{ψ} = S0 � · · · � Sn,

such that Sn ⊆ R0∪R1 is synchronous, and θ |= ∧
ρ∈Sn

ρ. Suppose Sk ⊆ R0∪R1,
for k ≥ 1, is not synchronous. By Definition 8, there exists some i ∈ {0, 1} and a
variable x ∈ free(Sk) ∩ free(Ri), such that x /∈ free(Sk ∩ Ri). Since x ∈ free(Ri),
we have Rx

i := {ρ ∈ Ri | x ∈ free(ρ)} = ∅. Since θ |= rbf(Ri), there exists some
ψk ∈ Rx

i such that θ |= ψk. Now define Sk+1 := Sk∪{ψk}. Since x /∈ free(Sk∩Ri)

154 K. Dokter and F. Arbab

ϕ1

ψ1

ϕ2

ψ2

a1

m1

a2

m2

a3

(a)
∧2

i=1 rbf({ϕi, ψi})

ϕ1

ψ1 ∧ ϕ2

ψ2

a1

m1

a2

m2

a3

(b) rbf(
∧2

i=1{ϕi, ψi})

Fig. 2. Hypergraph representations of
∧2

i=1 fifo(ai, ai+1, mi).

and x ∈ free(Sk+1 ∩ Ri), we have a strict inclusion Sk � Sk+1. Due to these
strict inclusions, we have, for k ≥ |R0 ∪ R1|, that Sk = R0 ∪ R1, which is
trivially synchronous in R0 ∪ R1. Therefore, our sequence S0 � · · · of inclusions
terminates, from which we conclude the existence of Sn. By Lemma 3, we find
some irreducible synchronous set S ⊆ Sn, such that ψ ∈ S. We conclude that
ρx :=

∧
ρ∈S ρ ∈ R0∧R1 satisfies θ |= ρx and x ∈ free(ψ) ⊆ free(S) = free(ρx). By

Definition 7, we have θ |= rbf(R0 ∧ R1), and rbf(R0) ∧ rbf(R1) |= rbf(R0 ∧ R1).
Finally, we prove that rbf(R0 ∧R1) |= rbf(R0)∧ rbf(R1). Let θ ∈ L(rbf(R0 ∧

R1)). We show that θ |= rbf(Ri), for all i ∈ {0, 1}. By Definition 7, we must show
that for every i ∈ {0, 1} and every x ∈ free(Ri) there exists some ρ ∈ Ri such that
x ∈ free(ρ) and either θ |= x†d(x) or θ |= ρ. Hence, let i ∈ {0, 1} and x ∈ free(Ri)
be arbitrary, and suppose that θ /∈ L(x†d(x)). Since free(Ri) ⊆ free(R0 ∧ R1),
it follows from our assumption θ |= rbf(R0 ∧ R1) that θ |= ∧

ρ∈S ρ, for some
irreducible synchronous set S ⊆ R0∪R1 satisfying x ∈ free(S). Since S ⊆ R0∪R1

synchronous, we find that x ∈ free(S) ∩ free(Ri) = free(S ∩ Ri). Hence, we
find some ρ ∈ S ∩ Ri, such that θ |= ρ and x ∈ free(ρ). By Definition 7,
we conclude that θ |= rbf(Ri), for all i ∈ {0, 1}. Therefore, rbf(R0 ∧ R1) �
rbf(R0) ∧ rbf(R1). �

Example 16. Let ϕi and ψi, for i ≥ 1, be the rules from Example 12. By Exam-
ple 14, the composition fifo2 :=

∧2
i=1 fifo(ai, ai+1,mi) is defined by the set of

rules {ϕ1, ψ1 ∧ ϕ2, ψ2}.1 To compute a set of rules that defines the composition,
it is not efficient to enumerate all (exponentially many) synchronous subsets of
R0 ∪ R1 and remove all reducible sets. Our tools use an algorithm based on

1 The rules for the composition of two fifo stream constraints has striking similarities
with synchronous region decomposition developed by Proença et al. [24]. Indeed, ϕ1,
ψ1 ∧ ϕ2, and ψ2 correspond to the synchronous regions in the composition of two
buffers. Therefore, rule-based composition generalizes synchronous region decompo-
sition that has been used as a basis for generation of parallel code [15].

Rule-Based Form for Stream Constraints 155

hypergraph transformations to compute the irreducible synchronous sets. The
details of this algorithm fall outside the scope of this paper. Figure 2 shows a
graphical representation of composition fifo2, using hypergraphs. These hyper-
graphs consist of sets of hyperedges (x, F), where x is a variable and F is a set
of rules. Each hyperedge (x, F) in a hypergraph corresponds to a disjunction
x†d(x) ∨ ∨

ρ∈F ρ of the rule-based form in Definition 7. �

7 Complexity

In the worst case, composition R0 ∧R1 of arbitrary sets of rules R0 and R1 may
consists of |R0| × |R1| rules. However, if R0 and R1 are simple, the size of the
composition is bounded by |R0| + |R1|.
Definition 11 (Simple). A set R of rules is simple if and only if free(ρ) ∩
free(ρ′) ∩ P (rbf(R)) = ∅ implies ρ = ρ′, for every ρ, ρ′ ∈ R.

Example 17. By Example 10, the invariant of fifo(a, b,m) is defined by R :=
{a

.= m′ .= 0 ∧ m
.= ∗,m′ .= ∗ ∧ b

.= m
.= 0} as well as R′ := {a

.= m′ .= 0 ∧ b
.=

m
.= ∗, a

.= m′ .= ∗ ∧ b
.= m

.= 0}. The set R is simple, while R′ is not. �
Lemma 5. Let R0 and R1 be sets of rules, such that free(R0) ∩ free(R1) ⊆
P (rbf(R0 ∪ R1)), and let S ⊆ R0 ∪ R1 be synchronous. Let GS be a graph with
vertices S and edges ES = {(ρ, ρ′) ∈ S2 | free(ρ)∩free(ρ′)∩P (rbf(R0∪R1)) = ∅}.
If S irreducible, then GS is connected.

Proof. Suppose that GS is disconnected. We find ∅ = S0, S1 ⊆ S, with S0∪S1 =
S, S0 ∩ S1 = ∅ and free(S0) ∩ free(S1) ∩ P (rbf(R0 ∪ R1)) = ∅. We show that
S0 and S1 are synchronous. Let i, j ∈ {0, 1} and x ∈ free(Si) ∩ free(Rj). We
distinguish two cases:

Case 1 (x ∈ free(R1−j)): Then, x ∈ free(R0) ∩ free(R1) ⊆ P (rbf(R0 ∪ R1)).
Since free(S0)∩free(S1)∩P (rbf(R0∪R1)) = ∅, we have x /∈ free(S1−i). Since S is
synchronous, we have x ∈ free(Si)∩ free(Rj) ⊆ free(S)∩ free(Rj) ⊆ free(S ∩Rj).
Hence, we find some ρ ∈ S ∩ Rj , with x ∈ free(ρ). Since x /∈ free(S1−i), we
conclude that ρ ∈ Si ∩ Rj . Thus, x ∈ free(Si ∩ Rj), if x ∈ free(R1−j).

Case 2 (x /∈ free(R1−j)): Since x ∈ free(Si), we find some ρ ∈ Si, with
x ∈ free(ρ). Since x /∈ free(R1−j), we conclude that ρ ∈ Rj . Hence, x ∈ free(ρ) ⊆
free(Si ∩ Rj), if x /∈ free(R1−j).

We conclude in both cases that x ∈ free(ρ) ⊆ free(Si ∩Rj). Hence, free(Si)∩
free(Rj) ⊆ free(Si ∩ Rj), for all i, j ∈ {0, 1}, and we conclude that S0 and
S1 are synchronous. Since S0 = S = S1, we conclude that S is reducible. By
contraposition, we conclude that GS is connected, whenever S is irreducible. �

Lemma 6. Let R0 and R1 be simple sets of rules, with free(R0) ∩ free(R1) ⊆
P (rbf(R0∪R1)), and let S0, S1 ⊆ R0∪R1 be irreducible synchronous. If S0∩S1 =
∅, then S0 = S1.

156 K. Dokter and F. Arbab

Proof. Suppose that S0 ∩ S1 = ∅. Then, there exists some ρ0 ∈ S0 ∩ S1. We
show that Si ⊆ S1−i, for all i ∈ {0, 1}. Let i ∈ {0, 1}, and ρ ∈ Si. By Lemma 5,
we find an undirected path in GSi

from ρ0 to ρ. That is, we find a sequence
ρ0ρ1 · · · ρn ∈ S∗, such that ρn = ρ and (ρi, ρi+1) ∈ ESi

, for all 0 ≤ i < n. We
show by induction on n ≥ 0, that ρn ∈ S1−i. For the base case (n = 0), observe
that ρn = ρ0 ∈ S0 ∩ S1 ⊆ S1−i. For the induction step, suppose that ρn ∈ S1−i.
By construction of GSi

, we find that free(ρn)∩ free(ρn+1)∩P01 = ∅, where P01 =
P (rbf(R0 ∪ R1)). Let j ∈ {0, 1}, such that ρn+1 ∈ Rj . Since ρn ∈ S1−i and S1−i

is synchronous, we have ∅ = free(S1−i) ∩ free(Rj) ∩ P01 = free(S1−i ∩ Rj) ∩ P01.
We find some ρ′ ∈ S1−j ∩ Rj , with free(ρn+1) ∩ free(ρ′) ∩ P01 = ∅. Since Rj is
simple, we have ρn+1 = ρ′ ∈ S1−i, which concludes the proof by induction. It
follows from ρn ∈ S1−i that Si ⊆ S1−i, for all i ∈ {0, 1}, that is, S0 = S1. �

As seen in Lemma 2, the number of clauses in the disjunctive normal form
dnf(R0 ∧ R1) can be exponential in the number of rules |R0 ∧ R1| of the compo-
sition of R0 and R1. However, the following (main) theorem shows the number
of rules required to define

∧
i φi is only linear in k.

Theorem 4. If R0 and R1 are simple sets of rules, and free(R0) ∩ free(R1) ⊆
P (rbf(R0 ∪ R1)), then R0 ∧ R1 is simple and |R0 ∧ R1| ≤ |R0| + |R1|.
Proof. From Lemmas 3 and 6, we find that the irreducible synchronous subsets
partition R0 ∪ R1. We conclude that |R0 ∧ R1| ≤ |R0| + |R1|. We now show
that R0 ∧ R1 is simple. Let ρ0 and ρ1 be rules in R0 ∧ R1, with free(ρ0) ∩
free(ρ1) ∩ P01 = ∅, where P01 = P (rbf(R0 ∪ R1)). By Definition 10, we find, for
all i ∈ {0, 1}, an irreducible synchronous set Si, such that ρi =

∧
ψ∈Si

ψ. Since
free(ρ0)∩free(ρ1)∩P01 = ∅ and free(ρi) = free(Si), for all i ∈ {0, 1}, we find some
x ∈ free(S0)∩free(S1)∩P01. Suppose that x ∈ free(Rj), for some j ∈ {0, 1}. Since
S0 and S1 are synchronous sets, we have x ∈ free(Si) ∩ free(Rj) ⊆ free(Si ∩ Rj),
for all i ∈ {0, 1}. We find, for all i ∈ {0, 1}, some ψi ∈ Si ∩ Rj , such that
x ∈ free(ψi). Hence, free(ψ0) ∩ free(ψ1) ∩ P01 = ∅, and since Rj is simple, we
conclude that ψ0 = ψ1. Therefore, S0∩S1 = ∅, and Lemma 6 shows that S0 = S1

and ρ0 = ρ1. We conclude that R0 ∧ R1 is simple. �

The number of clauses in the disjunctive normal form of direct compositions
of k fifo constraints grows exponentially in k. This typical pattern of a sequence
of queues manifests itself in many other constructions, which causes serious scala-
bility problems (cf., the benchmarks for ‘Alternatork’ in [17, Sect. 7.2]). However,
Theorem 4 shows that rule-based composition of k fifo constraints does not suffer
from scalability issues: by Example 17, the fifo constraint can be defined by a
simple set of rules. The result in Theorem 4, therefore, promises (exponential)
improvement over the classical constraint automaton representation.

Unfortunately, it seems impossible to define any arbitrary stream constraint
by a simple set of rules. Therefore, the rule-based form may still blow up for
certain stream constraints. It seems, however, possible to recognize even more
symmetries (cf., the queue-optimization in [16]) to avoid explosion and obtain
comparable compilation and execution performance for these stream constraints.

Rule-Based Form for Stream Constraints 157

8 Abstraction

We now study how existential quantification of stream constraints operates on
its defining set of rules.

Definition 12 (Abstraction). Hiding a variable x in a set of rules R yields
∃xR := {∃xρ | ρ ∈ R}.

Unfortunately, ∃xR does not always define ∃xφ, for a stream constraint φ
defined by a set of rules R. The following result shows that ∃xR defines ∃xφ if
and only if rbf(∃xR) |= ∃x rbf(R). In this case, we call variable x hidable in R.

It is non-trivial to find a defining set of rules for ∃xφ, if x is not hidable in
R, and we leave this as future work.

Theorem 5. Let R be a set of rules, and let x ∈ X be a variable. Then,
∃x rbf(R) � rbf(∃xR) if and only if rbf(∃xR) |= ∃x rbf(R).

Proof. Trivially, ∃x rbf(R) � rbf(∃xR) implies rbf(∃xR) |= ∃x rbf(R). Con-
versely, suppose that rbf(∃xR) |= ∃x rbf(R). From Lemma 2, it follows that
∃x rbf(R) ≡ ∃xdnf(R). Since existential quantification distributes over disjunc-
tion and ∃xφ ∧ ψ |= ∃xφ ∧ ∃xψ, for all stream constraints φ and ψ, we find

∃xdnf(R) |=
∨

S⊆R

∧

ρ∈S

∃xρ ∧
∧

x	=y∈free(R)\free(S)

y†d(y) ≡ dnf(∃xR).

By Lemma 2, we have ∃x rbf(R) |= rbf(∃xR), and by assumption ∃x rbf(R) ≡
rbf(∃xR). Using Lemma 4, we have degy(∃x rbf(R)) = maxρ∈R degy(∃xρ) =
degy(rbf(∃xR)), for every variable y. We conclude ∃x rbf(R) � rbf(∃xR). �

Example 18. Suppose Data = {0, 1}, which means that the data domain equals
D = {0, 1, ∗}. Let 1 be the constant stream defined as 1(n) = 1, for all n ∈ N.
For i ∈ {0, 1}, consider the set of rules Ri = {x = x, x = yi = i}. Observe
that {x = x, x = yi = i} ⊆ R0 ∪ R1 is synchronous, for all i ∈ {0, 1}. Hence,
x = yi = i ∈ R0 ∧ R1, for all i ∈ {0, 1}. However, for θ = [y0 �→ 0, y1 �→ 1],
we have θ |= ∧

i∈{0,1} ∃x(x = yi = i), while ∃x
∧

i∈{0,1} x = yi = i ≡ ⊥. Thus,
variable x is not hidable from R0 ∧ R1. �

9 Application

In on-going work, we applied the rule-based form to compile protocols (in the
form of Reo connectors) into executable code. Reo is an exogenous coordination
language that models protocols as graph-like structures [1,2]. We recently devel-
oped a textual version of Reo, which we use to design non-trivial protocols [11].
An example of such non-trivial protocol is the Alternatork, where k ≥ 2 is an
integer. Figure 3(a) shows a graphical representation of the Alternatork protocol.

Intuitively, the behavior of the alternator protocol is as follows: The nodes
P1, . . . , Pk accept data from the environment. Node C offer data to the environ-
ment. All other nodes are internal and do not interact with the environment.

158 K. Dokter and F. Arbab

P1 P2 Pk· · ·

· · · C• •

(a) Alternatork

 0

 13

 26

 39

 52

 65

 0 125 250 375 500

se
c

k

(b) Compilation times

Fig. 3. Graphical representation (a) of the Alternatork protocol in [17], for 2 ≤ k ≤ 500,
and its compilation time (b). The dotted red line is produced by the Jongmans’ compiler
(and corresponds to [17, Fig. 11(a)]), and the solid blue line is our compiler. (Color
figure online)

In the first step of the protocol, the Alternatork waits until the environment is
ready to offer data at all nodes P1, . . . , Pk and is ready to accept data from node
C. Only then, the Alternatork transfers the data from Pk to C via a synchronous
channel, and puts the data from Pi in the i-th fifo channel, for all i < k. The
behavior of a synchronous channel is defined by the sync stream constraint in
Example 1. Each fifo channel has buffer capacity of one, and its behavior is
defined by the fifo stream constraint from Example 3. In subsequent steps, the
environment can one-by-one retrieve the data from the fifo channel buffers, until
they are all empty. Then, the protocol cycles back to its initial configuration, and
repeats its behavior. For more details on the Reo language and its semantics, we
refer to [1,2].

As mentioned in the introduction, Jongmans developed a compiler based
on constraint automata [17]. The otherwise stimulating benchmarks presented
in [17] show that Jongmans’ compiler still suffers from state-space explosion.
Figure 3(b) shows the compilation time of the Alternatork protocol for Jongmans’
compiler and ours. Clearly, the compilation time improved drastically and went
from exponential in k to almost linear in k.

Every fifo channel in the Alternatork, except the first, either accepts data from
the environment or accepts data from the previous fifo channel. This choice is
made by the internal node at the input of each fifo channel. Unfortunately,
the behavior of such nodes is not defined in terms of a simple set of rules.
Consequently, we cannot readily apply Theorem 4 to conclude that the number
of rules depends only linearly on k. However, it turns out that Alternatork can
be defined using only k rules: one rule for filling the buffers of all fifo channels,
plus k − 1 rules, one for taking data out of the buffer of each of the k − 1 fifo
channels. This observation explains why our compiler drastically improves upon
Jongmans’ compiler.

Rule-Based Form for Stream Constraints 159

10 Conclusion

We introduce (regular) stream constraints as an alternative to constraint
automata that does not suffer from state space explosions. We define the rule-
based form for stream constraints, and we express composition and abstraction of
constraints in terms of their rule-based forms. For simple sets of rules, composition
of rule-based forms does not suffer from ‘transition space explosions’ either.

We have experimented with a new compiler for protocols using our rule-
based form, which avoids the scalability problems of state- and transition-space
explosions of previous automata-based tools. Our approach still leaves the possi-
bility for transition space explosion for non-simple sets of rules. In the future, we
intend to study symmetries in stream constraints that are not defined by simple
sets of rules. The queue-optimization of Jongmans serves as a good source of
inspiration for exploiting symmetries [16].

The results in this paper are purely theoretical. In on-going work, we show
practical implications of our results by developing a compiler based on stream
constraints. Such a compiler requires an extension to the current theory on
stream constraints: we did not compute the abstraction ∃xR on sets of rules R
wherein variable x is not hidable. Example 11 indicates the existence of situations
where we can compute ∃xR even if x is not hidable, a topic which we leave as
future work.

Acknowledgements. The authors thank Benjamin Lion for his help in developing a
rule-based compiler and for generating Fig. 3(b).

References

1. Arbab, F.: Reo: a channel-based coordination model for component composi-
tion. Math. Struct. Comput. Sci. 14(3), 329–366 (2004). https://doi.org/10.1017/
S0960129504004153

2. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-
4 9

3. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2

4. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02053-7 13

5. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63165-8 199

https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-642-02053-7_13
https://doi.org/10.1007/3-540-63165-8_199

160 K. Dokter and F. Arbab

6. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006).
https://doi.org/10.1016/j.scico.2005.10.008

7. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10ˆ20 states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://
doi.org/10.1016/0890-5401(92)90017-A

9. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011). https://doi.
org/10.1016/j.scico.2010.05.004

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-
1

11. Dokter, K., Arbab, F.: Treo: textual syntax of reo connectors. In: Proceedings of
MeTRiD 2018 (2018, to appear)

12. Ehlers, R.: Minimising deterministic Büchi automata precisely using SAT solving.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 28

13. Jongmans, S.T.Q.: Automata-theoretic protocol programming. Ph.D. thesis, Cen-
trum Wiskunde & Informatica (CWI), Faculty of Science, Leiden University (2016).
http://hdl.handle.net/1887/38223

14. Jongmans, S.-S.T.Q., Arbab, F.: Take Command of Your Constraints! In: Pro-
ceedings of Coordination Models and Languages - 17th IFIP WG 6.1 International
Conference, COORDINATION 2015, Held as Part of the 10th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2015, Grenoble,
France, June 2-4, 2015, pp. 117–132 (2015). https://doi.org/10.1007/978-3-319-
19282-6 8

15. Jongmans, S.T.Q., Arbab, F.: Centralized coordination vs. partially-distributed
coordination with Reo and constraint automata. Sci. Comput. Program. (2017).
http://www.sciencedirect.com/science/article/pii/S0167642317301259

16. Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-based optimization of inter-
action protocols for scalable multicore platforms. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43376-8 5

17. Jongmans, S.T.Q., Kappé, T., Arbab, F.: Constraint automata with memory cells
and their composition. Sci. Comput. Program. 146, 50–86 (2017). https://doi.org/
10.1016/j.scico.2017.03.006

18. Kemper, S.: SAT-based verification for timed component connectors. Sci. Comput.
Program. 77(7–8), 779–798 (2012). https://doi.org/10.1016/j.scico.2011.02.003

19. Klüppelholz, S.: Verification of Branching-Time and Alternating-Time Prop-
erties for Exogenous Coordination Models. Ph.D. thesis, Dresden Uni-
versity of Technology (2012). http://www.qucosa.de/recherche/frontdoor/?tx
slubopus4frontend[id]=8621

20. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007). https://
doi.org/10.1016/j.ic.2007.01.004

21. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/j.scico.2010.05.004
https://doi.org/10.1016/j.scico.2010.05.004
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-14186-7_28
http://hdl.handle.net/1887/38223
https://doi.org/10.1007/978-3-319-19282-6_8
https://doi.org/10.1007/978-3-319-19282-6_8
http://www.sciencedirect.com/science/article/pii/S0167642317301259
https://doi.org/10.1007/978-3-662-43376-8_5
https://doi.org/10.1016/j.scico.2017.03.006
https://doi.org/10.1016/j.scico.2017.03.006
https://doi.org/10.1016/j.scico.2011.02.003
http://www.qucosa.de/recherche/frontdoor/?tx_slubopus4frontend[id]=8621
http://www.qucosa.de/recherche/frontdoor/?tx_slubopus4frontend[id]=8621
https://doi.org/10.1016/j.ic.2007.01.004
https://doi.org/10.1016/j.ic.2007.01.004

Rule-Based Form for Stream Constraints 161

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11–13 January 1989, pp. 179–190. ACM Press
(1989). http://doi.acm.org/10.1145/75277.75293

23. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, 22–24 October 1990, vol. II, pp. 746–757. IEEE Computer Society (1990).
https://doi.org/10.1109/FSCS.1990.89597

24. Proença, J., Clarke, D., de Vink, E.P., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: Ossowski, S., Lecca, P. (eds.) Proceedings
of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, 26–
30 March 2012, pp. 1510–1515. ACM (2012). http://doi.acm.org/10.1145/2245276.
2232017

25. Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduc-
tion). Electr. Notes Theor. Comput. Sci. 45, 358–423 (2001). https://doi.org/10.
1016/S1571-0661(04)80972-1

http://doi.acm.org/10.1145/75277.75293
https://doi.org/10.1109/FSCS.1990.89597
http://doi.acm.org/10.1145/2245276.2232017
http://doi.acm.org/10.1145/2245276.2232017
https://doi.org/10.1016/S1571-0661(04)80972-1
https://doi.org/10.1016/S1571-0661(04)80972-1

	Rule-Based Form for Stream Constraints
	1 Introduction
	2 Syntax and Semantics
	3 Regular Constraints
	4 Reflexive Constraints
	5 Rule-Based Form
	6 Composition
	7 Complexity
	8 Abstraction
	9 Application
	10 Conclusion
	References

