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Abstract

Background: Proteins, individual cells, and cell populations denote different levels of an organizational hierarchy,

each of which with its own dynamics. Multi-level modeling is concerned with describing a system at these

different levels and relating their dynamics. Rule-based modeling has increasingly attracted attention due to

enabling a concise and compact description of biochemical systems. In addition, it allows different methods for

model analysis, since more than one semantics can be defined for the same syntax.

Results: Multi-level modeling implies the hierarchical nesting of model entities and explicit support for downward

and upward causation between different levels. Concepts to support multi-level modeling in a rule-based language

are identified. To those belong rule schemata, hierarchical nesting of species, assigning attributes and solutions to

species at each level and preserving content of nested species while applying rules. Further necessities are the

ability to apply rules and flexibly define reaction rate kinetics and constraints on nested species as well as species

that are nested within others. An example model is presented that analyses the interplay of an intracellular control

circuit with states at cell level, its relation to cell division, and connections to intercellular communication within a

population of cells. The example is described in ML-Rules - a rule-based multi-level approach that has been

realized within the plug-in-based modeling and simulation framework JAMES II.

Conclusions: Rule-based languages are a suitable starting point for developing a concise and compact language

for multi-level modeling of cell biological systems. The combination of nesting species, assigning attributes, and

constraining reactions according to these attributes is crucial in achieving the desired expressiveness. Rule

schemata allow a concise and compact description of complex models. As a result, the presented approach

facilitates developing and maintaining multi-level models that, for instance, interrelate intracellular and intercellular

dynamics.

Background

In computational modeling of cell biological processes, a

formal representation, i.e. a model, of the dynamics of the

system under study is the central subject of investigations.

Cell biological models typically focus on the processes of

molecules like proteins and small chemicals. However, in

addition, dynamics at cell level, e.g. proliferation and dif-

ferentiation of stem cells, and cell-cell interaction, influ-

ence these intracellular dynamics as well, just like such

high-level dynamics are influenced by processes at the

molecular level. This hierarchical organization and the

causalities between different levels, i.e. from the lower to

the upper (upward causation) and vice versa (downward

causation), are universal characteristics of biological sys-

tems [1,2]. Hence, multi-levelness has been identified to

be an important and general principle of systems biology

[3]. Depending on the question that shall be pursued with

the model, capturing processes that happen at different

levels, e.g. proteins, individual cells, and cell populations,

and their interrelations within the model is of relevance

[4]. The question is how can this multi-levelness be sup-

ported by modeling methodologies? We will pursue this

question in the context of rule-based modeling.

Rule-based modeling

In the past years, many different modeling languages

have been introduced to support modelers in their task,

for example [5-8]. The idea is to write down a model not

directly mathematically, like in ordinary differential
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equations (ODEs) or stochastic processes, but in terms of

a tailor-made syntax. A semantics is then provided that

bridges the gap between what is written and the mathe-

matical definition of its computation. A carefully

designed syntax can increase the accessibility of models

for discussion and presentation, especially for domain

experts that are not extensively familiar with modeling

and the underlying mathematical formalism. Formal

modeling languages can also extend the flexibility in the

choice of methods for model analysis, since more than

one semantics can be defined for the same syntax (see

[9-12] for some examples).

Rule-based modeling languages use the notation of

chemical reaction equations (or very similar representa-

tions), which denote a natural choice of syntax to model

cell biological systems. Consider, for example, a simple

reversible process of dimerization as it occurs in many

signaling pathways [13,14]. It can be described by the two

chemical species Monomer and Dimer and the following

reversible reaction, where kf and kr are the respective rate

constants for the forward and backward reactions:

Monomer + Monomer
kf

⇋
kr

Dimer

Chemical solutions, i.e. mappings from species to con-

centrations or alternatively to their discrete integer

amounts, describe a model’s state. A formal semantics

can then be defined as mapping of chemical solutions

and reactions to, for example, stochastic processes or

ODEs [11,15].

Many rule-based approaches, for instance [15-17], allow

to describe species with attributes as well as rules with

reactant patterns, i.e. by specifying structured molecules

and rule schemata they allow to model basic reactions as

an alternative to the entire network of all possible chemi-

cal species and reactions. Thus, due to rule schemata,

complexity - in terms of the number of required rules -

can be significantly reduced [18].

Let us illustrate this with the help of a simple example.

Proteins, in particular those involved in signaling path-

ways, often show various sites for binding other mole-

cules. Furthermore, modifications like phosphorylation

or methylation at diverse sites might determine the abil-

ity for binding other molecules and thus influence the

interaction pattern of a protein. Hence, combinatorial

explosion easily leads to very complex network models

with hundreds or even thousands of species and reac-

tions. Consider a system of ten interacting proteins. One

of them is a large scaffolding protein that might reversi-

bly bind each of the other nine proteins at nine distinct

sites. We assume each of the nine binding reactions to be

independent from other bindings. This at first view quite

simple model requires to define 521 (2n + n with n = 9)

molecular species, i.e. distinct combinations of bindings,

and 4608 reactions. Attributes and rule schemata help to

deal with the system’s complexity by specifying only the

basic molecules and reactions. As the binding reactions

are assumed to be independent from each other, each of

them may be described individually without taking the

state of other binding sites into account. By omitting

such irrelevant information, one rule might then be

translated into multiple basic reactions of a large network

by which the model is kept small and manageable. Hence,

a rule-based modeling language like BioNetGen [11]

allows to model the above system by specifying a set of

only ten molecules and nine reversible rule schemata

instead of 521 molecular species and 4608 reactions. For

a more comprehensive review of rule-based modeling

and its advantages for formal descriptions of signal trans-

duction pathways, we would like to refer to [18].

Summing up, due to schematic rules, the complexity of

a model may be effectively reduced and an intuitive mod-

eling metaphor along the lines of well-known chemical

reaction equations facilitates the process of modeling and

the accessibility of models. Consequently, the number of

rule-based approaches to describe biochemical reactions

has increased during the last years, e.g. [8,11,15,16], and

also an increasing number of publications can be

observed that utilize rule-based languages for concrete

modeling studies, e.g. [19-22].

In this paper, we identify concepts for supporting rule-

based multi-level modeling. We show a realization of

these concepts as part of ML-Rules, a modeling and

simulation approach we developed. Thereby, we start

with concepts that nearly all current state of the art rule-

based approaches support to successively approach con-

cepts that are obviously related to multi-levelness, i.e.

nesting. Thereafter, an example in which intracellular

and intercellular dynamics are combined will illuminate

the role that each of these concepts play in supporting

multi-level modeling. Finally, to complete the results and

discussion part of the paper, related work will be revisited

to discuss which of the identified concepts are already

supported.

Results and Discussion

Overview of Concepts

A very brief introduction to rule-based modeling is already

given in the previous background section. In the following,

we will focus on the concepts we use in our rule-based

multi-level approach (ML-Rules). Their respective role in

supporting multi-level modeling will be shown in the sub-

sequent example model.

For first studies, we base ML-Rules on continuous time

Markov chains (CTMCs). The semantics is discrete popu-

lation-based, i.e. we work with natural copy numbers of

identical species instead of real valued concentrations. The

reason for a stochastic semantics lies in the observation
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that at higher levels of organization (like cells) no longer

abundant numbers will be able to balance fluctuations as

can be often observed at lower levels, e.g. proteins that are

involved in metabolic pathways. And also when looking at

levels further down in the hierarchy, e.g. gene regulatory

processes, stochastic events may play a crucial role due to

low copy numbers of involved species. Hence, stochasticity

is often an essential feature for multi-level modeling of cell

biological systems [23]. However, it should be noted that

stochasticity is not necessarily constrained to CTMCs, as

sometimes at higher levels other than exponential time

delays are required, e.g. normal distributions [24].

Species, attributes, and solutions

The basic building blocks of ML-Rules models are called

species which may represent any object of interest, e.g.

small chemicals, macro-molecules like proteins, or mem-

brane bound cellular compartments. Each species has a

name, e.g. A, and each name has a fixed arity ar Î N0

that specifies the number of attributes of a species. Attri-

butes are not restricted to a finite set of values and they

may be of any kind of numerical value and textual string.

For convention throughout this paper, species names

start with a capital letter and attributes are written in a

bold font type within parentheses behind the name. Par-

entheses are omitted if ar = 0. For example, A, A(1), A

(0,1.67), and A(green,-15, true) are valid examples for a

species A with ar(A) = 0, 1, 2, and 3 respectively. How-

ever, these examples are invalid when two or more of

them are being used within the same model, as the arity

of a species name is fixed and therefore may not vary

between species with identical names, i.e. A in this case.

Each defined combination of attributes is a distinct spe-

cies, i.e. A(1, 1) and A(1, 2) share the same name but are

different species.

A solution is a multiset of species, i.e. can be either a

single species or a composition of multiple sub-solutions.

The ‘+’ is the delimiter symbol for composing multiple

solutions and a solution can be also an empty set ∅. We

write nA with n Î N0 to refer to a solution which is com-

posed of n identical copies of A (n is omitted if n = 1).

For example, [2 A(1) + 4A(2) + B] describes a solution

consisting of three different species with an amount of 2,

4, and 1 respectively.

Reaction rules, rule schemata, and their instantiation

Reaction rules describe the dynamics of a model, i.e.

they define how certain species are removed from or

added to a given solution. When firing, a rule substi-

tutes a reactant solution S by a product solution S’. The

general syntax follows the notation of chemical reaction

equations and the majority of other rule-based modeling

languages, e.g. [8,9,16,17,25], namely reactants are writ-

ten on the left-hand side and products on the right-

hand side of an intermediate right-headed arrow:

S → S′.

For simplicity reasons, our syntax only allows for uni-

directional rules. Thus, two complementary rules have

to be defined for modeling reversible reactions. How-

ever, it would be straightforward to extend the syntax to

reversible reaction rules if needed.

Rule schemata are a notational convenience, which

uses variables to bind attributes of reactants. By doing so,

each rule schema may encode for several rule instantia-

tions, i.e. reactions. Let us take a reaction which converts

a species A into another species B. Consider the situation,

that A is an attributed species with an arity ar(A) = 1, but

the attribute is of no interest for its reaction to B. With-

out schematic rules, we would need to specify one rule

for each possible value of the attribute of A, which can be

tedious and error-prone.

Moreover, as we do not fix the set of attribute values,

i.e. the state space might be infinite, it is impossible to

define each potential reaction. Therefore, instead of spe-

cifying rules with the defined reactant species, we define

a reactant pattern by inserting a variable x for the attri-

bute of A:

A(x) → B.

For convention, we write variables in a non-bold font

type and starting with a lower case letter throughout

this paper. Mapping the above rule schema to the solu-

tion [2 A(1) + 4A(2)] evaluates to the following two rule

instantiations:

A(1) → B and A(2) → B.

Besides such very simple variants, rule schemata can be

also defined by employing expressions to specify attri-

butes. For instance, a reactant pattern A(x) + A(2x)

matches every solution where at least two As exist, one of

which attribute’s value is exactly twice the attribute’s

value of the other one. Expressions can be also used to

specify the attribute of the products, e.g. the rule A(x) ®

B(2x) applied to a solution [A(2) + B(3)] would lead to [B

(3) + B(4)]. Please note, arbitrary functions can be used

for expressions (see also the section on implementation).

A further reduction in the number of rules can be

achieved by using attributes to represent links between

species, e.g. to model noncovalent bonds within protein

complexes. By doing so, individual subunits of a protein

complex can be preserved instead of specifying numerous

species names, each of which would reflect a different

combination of subunit states and bindings (recall the

scaffold protein example in the background). Entirely new

values can be created with the help of the ν-operator:

A(F) + B(F) → (νx)A(x) + B(x).
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F is a constant that denotes a free binding site and νx

creates a fingerprint-like unique value which does not

already occur in the current model state. It is assigned to

the products on the right hand side of the rule via vari-

able x, i.e. in an instantiation of the rule, x is replaced by

a newly created unique value which serves as identifier

for this particular binding. This method for representing

linkage of species is identical to private channels in the

π-calculus [6,26] and allows to model molecular com-

plexes similar as can be done with rule-based languages

that have explicit notions of complexation, e.g. [16,17].

Moreover, once created, unique values can be used in a

highly flexible manner, e.g. to describe bonds shared by

more than two binding partners (like hyperedges in a

graph) or across level boundaries (the concept of multiple

levels will be introduced below). Species can also be

marked with an unique indentifier to observe the

dynamics of individual entities.

However, note that the approach also has some draw-

backs compared to explicit notions of molecular bind-

ings: first of all, without profound knowledge or decent

annotation of the model, it might be difficult to find out

whether certain attributes of species represent binding

sites. The approach would also allow to reset just one

species to its unbound state while its former binding

partner remains unchanged. Therefore, the modeler is

responsible for describing a correct model without such

unrealistic dynamics. Furthermore, at least in the current

implementation of ML-Rules, using identifiers for model-

ing links between species may slow down the simulation

as the number of distinct species increases and therefore

matching reactants may take significantly more time (see

section on implementation).

Kinetic rates and constraints

Each reaction rule is assigned a stochastic kinetic

rate r ∈ R
+
0:

S
r

→ S′.

The higher the rate of a rule, the more likely the rule

will fire at a time calculated according to this rate. The

kinetic rate can be a simple constant numerical value, for

example, to describe a chemical reaction with constant

speed, i.e. a zeroth-order reaction whose speed is inde-

pendent of the amount of any chemical species. However,

most reaction rules that describe biological systems need

to take the amount of one or more reactant species into

account for specifying correct system dynamics. Probably

in most cases the kinetics of a rule follows the law of

mass action, but in systems biology alternative kinetics, e.

g. Michaelis-Menten kinetics for enzymatic reactions and

Hill functions for describing cooperativity, are also fre-

quently applied [27]. That is why we allow for arbitrary

reaction rates using mathematical expressions. Any kind

of mathematical expression is allowed that evaluates to a

non-negative numerical value, see also [28].

Species identifier are used to refer to the amount of

species in a given solution. We assign reactant A a spe-

cies identifier a, i.e. A(...)a, which evaluates to the amount

of species A(...) in the solution. Assuming mass action

kinetics, the rate of a first-order reaction A ® B with rate

constant k can then be correctly described as follows:

A(x)a k.a
→ B.

The evaluation of its mapping to the solution [2A(1) +

4A(2)] leads to two rule instantiations with different

propensities:

A(1)
k.2
→ B and A(2)

k.4
→ B.

Like in the attributed π-calculus [29] and React(C)

[15], reaction constraints allow for more powerful con-

trol on the dynamics of a model.

For example, we can constrain the preceding rule to

only fire when the amount of A(x) exceeded a certain

threshold value T:

A(x)a if a>T then k.a else 0
−−−−−−−−−−−−−−→ B.

If the amount of A(x) in a given solution does not

exceed T, the if-then-else expression evaluates to a

kinetic rate of 0, which determines that the rule will not

fire.

To enhance the readability of rules with such con-

straints, we use an extra notation. Instead of a complex

rate consisting of the expression if e then r else 0,

we write the conditional expression e below the arrow

that is assigned the basic kinetic rate r:

S
r

→
e

S′ � S
if e then r else 0
−−−−−−−−−−−→ S′

The preceding example now looks as follows:

A(x)a k.a
−→
a > T

B.

Multi-level rule schemata

The features listed so far are not new. Species with attri-

butes and schematic rules are standard features that can

be found in nearly every rule-based language in the field

of systems biology, e.g. [11,15,16]. The requirement for

modeling biological systems with rate kinetics different

from those following the law of mass action seems to be

also widely accepted nowadays. BIOCHAM [9], LBS [8],

and React(C) [15], for example, support arbitrary reaction

rates. Also recent developments for the BioNetGen lan-

guage now allow to specify user-defined rate law func-

tions, and moreover, modeling of conditional expressions

to support the construction of logical sequences of
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control [30]. All together, they will play a role in support-

ing multi-level modeling.

However, a truly salient feature of multi-level model-

ing are hierarchies. Hierarchical structuring facilitates

modeling of complex biological systems by defining

them in terms of their components and the interactions

that exist between them. Hierarchies help to structure

the knowledge about a given system [31]. In addition,

they allow to describe multiple nested solutions similar

to the multiple separated reaction compartments that

can be found in biological systems, e.g. cells, organelles,

and vesicles.

To address the need for hierarchical model structures,

we introduce the concept of nested species. That means

species may not only be characterized by names and their

attributes, but also by a potentially enclosed solution of

further species. Let us give an example where A, B, C, D,

and E denote different names of species. Solution S con-

sists of two species A and B of which both contain solu-

tions with further species on their own. Species A

consists of a sub-solution SA = [C + 2 D[SD]], i.e. a single

atomic species C and a nested species of type D[SD] with

an amount of two and a sub-solution SD = [E]. Equally to

SD, the sub-solution enclosed by B consists also of spe-

cies with name E, but here with an amount of three: SB =

[3E]. The whole nested solution can be written as:

S = [A [C + 2 D [E]] + B [3E]] .

To avoid confusion by too many brackets and to get a

quick visual impression of the nesting, in the following

we will use a graphical representation of nested nodes:

Please note that nested species may still have assigned

attributes (see also Figure 1A and 1B). In the textual syn-

tax, attributes and the enclosed solution are embraced by

different kinds of brackets, i.e. A(0)[SA] denotes the exis-

tence of an attribute 0 for the above nested species A.

The graphical syntax is straightforward:

The ability to assign attributes to nested species allows

to equip each hierarchical level with an own state that is

not only determined by the enclosed species. Such high-

level states are of particular interest for multi-level mod-

eling as they allow to describe dynamic behavior similar

Figure 1 Nested model structure. Illustration of the hierarchical

modeling concept. Different shapes of nodes correspond to

different species names while attributes are color-coded. Stacking of

identical nodes depicts the amount of a certain species. (A)

Graphical representation of a hierarchical model structure via nested

nodes. (B) The same model structure alternatively depicted as a

directed tree graph. Please note that besides atomic species

(triangles and diamonds) also species containing a sub-solution

(squares) might be attributed so that each species at each level

might has its own state. (C) Examples of matching different reactant

patterns within the hierarchical model structure. The rainbow

shadings in the second and third pattern illustrate variable instead

of defined colors, i.e. attributes.
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to observations performed at different levels of organiza-

tion. The later example model will illustrate this in

detail.

A nested hierarchical model structure opens the door

for reducing model complexity not only by specifying

rule schemata as described above, i.e. by specifying reac-

tant species with variables instead of defined attribute

values. The number of rules needed may be also

reduced by applying rules to multiple solutions, so that

reactants can be matched at different levels and within

solutions enclosed by different species types (Figure 1C).

However, this has an important consequence for the

semantics. When applying rules to solutions and calculat-

ing the propensity of a reaction, one needs to take the

context of this application into account, which is given

by the amount of species at higher levels (Figure 2). The

propensity of the rule has to be adjusted according to the

whole hierarchy above, as a reaction is more likely to

happen the more solutions exist it could potentially take

place in.

To let different levels of a hierarchical model interact

with each other, a rule may involve nested reactants and/

or products. Such rules look pretty much the same as

rules of flat models do. In principle, also the enumeration

of such rules works similar. For example, the rule

describes a reaction from A(0) to A(1) under the condi-

tion that A encloses at least one species C. Please note,

this rule may also match species where A(0) contains

further species in addition to the C (no matter which and

how many), for instance like in the previous example.

However, such a sub-solution gets lost when the rule

fires, as the product species contains just exactly one C.

The same holds true for a potential sub-solution of C;

the reactant pattern matches every species where a C is

part of a sub-solution of A(0), but it says nothing about a

sub-solution of C. Hence, if the reactant species C would

contain further species, they would get lost as well.

To prevent this from happening, we would need to

specify this explicitly, by binding the solution to the

variable x, defining a guard for the reaction, i.e. C Î x,

and inserting x into the product:

A(0)[x]a k.a
−→
C∈x

A(1) [x] .

As it is often the case that we want to preserve the rest

of the solution, we provide a specific rule schema for this

case where a variable binds to the entire rest of a solution

(the dashed rectangle in the following example) and can

be used to reinsert this solution on the product side of the

rule. The above rule can be specified now as:

Such bound solutions can be freely reused for defining

the products, i.e. migration, copying, and merging of solu-

tions are easy tasks. The problem of splitting is another

matter, for which specific operations on solutions are

needed, e.g. to split a solution equally into two new solu-

tions. Whereas ML-Rules and its current simulator allow

the use of arbitrary functions on attributes, the application

of functions on solutions is not yet supported. However,

an integration into ML-Rules requires only slight adapta-

tions of the syntax and semantics and is therefore planned

for the near future.

Later, we will provide a more detailed explanation of our

multi-level approach based on a realistic biological system.

With the help of this example, we will also motivate again

Figure 2 Hierarchy-dependent instantiation of rules. Due to

population-based aggregation of species, the propensity (firing rate)

of a rule instantiation is not only determined by the actual rate of a

schematic rule (here the amount of green triangles and blue

diamonds) but it is also context dependent, i.e. it is proportional to

the amount of enclosing species. Therefore, enumeration of rule

instantiations requires to calculate the propensity p dependent on

the whole hierarchy above the matched reactant species. For

example, the propensity of the rightmost matching is proportional

to 2·2·1·2 = 8, where the first two factors correspond to the amount

of triangles and diamonds, the third describes the single enclosing

rectangle, and the last factor corresponds to the amount of the

outermost enclosing species (light blue with round corners).
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the need for multi-level modeling and illustrate how to

realize upward and downward causation.

Implementation

The modeling and simulation environment for ML-Rules

has been realized within the modeling and simulation fra-

mework JAMES II [32]. Figure 3A gives a very brief over-

view of the JAMES II framework, which consists of a core

and a large set of different plug-ins. For ML-Rules, a set

of new plug-ins has been implemented: an editor that

allows to create and edit ML-Rules models supporting

syntax highlighting (including syntactical and semantical

consistency checks) and a simulator which is based on

the Direct Reaction Method of Gillespie [33] and thus

implements an exact stochastic simulation algorithm

(SSA). In addition, plug-ins for model reading and writ-

ing and for observing the model have been realized (see

also Figure 3B). These are the typical plug-ins that have

to be implemented if a new formalism shall be added to

JAMES II. Other plug-ins can simply be reused, e.g. for

random number generation and event queues. Also plug-

ins for (parallel) optimization, validation, trace analysis,

data storage, etc. can be reused to support the execution

of entire simulation studies [34].

Below we provide a basic description of the simulation

algorithm. Please note that in JAMES II simulation algo-

rithms are not designed as monolithic blocks. By using

plug-ins, alternative sub-algorithms can be easily exploited

and combined. It has been shown that the performance

and suitability of algorithms depend to a large degree on

the concrete model, that details (i.e. sub-algorithms) mat-

ter, and that a suitable configuration can significantly

speed up simulation [35]. In combination with methods

that help to automatically select and configure simulators

on demand, this type of simulation design supports a high

flexibility for executing multi-level models. Therefore, the

simulator is structured as follows.

Require: S, rules

for ru Î rules do

rts ¬ MatchReactants(ru, S)

rcts ¬ rcts | CreateReactions(ru, rts, S)

end for

for r Î rcts do

rprop ¬ CalcPropensity(r)

end for

reaction ¬ SSA(rcts)

for reactant Î reaction do

RemoveReactant(reactant)

end for

for product Î reaction do

PutProduct(product)

end for

MatchReactants selects all matching reactants of the

selected rule schema ru. The next step is to instantiate

the rule schema ru and grouping equivalent rule

instances by calculating the reactions rtcs. Now the pro-

pensity is calculated for each reaction r. Please note, as

now the number of reactants (that apply) is part of the

reaction, calculating the propensity is only dependent on

Figure 3 Architecture of ML-Rules and the JAMES II framework. (A) Basic overview of the JAMES II modeling and simulation framework

architecture. The core defines a basic set of plug-in types and plug-ins needed to run experiments and also provides a rich set of tools reusable

in other plug-ins. Also part of the core, the registry is responsible for managing plug-in types and plug-ins, and the experimentation layer carries

out simulation experiments, e.g. simple simulation runs, parameter scans, optimizations and sensitivity analyses. (B) Simplified overview of the

main ML-Rules plug-ins and how they are interconnected. Arrows show flow of data.
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r. Also, all information needed is directly available for

each product in r, such as bound attribute values or solu-

tions that are used on the rule’s product side. After that

an SSA is invoked. We have so far integrated the Direct

Reaction Method of Gillespie. The selected reaction is

executed by removing reactants and adding products.

The complexity of MatchReactants for matching a

reactant is O
(

n + mk
)

where n denotes the number of

species in the solution, m the number of species in one

context and k the depth of nesting of the reactant. The

complexity of CreateReactions is O(ln) where l is the

number of reactants of a rule. Some optimizations are

employed, e.g. to restrict the search space for matching

reactants. For example, when evaluating a rule A(4) ® B,

all As whose attribute does not equal 4 will not be con-

sidered for matching the reactants of a rule to a solution.

However, most of the simulation efforts still goes into

calculating rts, i.e. matching the rules (coarsely 50% of

the overall calculation). Therefore, current efforts are

dedicated towards developing alternative approaches for

matching, e.g. integrating special index methods. To

avoid time-consuming instantiation of all possible reac-

tions, an alternative kinetic Monte Carlo simulation

approach [30,36,37] based on individual particles rather

than populations of identical species, might also be worth

to explore for simulating ML-Rules models.

With CalcPropensity the propensity of each generated

reaction is calculated using the specified expression and

taking the context of the matched solution into account.

This means that the propensity is adjusted according to

the amount of possible contexts the matched solution is

part of (see previous Section and Figure 2). Based on Java

reflection, currently functions provided by Java can be

used within the expressions. The integration of a library of

own functions as a plug-in will be realized in the future.

Maintaining the consistency of populations when

executing RemoveReactant and PutProduct is a crucial

part during simulation and requires, given the nested spe-

cies, special attention. This means whenever a species s is

removed from a solution Ssub from the overall solution S,

the populations within S need to be updated accordingly.

Sometimes it might not be enough to just decrease the

population value of s in Ssub, because by removing s from

Ssub, Ssub becomes a different species which means it needs

to be split from the previous population it was attached to

and needs to be merged with an already existing popula-

tion of that species (see example below). This actually has

to be carried on upwards the hierarchy until no splitting

and merging is needed anymore. The following example

shows splitting and merging. Given a solution:

S = [2A [2B] + 2A [3B]] .

Removing one B from A[3B], would first lead to a split

of the population of A[3B] and result in the solution

S = [2A [2B] + A [3B] + A [2B]] .

where A[2B] has to be merged with the already existing

population of 2A[2B], so the correct solution will be

S = [3A [2B] + A [3B]] .

The current simulator proceeds basically as a discrete

event simulator. Therefore, only slight adaptations are

required to support also events that are not distributed

exponentially. This feature is important as many biological

phenomena at higher levels are not necessarily exponen-

tially distributed, as argued in [38]. Also, as multi-level

models operate often at different temporal scales, the cal-

culation effort for simulating these models in a pure dis-

crete event manner might easily become prohibitive.

Therefore, hybrid simulation approaches, e.g. [23,39], shall

be exploited in the future.

With additional file 1 we provide a prototypical demo

software tool comprising a model editor, simulator, a

rudimentary line chart visualization, and simulation data

export. The following examples as well as additional

example models can be loaded and demonstrate the

concrete syntax of ML-Rules. Its source code will be

made available under an open source licence as part of

a following JAMES II release at http://www.jamesii.org.

Example model

We would like to motivate and illustrate our multi-level

approach with an abstract multicellular model of the fis-

sion yeast (Schizosaccharomyces pombe) cell division and

mating type switching in dependence of an intracellular

control circuit. This intracellular regulatory network of

interacting proteins in turn depends on the size of the

cell and specific pheromone molecules. To prepare for

mating, fission yeast cells may secrete pheromones that

cause an arrest of the division cycle of cells with opposite

mating type. So, the different parts of the model at multi-

ple levels are highly interconnected and influence each

other in various ways (see Figure 4). In addition, to inves-

tigate the relation between pheromone signaling and the

location of cells, the model comprises also some simple

spatial dynamics that cover pheromone diffusion and cell

displacement from crowded areas.

The presented model illuminates the importance to con-

sider different levels of organization for modeling certain

phenomena in cell biology and shows the previously intro-

duced concepts at work. Particularly the extension of the

model from a single cell to multiple cells illuminates the

benefits of the presented rule-based multi-level approach.

Maus et al. BMC Systems Biology 2011, 5:166

http://www.biomedcentral.com/1752-0509/5/166

Page 8 of 20

http://www.jamesii.org


As the model is not intended to be a contribution for

fission yeast science, it may not be sound in each aspect

and may not reflect the current level of knowledge

about this system. Also certain parameters are simply

estimated. However, we payed attention to presenting a

realistic case study that shows how a rule-based multi-

level approach like ML-Rules facilitates modeling of

such systems.

Cell division cycle

The eurkaryotic cell cycle consists of four distinct

phases: G1, S, G2, and M. During the first three phases,

a cell is increasing in size and its DNA is replicated. At

the end of the cycle, a cell enters the M phase (mitosis)

and finally divides into two daughter (or sibling) cells.

These major events of the cell division cycle are con-

troled by certain proteins and the underlying regulation

processes in fission yeast have been extensively studied

[40-45].

In our example model, the regulation at protein level is

based on an early model by Tyson [46]. This determinis-

tic continuous model consists of two proteins, cyclin and

cdc2, that form a complex called maturation promoting

factor (MPF) which in turn controls traversion through

the cell cycle. Today, there exist much more detailed

models of this system than the relatively simple Tyson

model, e.g. [43,47-49]. However, the purpose here is not

to provide the most accurate model of yeast cell cycle

control but to show why multi-level modeling is impor-

tant for studying certain aspects of cell division and how

it can be realized. In this sense, the Tyson model is well

suited as it is simple but at the same time captures the

essential dynamics.

Most reactions of this model follow the law of mass

action and we do not discuss each rule in detail here.

Instead, we would like to refer to the supplementary

material where the whole model can be found (additional

file 2). The interesting reactions from our point of view

are the activation of MPF and the subsequent dissocia-

tion of this complex. Activation of inactive MPF, i.e. the

dephosphorylation of its cdc2 subunit, is assumed to be

an autocatalytic process:

The higher the amount of activated MPF (MA), the

higher is the activation rate; Dtot is a model parameter

that denotes the total amount of cdc2.

Tyson identified a region for two parameters (the

rate constants for autocatalytic MPF activation and its

dissociation) where regular cycle oscillations with

bursts of the amount of the inactive and activated

MPF complex can be observed. Although comprising

fluctuations due to the stochastic processes, the intra-

cellular reactions of our example model show similar

Figure 4 Schematic description of the example model. The

example model comprises three distinct hierarchical levels. At the

bottom level, interacting proteins describe the inctracellular

dynamics of a fission yeast cell (reactions 1-5). The molecular

species and reactions are similar to those described in [46]. The

intermediate level describes dynamics of entire cell states, i.e. cell

growth (6), cell cycle phase transitions (7-9), and division including

mating type switching (9). In addition, cells may secrete pheromone

molecules (P-factor and M-factor) to the extracellular medium (10).

Various inter-level causalities between the intermediate and the

bottom level influence processes both in an upward (7-9) and

downward causation manner (4,11-12). The top level discretizes the

environment of cells into multiple fictive compartments in order to

study spatial dynamics of pheromone diffusion and displacement of

cells (13-14). Abbreviations used for naming the species in the

model: Y (cyclin), YP (phosphorylated cyclin), D (cdc2), MI (inactive

MPF), MA (active MPF), C (fission yeast cell), FP (P-factor pheromone),

FM (M-factor pheromone), G (voxel of spatial grid).
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oscillatory behavior (Figure 5A). The period of roughly

30 minutes between two peaks is much shorter than

the mean mass-doubling time of wild type fission yeast

of 116 minutes [50]. To achieve a longer oscillation

period, with increasing cell size, Tyson assumes a dilu-

tion of an enzyme that catalyses the breakage of MPF

into cdc2 and cyclin-P. Therefore, the orginal model

adjusts the rate constant during the cycle so that it is

proportional to exp(-0.693t/Td), where t is the time

and Td the doubling time of cell size. In comparison to

the amount of intracellular proteins, the size (or the

volume) of a cell is a good example for denoting high-

level information at cellular level. Hence, implicitly

downward causation and the multi-levelness of the sys-

tem are taken into account by the Tyson model.

We want to make these multiple levels and their interre-

lation explicit now. Therefore, we introduce an attributed

species name C that describes the cell and its current

volume, i.e. its size. By doing so, we can adjust the rate of

MPF dissociation inside the cell dynamically and individu-

ally for different cell instances:

Please note, unlike cyclin (Y and YP), we do not distin-

guish between phosphorylated and unphosphorylated

cdc2 (D). This is a simplification in accordance with the

original model, as the phosphorylation and dephosphor-

ylation reactions of cdc2 are very fast compared to the

others and thus can be neglected. Please further note,

the constraint (a > 1) ensures that MA will never be

completely degraded, so that there is at least one mole-

cule of activated MPF at any time. This assumption is

needed as otherwise the above rule of MPF activation is

not able to fire when the amount of MA is zero. Alter-

natively, one could introduce an additional cell attribute

that denotes the current amount of enclosed MA and

serves as high-level information to describe the autoca-

talytic reaction:

The only processes that are still missing for complet-

ing the cell cycle dynamics with varying rates of MPF

dissociation, is the growth of a cell, i.e. its volume

increase over time, and the abrupt reduction of the

volume that mimics cell division. Therefore, we discre-

tize growth in volume to be increased by 1/Td with a

rate constant k6 = 1 per minute, where Td is the mean

Figure 5 Cell cycle dynamics of an individual fission yeast cell.

Simulation results of three different cell cycle models. Inactive MPF

is depicted by dark green curves and light green denotes activated

MPF. (A) Stochastic variant of the cell cycle model presented in [46].

Simulation parameters are similar to the parameters that have been

used to produce Figure 3a in [46], i.e. k3 = 180 min-1 and k4 = 0.9

min-1. (B) Model includes downward causation by dynamic

adjustment of the MPF dissociation rate due to an increase of the

cell volume. Parameters are equal to those presented for model 1 in

the additional file 2. (C) Multi-level model comprising of downward

and upward causation. MPF dissociation depends on the cell

volume and at the same time, transitions from one cell cycle phase

to another depends on the intracellular amount of active and

inactive MPF. The entire model as well as initial solution and

parameters can be found in additional file 2, model 1.
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doubling time:

The cell volume here is only a relative value where 1

and 2 denote typical volumes at birth and division

respectively. That is why the above rule for cell growth

is constrained to only fire as long as the volume is

below 2, i.e. the double value of the typical volume at

birth. Consequently, cell division, i.e. halving of the cell’s

volume, happens after the volume exceeded or is equal

to 2:

Please notice that it would be easy to increase the

amount of cells here by putting two cells on the right-

hand side of the rule. Later we extend the model in this

way. However, as the interplay between a high-level

state and processes at lower level is subject of our inter-

est here, we keep the cell number constant and just

mimic cell division by halving the cell volume. At this

stage, the model comprises the intracellular processes

shown in [46] and explicit downward causation where

the state of a cell (its volume) influcences a process at

lower level. However, as Figure 5B depicts, although the

mean oscillation period is longer than before and thus

closer to observed cell cycle durations, now it is highly

variable and still significantly shorter than the mass-

doubling time (Td) of 116 minutes. Moreover, this leads

to nonconformity of active MPA bursts and cell division

times. Hence, to get lifelike oscillatory behavior and to

achieve better accordance between protein peaks and

division time, we need to further extend the model. Let

us therefore take a look on how low-level states influ-

ence dynamics at the cell level, i.e. how intracellular

dynamics trigger high-level events so that the cell tra-

verses through the different cell cycle phases.

The accumulation of inactive MPF, i.e. a complex

where both subunits cyclin and cdc2 are phosphory-

lated, denotes the initiation of DNA synthesis, i.e. inac-

tive MPF controls the transition from G1 to S phase.

Therefore, we first equip the cell C with an additional

attribute for the current phase of the cell cycle to model

such transitions. As DNA replication (S phase) takes a

rather constant time for each cell cycle and we are more

interested in the control of the G1 and G2 checkpoints,

we combine the S and G2 phases to a single phase S/G2.

We then define a rule for the G1-to-S/G2 transition that

is constrained to only fire if the amount of MI exceeds a

certain threshold value t7:

Similarly, the transition from G2 to M phase is

guarded by a threshold t8 of the amount of active MPF:

The last transition of the cell cycle changes the phase

from M back to G1, and in reality, at the same time the

cell splits into two daughter cells. However, we are still

interested in the interplay between high-level and low-

level states only. Thus, we keep the amount of cells con-

stant but reduce the volume of the cell like we’ve

already seen above. The division occurs after active

MPF falls below a second threshold value t9 which is

much lower than t8:

In all three cases of phase transitions, the content of

the cell remains the same as the only change governed

by the rules is dedicated to the cell cycle phases. The

rules describe typical examples of upward causation, i.e.

low-level states (the amount of certain protein com-

plexes) determine dynamics at higher levels (the cell).

They also show the necessity for flexible reaction con-

straints to model inter-level causalities.

Now that the model has defined states for the differ-

ent cell cycle phases, we do not have to restrict the cell

to grow in size until its volume has doubled. Instead, we

allow the cell to grow at any time but not during the M

phase:

Simulation results of this multi-level model show that

the mean period of oscillations is now in accordance

with the mass-doubling time Td (Figure 5C). Cell divi-

sion may happen at volumes larger than 2 and conse-

quently the cell cycle may take more time than Td, but
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if so this has implications for the next cycle. Due to the

unusually large volume at birth, MPA activation occurs

relatively fast and thus the following cycle tends to be a

bit shorter than normal. In this way, upward and down-

ward causation regulates both, the cell cycle duration

and cell size homeostasis.

The results emphasize the role of multiple levels and

their inter-relation in studying phenomena like cell divi-

sion. Therefore, ML-Rules provides nesting of species

and rates with arbitrary kinetics based on constraints.

So far the model appears still to be manageable in other

less expressive modeling approaches. However the next

step, i.e. moving from a single cell model to multicellu-

lar dynamics, illuminates the importance to be able to

express multiple levels and their inter-level causalities

explicitly and flexibly.

Cell division and mating type switching

The unicellular fission yeast may undergo sexual repro-

duction when environmental conditions are getting

poor, e.g. when cells are starving. Different mating types

(P and M) exist enforcing fusion of cells of opposite

types only [51]. The product of fusion is a diploid zygote

which rapidly enters a sporulation process. Later, when

the environmental conditions improve, spores germinate

to spawn haploid cells which then undergo normal asex-

ual proliferation again. The mating type of proliferating

cells switches sporadically when a cell divides. This phe-

nomenon is regulated by rather complex mechanisms at

gene level [52-57]. However, rather stable phenomenolo-

gical patterns of switching can be observed [58]. One

important characteristic is that cells do not only show

one of the two different mating types P or M, but can

be also categorized into cells that are able to switch

their type and those that are not (Figure 6A).

Although comprising multiple levels, the example

model so far describes the dynamics of a single cell

only. In order to model a multicellular system, we

extend the previous cell division rule (cell cycle transi-

tion from M phase to G1) to produce two distinct cells.

At the same time, instead of modeling detailed processes

at genetic level, simple phenomenological alterations of

the cell’s mating type are assigned according to the reg-

ularities depicted in Figure 6A. Therefore, species C is

equipped with two additional attributes:

The above rule describes cell division of an unswitch-

able cell (denoted by the U attribute). The complemen-

tary schema for division of switchable cells looks pretty

much the same and is therefore not shown here. The

only differences affect the last attribute of the reactant (S

instead of U) and the assignment for the mating type of

the unswitchable product cell: the conditional expression

if t = P then M else P is assigned which makes the

rule valid for matching both mating types P and M.

Now that we have introduced multiple instances of

cells (each with potentially own behavior), it becomes

clear that modeling of such systems becomes only viable

due to the ability to specify rule schemata. Otherwise one

would need to specify defined reaction rules for each

potential species, i.e. for each combination of cellular

attributes and intracellular protein amounts. This is

highly impractical for smaller systems with a finite state

Figure 6 Mating type switching. (A) Switching of mating types in a fission yeast cell lineage. Cells of type M are marked with red color, blue

stands for mating type P. The unswitchable and switchable states are denoted by U and S respectively. The figure has been redrawn from [58].

(B) Trajectories of a simulation run with an inital population of 100 unswitchable cells of mating type P. Cells are dying with a rate constant

kdeath = 0.006 min-1. Mass-doubling time Td = 116 min.
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space and impossible for systems like the presented one.

It shows the importance of rule schemata for supporting

multi-level modeling.

The above rule also illustrates the need for binding solu-

tions to variables so that entire solutions can not only be

preserved for the reactant species, but can be treated like

any other variables and thus also be copied and placed

into multiple product species. Unlike the volume of the

dividing cell and similar to the single cell division rule in

the previous section, the cell’s content will not be splitted

and distributed among both daughter cells. The contained

sub-solution will be entirely copied instead, as (according

to the original Tyson model) the total amount of cdc2

protein, i.e. the sum of the amount of species D, MI, and

MA, is assumed to be constant in each cell. However, by

applying specific functions, it would be also possible to

split a solution according certain constraints. An integra-

tion of such functionality into ML-Rules is planned for the

near future.

Mating type switching ensures that - in the long run -

both types are equally present in a population of cells.

An initial population consisting of only one type of cells

nicely shows distinct time points of the first appearance

of cells that comprise other combinations of mating

type and the ability to switch (Figure 6B). Also the cali-

bration to equally distributed cell types after just a few

division cycles can be observed.

Pheromone secretion and response

Besides the restriction to cells of opposite mating types,

conjugation of fission yeast cells is also regulated by diffu-

sible pheromone molecules [59]. When growing in a nitro-

gen-poor environment, cells are starving and begin to

synthesize mating type specific pheromones that are

secreted to the extracellular medium. The pheromone

secreted by cells of mating type P is called P-factor and

M-type cells produce the M-factor pheromone. Fission

yeast cells of different mating type are able to communi-

cate with each other via pheromone molecules. Sensing of

pheromones released by the opposite type causes several

regulation processes that prepare the cells for mating. One

of the main effects is an arrest of the division cycle at the

G1 phase [60]. We would like to extend our cell model by

adding communication via pheromone molecules and the

respective responses so that a G1 arrest can be observed.

At first, we add some simple rules for pheromone

secretion and degradation (diffusion out of the system).

For instance, each cell of mating type M produces the

M-factor pheromone FM:

M-factor molecules may then influence dynamics of

P-type cells in the same solution. Conversely, cells of

mating type P may communicate with M-type cells via

P-factor molecules (FP). In addition to the M-factor,

cells of type M produce and release a P-factor-specific

protease (Sxa2) which lowers the effect that P-type cells

have on M cells [59,61].

Instead of modeling a detailed pheromone response

signaling cascade including receptor binding, we would

like to simply measure the amount of the respective

molecules and take this information into account for

changing the dynamics of the intracellular control circuit.

As already mentioned, pheromones may cause a G1

arrest of the cell cycle. It has been shown that inhibition

of the cyclin-cdc2 complex is crucial for this process

[60]. Therefore, we introduce a new species MR denoting

a repressed MPF complex that prevents inactive MPF

from being activated (see Figure 7A). The reaction rate of

MPF repression is dependent on the amount of extracel-

lular pheromone. The way to describe this is similar to

the cell cycle transition rules, where intracellular protein

amounts are taken into account in an upward causation

manner. However, here we have a downward causation,

as MPF resides at a lower level than the pheromones.

Also different from the previous examples, the inter-level

causation here acts across the boundaries of a nested spe-

cies, i.e. across the cell membrane, and not just between

an attributed species and its enclosed solution:

In fact the above rule includes two different downward

causalities at the same time. The first one is the amount

of extracellular pheromone, which is included in the rate

factor H =
k11.f 3

k3
11 + f 3

describing a Hill type sigmoidal

response curve for MPF repression. The second down-

ward causation is a volume-dependence again. This

reflects the observation that inhibition of MPF activity is

partly lost due to increasing cell size [60], which could,

for instance, be a consequence from a dilution of

involved (but here not regarded) enzymes.

The single-cell simulation experiments given in Figure

7 show how the added reaction rules influence the intra-

cellular processes and by that have an effect on the

dynamics at cell level, i.e. progression through the cell

cycle phases. As pheromone secretion and mating takes

place when nutrition is poor, the mass-doubling time Td
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has been increased to 232 minutes. Without pheromone,

the cell cyle length then increases to roughly 200 min-

utes (Figure 7B). Similar dynamics can be observed with

a low amount of extracellular pheromone (Figure 7C).

The amount of repressed MPF molecules is not enough

to have a significant effect on MPF activation. This is

different with a higher pheromone concentration. Figure

7D indicates a strong suppression of inactive MPF by

the repressed variant. With increasing cell size (not

shown), repression gets partly lost, i.e. the cell adapts

while it grows and completes the cell cycle finally after

more than 600 minutes. Please notice the dramatically

increased duration of the G1 phase while S/G2 and M

phase take only slightly more time than without phero-

mone sensing.

Compared with exponential population growth unaf-

fected by any pheromones, multicellular simulations

with interacting cells show significantly reduced cell

numbers, i.e. the mean cell cycle duration is increased

(Figure 8). With increasing pheromone concentrations,

one can also observe larger fractions of cells being in

the G1 phase of their cell cycle. After 1000 minutes

nearly half the population of cells is arrested in this

phase. At this time point, the amount of pheromones is

between 400 (P-factor) and 800 (M-factor) molecules.

However, although the P-factor-specific protease Sxa2

lowers the amount of P-factor pheromone and thus low-

ers the effects on M cells, mating type switching ensures

equal distributions of cells with mating types P and M.

Spatial layer

The model so far assumes all cells as well as each

secreted pheromone molecule residing in the same solu-

tion, i.e. there is no distinction between different loca-

tions. This assumption might be appropriate in many

cases. However, especially when it comes to modeling of

multicellular systems comprising of communication

either via direct cell-to-cell interactions or via diffusible

molecules, capturing different species locations might be

important [62]. Therefore, to investigate cell division

and pheromone signaling in an inhomogeneous solution,

we extend the model by some simple spatial dynamics

covering pheromone diffusion and different locations of

cells.

We adopt the idea of the Next Subvolume Method

[63] to add space in a discretized manner. Rules and

reaction rates are responsible to describe reactions

between molecules and their diffusion into another

voxel in the spatial grid. A new attributed species G is

introduced, which represents virtual reaction compart-

ments within a two-dimensional grid. Each voxel G may

comprise a solution of cells and pheromone molecules

with a homogeneous distribution like before, but species

may migrate to adjacent voxels according to certain

rules (see Figure 4 for a schematic description of the

spatial setting).

The initial solution comprises xmax × ymax (with xmax,

ymax Î N) species G, each with a unique combination of

attribute values G(x, y) with x Î {1,..., xmax} and y Î

Figure 7 Pheromone-dependent cell cycle dynamics. (A)

Schematic of MPF repression dependent on the extracellular

amount of pheromone molecules. M-factor molecules (red circles)

have an effect on cells of mating P, while P-factor (blue diamonds)

only influences the intracellular dynamics of M-type cells. P-factor

pheromone is catalytically degraded by Sxa2 which is secreted by

cells of mating type M only. (B) MPF trajectories and cell cycle

phases of a simulation run without pheromones. Mass-doubling

time Td = 232 min. (C) An extracellular pheromone amount of 200

molecules reveals no significant difference of MPF and cell cycle

dynamics. (D) Large pheromone amount (600 molecules) leads to

MPF repression and subsequent adaptation due to increasing cell

size. Cell cycle length is significantly increased due to an arrest in

the G1 phase of the cell cycle.
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{1,..., ymax}. In this way, a defined relationship between

each species G is specified to represent the spatial coor-

dinates of a two-dimensional grid. Diffusion of mole-

cules can then be described by simply moving the

species from one voxel to an adjacent one. A constraint

comparing the coordinates of two species G guarantees

that migration takes place between neighbored locations

only. The rule schema for diffusion of P-factor phero-

mone in a von Neumann neighborhood looks as follows:

with nb(x1, y1, x2, y2) = if (x1 = x2 ∧ (y1 = y2 + 1 ∨ y1
= y2 - 1)) ∨ (y1 = y2 ∧ (x1 = x2 + 1 ∨ x1 = x2 - 1)) then

true else false.

Like before, the model shall still include diffusion out

of the system, i.e. for particle diffusion the grid shall be

an open system. Therefore, another rule checks whether

a certain voxel is part of the boundary of the grid. If so,

a pheromone molecule is simply removed with a certain

probability:

Besides pheromone diffusion, we would like to also

describe different locations of cells. However, instead

of random diffusion we would like to model some sort

of excluded volume effect to avoid that too many cells

occupy a voxel. Therefore, if a location gets crowded,

cells may be pushed to an adjacent less crowded voxel.

In principle, the rule for such a displacement from

crowded areas looks quite similar to rules that describe

diffusion. Constraints guarantee moving under certain

conditions only, e.g. to a neighboring voxel only, and

the kinetic rate depends on the amount of species, i.e.

cells. The main difference is that due to the fact that

cells typically have different attributes and sub-solu-

tions, we can not use a species identifier to get the

total number of cells within a solution. Therefore, an

additional attribute of G is introduced that holds the

current number of cells in each voxel:

The number of cells is a high-level property of G and

can be used to specify the probability with which a cell

may move to an adjacent location. The rate of the above

rule makes migrations to empty locations more likely

than those to crowded ones. Please notice the assign-

ments of values (n1 - 1 and n2 + 1) for updating the cur-

rent cell number of each voxel when the rule fires. As

the number of cells may also change due to cell division

and death, the according rules have to be extended such

that they have an extended context where the attribute

Figure 8 Cell population growth and pheromone response. Simulation results of the multicellular model that combines cell division with

mating type switching and pheromone response. Mass-doubling time Td = 232 min. (A) Exponential population growth when pheromone

production and response is lacking. (B) Pheromone production and response leads to G1 arrest and reduced population growth rate.
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of G can be explicitly manipulated. For example, the cell

division rule for an unswitchable cell looks as follows:

An elegant alternative to the above strategy would be

the already discussed concept of applying functions to

solutions, so that the amount of cells in a given solution

can simply be counted. In any case, the examples show

how spatial effects like diffusion and excluded volume

can be modeled in an ad hoc way, although ML-Rules

has been developed without explicit notions of space.

Approaches which are aimed at spatial rule-based mod-

eling explicitly deal with such problems and emphasize

the need for describing spatial phenomena for larger

entities [64,65].

Simulation of population growth within the described

spatial setting reveals that the overall ratio between the

different mating types remains nearly constant over

time. However, local differences in the amount of P and

M type cells can be observed (see additional file 2).

Related work

The aim of this paper has been to identify essential con-

cepts for rule-based multi-level modeling, to present their

realization in ML-Rules, and to show their role based on a

case study. ML-Rules could built on ideas developed in a

rule-based approach for multi-level modeling of ecological

systems [66] where attributes, components of specific

types, and interfaces are assigned to individual entities.

The approach combines hierarchical nesting and the

description of constrained dynamics in terms of rule sche-

mata. ML-Rules shares also central features with the rule-

based formalism React(C), which supports molecules with

attribute values of any type and reaction constraints to

flexibly define reaction rates [15]. Being of arbitrary type,

attributes can also encode solutions and thus hierarchically

nested entities. However, React(C) has no notion of nest-

ing: rules cannot be applied to a solution nested within an

entity. Instead, rules can only be applied to an entity

attributed with a specific solution, i.e. top-down. Consid-

ering that nested hierarchies may be dynamically changed,

e.g. in models describing vesicles that fuse with mem-

branes, this limits the expressive power of React(C) with

respect to multi-level modeling.

Recently, Oury and Plotkin have presented a stochas-

tic multi-level multiset rewriting language [67], in which

rules can be applied to nested species to support multi-

level modeling in systems biology. However, downward

and upward causation cannot easily be expressed,

because attributes and corresponding constraints on

reactions are not yet supported. However, this is

announced among the next steps to do.

As has been already discussed, ML-Rules does not pro-

vide an explicit notion of linkage, e.g. to describe bonds

within protein complexes. Hierarchical graphs with multi-

ple edge types offer a natural and explicit representation

of such bindings within hierarchical model structures. In

this context, a generalized graph isomorphism and labeling

algorithm like HNauty [68] may be of particular impor-

tance. Although originally developed for the structured

annotation of flat rule-based models, hierarchical graphs

and the HNauty algorithm are promising techniques for

the development of an efficient multi-level approach based

on graph-rewriting rules.

Spatial structuring of models shares general concepts

with multi-level modeling as different levels are defined

by a separation from each other in a broader sense. In

systems biology, the most common representation of

space is realized by simple compartmentalization, i.e. by

separating different chemical solutions from each other

and allowing for basic transport rules to change the

location of molecules, see e.g. BIOCHAM [69] and little

b [70]. More sophisticated capabilities for membrane-

mediated transport and interaction rules are supported

by cBNGL [71], an extension of the original BioNetGen

language [11]. Structures and rules in cBNGL are tightly

coupled with the concept of compartments and mem-

branes, e.g. the language distinguishes between three-

dimensional (compartment volume) and two-dimen-

sional (surface, i.e. membrane) compartments.

Other approaches focus on supporting dynamic com-

partment structures. BioAmbients [72], for example,

which is based on the π-calculus [26], supports wrapping

of processes by so called ambients. Both, processes and

ambients, are allowed to enter or exit other ambients and

two ambients are allowed to merge into a single one. Simi-

larly, the bio�-calculus [73] also allows to fuse multiple

membranes resulting in a single compartment. It aims at

combining rule-based modeling with dynamic membrane

formalisms like the Brane Calculi [74] and P systems [75].

However, although rooted in the rule-based domain, bio�

shows limited expressiveness for modeling biochemical

systems compared to other rule-based languages, e.g. the

�-calculus [7]. Another rule-based formalism with explicit

means for dynamic nested model structures is the
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Calculus of Wrapped Compartments [76,77]. None of

these approaches equips compartments with a state and a

behavior of their own; dynamics at the level of compart-

ments are initiated by the enclosed processes or rules in a

“bottom up” way.

Bigraphs [78] is different from the above formalisms as

there is no distinction between structural and behavioral

elements of a model and thus the approach pursued is

rather similar to ML-Rules. Each node of a bigraph may

be enclosed by another node and may contain further

nodes itself. So, nesting is an inherent property of the

bigraphical components. Equipped with a stochastic

semantics [79], reactive bigraphs have been successfully

applied for modeling cell biological systems. However,

the state of a node is defined by its linkage to other

nodes only. Also the lack of constraints on reactions lim-

its the modeling of inter-level causalities.

Beyond ordinary compartment-like spatial approaches

(to which we would also count ML-Rules, although its

expressiveness widens the applicability for describing

other spatial relationships as well), diverse methods have

been developed for modeling and simulation of more

complex spatial phenomena. Smoldyn, for example, sup-

ports simulation of spatial compartments with diffusing

molecules, membrane interactions, and excluded volume

effects [80]. The latter is also an important feature of

ML-Space, a modeling and simulation approach that sup-

ports hierarchical nesting and combines population-

based reaction-diffusion systems with individual particles

for representing different spatial resolutions [65]. Mere-

dys is another simulator that supports reaction-diffusion

events taking place in multiple compartments. However,

the main feature of Meredys is that molecules and mole-

cular complexes may have realistic shapes in two and

three dimensions [81].

Multi-level models that comprise a wide range of spatial

scales, e.g. from the molecular to tissue or even organ

scale, often need to consider different spatial relationships

at different levels. For example, while at the molecular

level well-stirred compartments or heterogenously distrib-

uted reaction-diffusion systems are appropriate represen-

tations, modeling the dynamics at tissue level might need

to take physical mechanics of interacting cells into

account. The strong diversity in applied methods is one

reason why such multi-scale models typically lack a unify-

ing formal modeling language. Instead, different model

parts are described and interpreted differently. To inte-

grate these different parts efficiently, either monolithic

mixtures of model descriptions and simulators are pro-

grammed from scratch or specialized multi-scale software

platforms are used that have been developed for certain

applications, see e.g. [82-86].

MGS provides integration of explicit descriptions of

space in a generic uniform setting [87,88]. The approach

combines rule-based modeling with topological collections

to specify which and how model entities may interact with

each other. Various topological collections define different

local relationships of individual entities, e.g. ordinary mul-

tisets or Delaunay triangulation. Although MGS does not

have an inherent notion of nesting, its underlying concepts

allow to describe multi-level models in a versatile manner

and across various spatial scales.

The need to describe systems at different levels has also

been addressed by Petri nets approaches, see e.g. [89-91].

For instance, HORNETS (Higher Order Reference Nets) is

a formalism that allows to have Petri nets as tokens of

Petri nets [91]. However, HORNETS are executed in equi-

distant time steps as they are aimed at modeling software

systems, e.g. workflows, rather than biochemical systems.

Conclusions

Rule-based languages are a suitable starting point for

developing a concise and compact language for multi-

level modeling of cell biological systems. Therefore, a

combination of concepts, part of which are already well

established, can be exploited.

Rule schemata help reducing the size of models and

equally important, add the required flexibility to express

dynamics at different levels in a general manner. Nesting

species, assigning attributes to these species, and con-

straining reactions according to attributes have been

identified as further essential ingredients in supporting

multi-level modeling. Species are described by attributes

and the species they contain. Both of which might con-

strain rules (due to functions and conditional expres-

sions) or be altered by them. Thereby, the boundaries of

levels might be crossed.

How dynamics at different levels can be described in a

rule-based approach has been shown with a model of fis-

sion yeast to analyze the regulations between cell cycle

control, cell division, mating type switching, and cell-cell

communication via diffusible pheromone molecules.

The concepts have been realized in ML-Rules which has

been implemented in JAMES II. The use of a plug-in-

based modeling and simulation framework has allowed a

rapid prototyping of a suitable modeling and simulation

environment for our experiments. However, the current

simulator is a prototype and realizes a purely stochastic

discrete event approach. Although JAMES II offers a

coarse grained parallel execution - e.g. to speed up multi-

ple simulation runs - already the single run execution of a

more complex ML-Rules model, like the presented multi-

cellular fission yeast model, takes a significant amount of

time in the current implementation. This is due to the

expressiveness of ML-Rules which requires specific effort

to keep calculation costs at bay. Thus, the next steps with

respect to implementation will be to look into exploiting

different variants of the SSA algorithm, e.g. the optimized
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direct method, speeding up the matching of reactants, and

exploring the potentials of an alternative Monte Carlo

method as well as hybrid approaches.

From the modeling point of view, the developed con-

cepts shall be put to test in concrete applications that

might be difficult to describe with currently available

modeling approaches. For example, potential application

areas for ML-Rules are various systems where the rela-

tion between intracellular and intercellular dynamics

play a role, e.g. quorum sensing, tumor growth, and

plant root growth. The presented approach appears also

suitable for modeling dynamic processes with multiple

membrane bound compartments, like endocytosis, active

vesicle transport along cytoskeletal filaments, and pro-

cesses at the Golgi apparatus.

Additional material

Additional file 1: ML-Rules demo program The ZIP file comprises a

prototype tool of ML-Rules including a model editor, the simulator, and a

rudimentary line chart visualization of simulation trajectories. Also a user

manual and several example models are part of the tool package. To

start the demo tool, please unzip the file and execute the run.jar file.

Java Runtime Environment (Version 6 or higher) is required for execution.

Additional file 2: Example models The PDF file contains descriptions of

the entire example models including initial solutions and parameter

values that have been used for the simulation studies.
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