
Rule-Based Multi-Query Optimization ∗

Mingsheng Hong
Dept. of Computer Science

Cornell University
mshong@cs.cornell.edu

Mirek Riedewald
Dept. of Computer Science

Cornell University
mirek@cs.cornell.edu

Christoph Koch
Dept. of Computer Science

Cornell University
koch@cs.cornell.edu

Johannes Gehrke
Dept. of Computer Science

Cornell University
johannes@cs.cornell.edu

Alan Demers
Dept. of Computer Science

Cornell University
ademers@cs.cornell.edu

ABSTRACT
Data stream management systems usually have to process many
long-running queries that are active at the same time. Multiple
queries can be evaluated more efficiently together than indepen-
dently, because it is often possible to share state and computa-
tion. Motivated by this observation, various Multi-Query Opti-
mization (MQO) techniques have been proposed. However, these
approaches suffer from two limitations. First, they focus on very
specialized workloads. Second, integrating MQO techniques for
CQL-style stream engines and those for event pattern detection en-
gines is even harder, as the processing models of these two types of
stream engines are radically different.

In this paper, we propose a rule-based MQO framework. This
framework incorporates a set of new abstractions, extending their
counterparts, physical operators, transformation rules, and streams,
in a traditional RDBMS or stream processing system. Within this
framework, we can integrate new and existing MQO techniques
through the use of transformation rules. This allows us to build an
expressive and scalable stream system. Just as relational optimizers
are crucial for the success of RDBMSes, a powerful multi-query
optimizer is needed for data stream processing. This work lays the
foundation for such a multi-query optimizer, creating opportunities
for future research. We experimentally demonstrate the efficacy of
our approach.

1. INTRODUCTION
Query optimizers have been instrumental for the success of rela-

tional database technology. The cost difference between a good
and a bad query plan can be several orders of magnitude. For
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data stream systems the stakes are even higher. Instead of one-
shot queries in a relational DBMS, a stream system is processing
many continuous queries simultaneously. These queries are active
for long periods of time and they process massive streams in real
time. A poor query implementation choice can negatively affect
system performance for the lifetime of the query.

The key to achieving good stream processing performance is to
optimize multiple queries together, rather than individually. In a
stream query workload, it is often the case that multiple concur-
rently active queries can share state and computation. Query evalu-
ation techniques that exploit this property are referred to as Multi-
Query Optimization (MQO) techniques. The importance of MQO
for stream processing is widely accepted and various stream MQO
techniques have been proposed [10, 16, 12, 22, 14, 15, 7].

Unfortunately, existing MQO techniques apply only to very spe-
cific queries or workload properties. For example, predicate index-
ing [10, 16] is tailored for a set of selection operators that all read
the same input stream. In addition, work on MQO techniques so
far has happened in parallel for CQL-style stream engines [2, 5],
referred to as Relational Engines (RE), and event pattern detection
engines [8, 21], referred to as Event Engines (EE). The former use
an operator model similar to relational databases, while the latter
implement queries with automata. This has led to an unsatisfac-
tory state of MQO, characterized by a confusing variety of individ-
ual techniques that apply to specific workloads or implementation
models only. This prevents effective MQO for complex queries and
leads to a situation where similar approaches might be re-invented
by the different communities for REs and EEs.

To address these problems, we propose a Rule-based MQO
framework, called RUMOR. It is inspired by the classical Query
Graph Model (QGM) of RDBMSes [17], where query optimization
techniques for single queries can be naturally modeled as trans-
formation rules on query plans. RUMOR provides a modular and
extensible framework, enabling new optimization techniques to be
developed and incorporated incrementally into the system.

To support rule-based MQO, we have to extend the key abstrac-
tions that are used in a traditional RDBMS or stream system: phys-
ical operators, transformation rules, and streams. We introduce a
small number of carefully designed abstractions that together cre-
ate a powerful MQO framework. In fact, RUMOR incorporates
all previously proposed MQO techniques for stream processing. In
particular, it successfully incorporates MQO techniques from both
relational stream engines and automata-based event processing en-
gines. Hence an additional benefit of RUMOR is that it enables the
unification of these diverse camps of stream processing systems.
Experimental results for our prototype implementation indicate that
we can efficiently process a large number of CQL-style relational



stream queries, event processing queries, as well as hybrid queries
involving query features from both types of query workloads.

RUMOR lays the foundation for multi-query optimizers
(MQOptimizers) for data stream processing. It opens up opportu-
nities for exciting future research on finding new rewrite rules and
on extending the approach to cost-based MQOptimizers, incorpo-
rating ideas from the classical dynamic programming approach to
cost-based single query optimization in RDBMSes [18].

Contributions and roadmap. Our contributions can be summa-
rized as follows.

• We propose RUMOR, a rule-based MQO framework, which
naturally extends the rule-based query optimization and
query-plan-based processing model used by current RDBM-
Ses and stream systems.

• We show how new and existing MQO techniques for rela-
tional stream engines and for event engines can be integrated
into RUMOR. This is done by defining a small number of
carefully designed abstractions.

• We demonstrate the efficacy of our approach by present-
ing experimental results using a prototype implementation
of RUMOR.

RUMOR integrates MQO techniques for REs and EEs. For ease
of exposition, in Section 2 and 3, we interleave the description of
RUMOR and integration of MQO techniques for REs into RU-
MOR. We then describe the integration of MQO techniques for
EEs in Section 4. The experimental results are presented in Sec-
tion 5. Finally, we survey related work in Section 6, and conclude
in Section 7.

2. RUMOR: PART I
RUMOR incorporates three abstractions, respectively extending

physical operators, transformation rules, and streams. For ease of
exposition, in this section we introduce only the first two abstrac-
tions (Sections 2.2 and 2.3), and show how they can be used to
express a set of interesting MQO techniques (Section 2.4). We de-
scribe the last abstraction in Section 3. Due to space constraints,
we choose to present RUMOR in an intuitive way, accompanied by
examples.

2.1 Background
We briefly review the related concepts in a relational query pro-

cessing engine. A logical query is specified by a user through a
query language such as CQL, which has well-defined semantics. A
query optimizer reads a logical query as input, and produces a phys-
ical query, also known as a query plan, as the result of optimiza-
tion. The optimization process involves the application of transfor-
mation rules, also known as rewrite rules, on the query plans. A
transformation rule maps one query plan to another semantically
equivalent plan (e.g. pushing selection below join). The query plan
produced by the optimizer is executed by the query engine to pro-
duce results conforming to the logical query semantics. We say the
query plan implements its corresponding logical query.

For efficiency we want the query engine to process multiple
queries together. We therefore extend the notion of a query plan
to be one that implements all the currently active logical queries. A
query plan is composed of physical operators, the basic scheduling
and execution units in the engine. A physical operator consumes
one or multiple input streams, and it produces one output stream.
A physical operator is called the consumer operator of its input
streams, and the producer operator of its output stream.

This paper focuses on rewrite rules for query plans.

2.2 Physical Multi-Operator
MQO techniques identify opportunities for sharing between op-

erators, and they modify parts of the query plan to exploit these
opportunities. For example, consider a query plan with multiple
selection operators reading the same input stream. The predicate
indexing MQO technique shares work among them by indexing the
selection predicates of the operators. For each incoming stream tu-
ple this index is probed. It returns all satisfied predicates at a much
lower cost than the naive strategy of evaluating each selection pred-
icate individually one-by-one [10, 16].

To model a set of operators with shared computation, we propose
an abstraction called physical multi-operator (or m-op). We say
that an m-op implements a set of operators. An m-op is defined as
follows. For every stream S, S is an input (resp. output) stream
of the m-op, if and only if it is an input (resp. output) stream of
at least one of the operators the m-op implements. The semantics
of the m-op are defined as follows. Let t be an input tuple arriving
in stream S. Then the m-op conceptually executes all its operators
that have input stream S, and it writes the output produced for t
by these operators to the corresponding output streams. The state
of the m-op conceptually is a vector; each entry in the vector is
equivalent to the state of one of the implemented operators if this
operator was executed in isolation.

Notice that the definition of m-op semantics is based on the one-
by-one execution of the implemented operators without sharing
state. This defines the correct semantics, but of course our goal
is to find more efficient m-op implementations that still guarantee
the same input-output behavior as defined by the above semantics.
Intuitively, the m-op consumes the set of input streams of the phys-
ical operators it implements, and it produces a corresponding set of
output streams. The notion of consumer and producer operators for
physical operators extends naturally to m-ops.

The m-op abstraction generalizes the traditional physical opera-
tor abstraction. It therefore takes the place of a physical operator
in RUMOR: A query plan is composed of m-ops, and an m-op is
the new scheduling and execution unit in the query engine. We
illustrate the use of m-ops in the following example.

EXAMPLE 1. Figure 1(a) shows two queriesQ1 andQ2, where
σ1 and σ2 are selection operators, and α1 denotes a sliding win-
dow aggregation operator, occurring in both queries. Note that we
use the query name to denote its output stream name.

Let σ{1,2} denote the m-op implementing σ1 and σ2 with pred-
icate indexing. It produces two output streams, respectively corre-
sponding to the output streams of σ1 and σ2 in Figure 1(a). Figure
1(b) shows the query plan using σ{1,2}.

Suppose tuple t in stream S satisfies both σ1 and σ2. In Figure
1(a), an output tuple is produced by both σ1 and σ2. In Figure
1(b), an output tuple is produced by σ{1,2} on each of its two output
streams.

2.3 Transformation Rules on m-ops
We now extend the traditional transformation rules, which op-

erate on query plans composed of physical operators, to multi-
query transformation rules, or m-rules for short. M-rules operate
on query plans composed of m-ops. Similar to a traditional trans-
formation rule, an m-rule consists of a pair of condition and action
functions [17]. The condition function is a Boolean side-effect-free
function on the query plan to identify opportunities for sharing.
Once a sharing opportunity is identified among a set of operators
in a query plan, the action function modifies the query plan by re-
placing that set of operators with a single m-op. We say the m-rule
maps a set of m-ops to a single m-op, or it merges these operators.
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Figure 1: Query Plans in RUMOR (Red Rectangles Represent
Stream Tuples; the Blue Rectangle is a Channel Tuple)

More precisely, the condition of an m-rule is a function from the
powerset of the set of all possible m-ops to {true, false}. For a
given set of m-ops, the rule can only be applied if the condition
function evaluates to true.

The action of an m-rule is another function. This function maps
a set of m-ops (for which the condition function evaluated to true)
to a single m-op, referred to as the target m-op, which implements
the input m-ops more efficiently with an MQO technique. In the
query plan, we simply replace all edges that previously connected
other operators with the to-be merged operators by edges to the
corresponding input and output streams of the target m-op.

2.4 Expressing MQO Techniques with
m-ops and m-rules

Most of the existing specialized MQO techniques share work
among operators reading the same stream(s). These can be imple-
mented in RUMOR through m-ops and m-rules. For example, we
can model predicate indexing for equality predicates on a single
attribute as an m-rule as follows. The condition of the m-rule eval-
uates to true only for a set of selection operators that all read the
same stream and whose selection predicate is an equality predicate
on the same attribute A. The action rule then replaces them with a
target m-op that uses a hash index on attributeA for a more efficient
evaluation of the selection predicates of these operators.

It is not hard to see that all these previously proposed MQO ap-
proaches for multiple selection [10, 16], aggregation [22], and join
[12] operators can be expressed similarly through corresponding
m-ops and m-rules. The first three rows in Table 1 summarize
these rules. Notice that in data stream processing systems, join
and aggregation operators usually contain window specifications to
prevent unbounded memory consumption. Also, aggregation oper-
ators may contain optional group-by specifications. For each oper-
ator type τ , we name the corresponding m-rule sτ , indicating that
it is an m-rule for instances of operator τ that all process the same
input stream(s). The remaining rows in Table 1 will be discussed
later in this paper. The current set of m-rules is not intended to be
complete—the extensible nature of rule-based query optimization
allows for adding new rules.

3. RUMOR: PART II
In Section 2, we have shown how to use the two abstractions

m-op and m-rule to express a set of existing MQO techniques, in-
cluding predicate indexing [10, 16], multiple aggregate processing
with different group-by specifications [22], and shared join evalu-
ation [12]. All of these techniques attempt to share work among

“similar” operators reading identical stream(s).
A complementary MQO approach is to support sharing also in

the case where “similar” streams are processed by identical opera-
tors. Consider the example in Figure 1(a). The same aggregation
operator α1 occurs in both queries, and it aggregates some subset
of the tuples from S. However, if σ1 and σ2 have different se-
lection predicates, then m-op σ{1,2} will have two different output
streams, as shown in Figure 1(b). This in turn implies that the two
instances of α1 read different input streams and therefore cannot be
combined using m-rule sτ . On the other hand, the selection predi-
cates might be similar so that many tuples that pass σ1 might also
pass σ2. In that case it would be beneficial to avoid duplication
of stream tuples as well as duplication of work for the aggregation.
This example might appear like a rare corner case, but streams with
common tuples occur frequently in practice as a result of multiple
operators processing the same input stream. Recent work on MQO
techniques like precision sharing join [14] and shared fragment ag-
gregation [15] have shown that exploiting these sharing opportuni-
ties can result in significant performance improvement.

In this section, we propose an abstraction to model such MQO
techniques in RUMOR. We refer to it as a channel. Channels gen-
eralize and replace streams in RUMOR (Section 3.1). We then de-
scribe how to decide which streams should be replaced with chan-
nels in the query plans in RUMOR (Section 3.2). Finally, we add a
new set of m-rules and m-ops leveraging channels, which express
both existing and new MQO techniques (Section 3.3).

3.1 Extending Streams to Channels
Logically, a channel is equivalent to the union of a set of streams,

The streams that are combined to form a channel are required
to have compatible schemas. This can always be achieved by
“padding” the schemas of individual streams with the attributes
from other streams after appropriate attribute renaming.

Unlike a union of streams, a channel keeps track of which orig-
inal stream a tuple belongs to. We say the channel encodes these
streams. More formally, a channel encodes a set of data streams
with union-compatible schemas as follows. The channel is defined
as the union of its streams, but each stream tuple has an additional
attribute called membership component. The membership compo-
nent specifies the set of streams to which this tuple belongs. For
efficiency, the membership component is implemented by a bit vec-
tor.

Through the use of a channel we can share work in two ways.
First, when identical tuples from different streams are encoded as a
single channel tuple, their space is shared. Second, when multiple
streams are encoded into the same channel, the computation of their
consumer operators may be shared.

Clearly, channels generalize streams. In RUMOR, they take the
place of streams as the input and output of m-ops. For each m-op,
the input (resp. output) channels together partition the set of input
(resp. output) streams of this m-op. When an m-op o processes
an input channel tuple t, a decoding and an encoding step are in-
volved as follows. o first determines to which set of input streams
t belongs, so that it conceptually only evaluates those physical op-
erators implemented by o that take this tuple as input. This is the
decoding step. Similarly, when o is about to produce a set of output
tuples, it needs to encode it into a set of channel tuples with the
appropriate stream membership component, and then write them to
the appropriate output channels. This is the encoding step.

Note that the decoding and encoding steps can often be imple-
mented very efficiently, or might actually not be necessary at all.
For example, consider an m-op π{1,··· ,n} implementing n projec-
tions with the same projection specification, but with different input



m-rule name Set of input operators to which the m-rule is applicable Target m-op
sσ A set of selection operators which read the same stream Predicate indexing [10, 16]
sα A set of aggregation operators which read the same stream,

with the same aggregate function but potentially different group-by specifications Shared aggregate evaluation [22]
s./ A set of join operators which read the same two streams,

with the same join predicate but potentially different window lengths Shared join evaluation [12]
cα A set of aggregation operators reading sharable streams, with the same definition Shared fragment aggregation [15]
c./ A set of join operators which read sharable streams, with the same definition Precision sharing join [14]
s; (or sµ) A set of; (or µ) operators reading the same two streams, with the same definition Common Subexpression Elimination

(Section 4.3)
c; (or cµ) A set of; (or µ) operators which a) have the same definition

b) read sharable input streams for the first input stream parameter,
where these input streams are produced by the same m-op
c) read the same input stream for the second input stream parameter Channel Based MQO (Section 4.4)

Table 1: Representative m-rules to Express Existing and New MQO Techniques

streams S1 through Sn. Suppose these n input streams are encoded
by channel C, and the n output streams are encoded by channel D.
In this case, for each input channel tuple t from C, π{1,··· ,n} needs
to perform projection only once and to produce only one output
channel tuple in D, keeping the membership component of t intact
in the output D tuple.

To continue Example 1, we can use a channel to encode the two
output streams of σ{1,2} in Figure 1(b), resulting in the query plan
shown in Figure 1(c). Here the dashed arrow represents the chan-
nel, and α{1,1} represents the aggregation m-op, implemented by
the shared fragment aggregation technique described in [15]. Sup-
pose an input tuple t from stream S satisfies both predicates in
σ{1,2}. σ{1,2} then produces a single output channel tuple, rep-
resented by the blue rectangle in Figure 1(c). That channel tuple
has the same content as the input tuple t, but is associated with a
membership component denoted as [1,2], indicating that it belongs
to both output streams of σ{1,2}.

Note that ideas similar to channels were used for specific MQO
algorithms for joins and aggregates in relational engines [14, 15].
Our contribution is to propose the addition of the channel concept
to an MQO framework as a general abstraction for sharing work.
As we will show in Section 4, the combination of m-ops, m-rules,
and channels also leads to powerful new MQO techniques for event
processing queries.

3.2 Mapping Streams to Channels
Channels are a powerful mechanism that allows us to aggres-

sively share work among operators that read even different streams.
Given a set of streams, how do we decide which ones to map to the
same channel? The following tradeoffs have to be taken into ac-
count. First, if two streams Si and Sj are encoded into the same
channel, then stream tuples with the same content can share stor-
age by being represented as the same channel tuple. Second, if
the consumer operators of Si and Sj have the same definition, the
evaluation on channel tuples will be more efficient than evaluating
tuples from stream Si and Sj separately. Third, mapping multi-
ple streams to the same channel creates overhead. Time-wise, with
multiple streams being mapped to the same channel, the consumer
m-op of this channel now has to process the membership compo-
nent of each input tuple. Space-wise, each channel tuple has to
carry the membership component.

Based on these tradeoffs, it is clear that streams should only be
mapped to the same channel if there is a large enough fraction of
channel tuples that belong to multiple streams and if the streams
are consumed by identical operators. We now propose a simple
lightweight heuristic for deciding which streams to map to the same

channel. This heuristic was used in our experimental evaluation and
works very well in practice. More sophisticated cost models can be
developed, but are left for future work.

Our proposed algorithm for deciding which streams to merge
into a single channel is based on the concept of sharable streams.
Two streams S1 and S2 are sharable, denoted S1 ∼ S2, if the
following holds:

Base case 1. If S1 = S2, then S1 ∼ S2.

Base case 2. If S1 and S2 are produced by two stream sources that
are labeled to be sharable, then S1 ∼ S2.

Output of unary ops. For any unary operators o1, o2, if S1 :=
o1(T1), S2 := o2(T2), o1 = o2, and T1 ∼ T2, then S1 ∼
S2.

Output of binary ops. For any binary operators o1, o2, if S1 :=
o1(T1, U1), S2 := o2(T2, U2), o1 = o2, T1 ∼
T2, and U1 ∼ U2, then S1 ∼ S2.

Special case for selection. For a selection operator that reads T
and produces S, S ∼ T .

Symmetry ∀S1, S2 : S1 ∼ S2 ⇒ S2 ∼ S1

Transitivity ∀S1, S2, S3 : (S1 ∼ S2 ∧ S2 ∼ S3)⇒ S1 ∼ S3

Intuitively, streams are sharable if they are the result of the same
query plans, modulo any selection operators anywhere in the plan,
applied to the same input streams. Clearly, ∼ is an equivalence re-
lation and it generalizes the stream identity relation =. This makes
∼ very efficient to compute and store.

Even if streams are sharable, we map them to the same channel
only if they originate from the same m-op. If they are produced
by different m-ops, the runtime system would have to synchronize
these operators to ensure identical tuples are available at the same
time for the channel encoding step. This is conceptually not hard,
but an analysis of the tradeoffs is beyond the scope of this paper.

Furthermore, if sharable streams are consumed by m-ops that
cannot share any work, there is no benefit in encoding them with
the same channel. Typically two m-ops reading different streams
can effectively share work only if they have exactly the same defini-
tion. For example, two selection operators with the same predicate,
two projection operators with the same projection specification, or
two aggregation operators with the same aggregate function and
group-by specification can share work when reading two different
input streams that are sharable. We only consider this type of work
sharing with channels in this paper.



Traditional abstraction RUMOR abstraction
physical operator m-op (Section 2.2)

transformation rule m-rule (Section 2.3)
stream channel (Section 3)

Table 2: Correspondence between new and existing abstrac-
tions for building a stream system

To conclude, given a set of streams S1 through Sn, we map them
to the same channel, only if (a) the Si’s belong to the same equiv-
alence class defined by ∼, (b) the Si’s are produced by the same
m-op, and (c) the consumers of the Si’s have the same definition.
These criteria, referred to as channel-based MQO sharing criteria,
are currently used in RUMOR. When these criteria are met, we
map the streams to a single channel and then combine the (identi-
cal) consumers of the Si’s into the same m-op, achieving effective
work sharing among them.

The above sharing criteria may appear restrictive, but are met
surprisingly often in practice. E.g., they apply when queries con-
tain parametrized components that differ in some selection predi-
cates but otherwise follow the same query template. For example,
precision sharing join [14] and shared fragment aggregation [15]
are both implicitly based on the above criteria, additionally limited
to join operators and aggregation operators, respectively.

3.3 Expressing MQO Techniques with
Channels

To benefit from channels, we add the following new m-rules. For
each operator type τ (e.g. selection, join, aggregation), we add an
m-rule which identifies operators of type τ whose input streams
satisfy the channel-based MQO sharing criteria defined at the end
of Section 3.2. It then maps these operators to a single m-op. We
refer to this m-rule as cτ , indicating that this is an m-rule for op-
erators τ processing tuples from the same channel. For example,
the fourth and fifth m-rule in Table 1 respectively express shared
fragment aggregation [15] and precision sharing join [14].

Note the interesting duality between the two m-rules sτ (Sec-
tion 2.4) and cτ of an operator type τ . sτ is applicable to a set
of sharable operators (i.e., operators of type τ ) reading the same
stream(s), whereas sτ is applicable to a set of operators of the same
definition, reading sharable stream(s). Assuming τ is unary, we
present an illustration for the difference between sτ and cτ . In Fig-
ure 2, the enclosing rectangle denotes the set of unary operators of
type τ , reading sharable streams. Each row labeled Si corresponds
to a subset of operators of type τ , reading the same stream Si. Each
application of sτ will pick a row of operators here, and map them
to an m-op. Repeated applications of this m-rule therefore form a
partition of this set of operators. The setting of Figure 3 is similar
to that of Figure 2. Each column corresponds to a set of operators
of type τ with the same definition, reading a set of sharable input
streams S1, S2, · · · . One application of cτ selects a column of op-
erators, and maps them to an m-op. Repeated applications of cτ
therefore also form a partition of this set of operators.

As a result, for any operator in the shaded region X (i.e., any
operator with definition o1, reading stream S1), both sτ and cτ
are applicable to it. Therefore, as in many other rule-based ap-
plications, different orderings of m-rule applications may result in
different optimized query plans.

To summarize, Table 2 shows the newly proposed abstractions in
RUMOR, and their correspondences with existing abstractions.

Operators of type τ

Input streams 
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Input streams 
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4. INTEGRATING MQO TECHNIQUES
FOR EVENT ENGINES

In Sections 2 and 3, we have presented RUMOR, as well as how
the MQO techniques for REs can be integrated into RUMOR. In
this section, we describe how the MQO techniques for EEs can be
integrated as well. This is a more challenging task, as EEs are often
based on automata, instead of query plans composed of relational
operators. On the other hand, if we are able to integrate the MQO
techniques for both REs and EEs into RUMOR, we will be able to
build an expressive and scalable stream system unifying REs and
EEs, of which there are obvious and significant benefits (Section
4.1). The challenge is to integrate EE MQO techniques without
cluttering RUMOR with numerous new abstractions or complex
special rules for event queries. Instead, the integration should result
in a clean simple optimization framework where only new opera-
tors and new rules need to be added to extend its functionality.

Our solution consists of two parts. First, we translate automata
into query plans (Section 4.2), second, we express the MQO tech-
niques designed for automata in RUMOR (Section 4.3). To illus-
trate the benefit of integrating RE and EE MQO techniques into
RUMOR, we show new channel-based MQO techniques for EEs
that combine the channel concept with traditional EE MQO ap-
proaches (Section 4.4).

4.1 A Motivating Scenario for
Unifying REs and EEs

The separation of stream processing systems into REs and EEs
has led to parallel developments of MQO techniques that are tai-
lored to these systems. Due to the lack of a common MQO frame-
work, similar ideas have to be re-invented and optimization op-
portunities are missed because some techniques exist in only one
world. Also, queries that require functionality from both REs and
EEs are not effectively optimized by either system.

Consider the following scenario. In performance monitoring of
computer systems [20, 9], each stream corresponds to readings of a
particular performance counter, such as the amount of current CPU
consumption of a particular thread or process. Users can register
continuous queries in a stream system; e.g. to compute the aver-
age CPU load in a time-based sliding window, or to raise alerts on
specified conditions and optionally to perform certain actions, such
as terminating resource hogging processes. The following simple
example illustrates performance monitoring workloads.

Input streams. We assume the following input stream schema:
CPU(pid, load; ts), indicating the CPU load of each pro-
cess in the system. pid denotes process ID; load denotes CPU
load; ts denotes the required timestamp attribute for each stream.1

1In practice there are more performance counters than just CPU,



Queries. Query workloads for system monitoring often have
the following two characteristics. First, there may exist a large
number of concurrent queries in the system, since different queries
may be registered to monitor the behavior of different processes.
Furthermore, for a particular process, different monitoring condi-
tions may be posed in different queries. To obtain high throughput,
it is crucial to apply MQO techniques to these queries. Second,
some performance monitoring queries demand functionality from
both CQL-style queries supported by a relational engine and pat-
tern matching queries supported by an event engine. We refer to
such queries as hybrid queries.

Consider the following hybrid query, which detects processes
that are ramping up in CPU consumption. This query combines the
functionality of sliding window aggregates (which have received a
lot of attention in work on REs) for smoothing the incoming per-
formance counter readings, and the functionality of event pattern
detection (supported by an event engine) for finding a monotoni-
cally increasing sequence in CPU load consumption.

QUERY 1. For a particular process p, smooth the CPU load
value by replacing the current CPU load for p with an average
load of p over the last 5 seconds. Call the smoothed stream
SMOOTHED. Next, find in SMOOTHED an event pattern composed
of a sequence of monotonically increasing CPU loads on p, where
this sequence pattern satisfies a customizable starting condition θs,
e.g., θs = CPU.load < 20, and a fixed stopping condition, say
CPU.load > 90.

To efficiently process such a query, one has to combine opti-
mization techniques from REs (for the sliding window aggregate)
and EEs (for the monotonic sequence). Having a common frame-
work like RUMOR greatly simplifies this process, especially when
it comes to the even more challenging problem of processing a large
number of such hybrid queries:

QUERY 2. We have a set of queries {Q1, · · · , Qn}, where each
Qi differs from Query 1 only in the starting condition θs.

Note that for this comparably simple example workload, it is
possible to manually construct query plans that achieve good com-
putation sharing. However, the focus of this paper is to automate
MQO with RUMOR so that more complex workloads can be opti-
mized as well. In the remainder of Section 4, we will revisit this
query workload and describe how automated MQO is achieved in
RUMOR. This is however predicated on the understanding of how
the MQO techniques for EEs are integrated into RUMOR, which
we discuss next.

4.2 Translating Automata to Query Plans
Event Engines are often based on automata [4, 11, 7, 21]. In

order to integrate the MQO techniques for EEs into RUMOR, our
first step is to model the automata used in EEs as query plans in RU-
MOR. Since the Cayuga system [7] is the EE representative with
the by far strongest emphasis on MQO, we chose it as the example
to show how to express automata as query plans in RUMOR. It is
possible to integrate other event engines, such as SASE [21], into
the RUMOR framework in a similar manner.

At a high level, the translation of automata to query plans is
based on the idea that automaton states can be mapped to oper-
ators while automaton edges correspond to streams where tuples
flow from one operator to the next. However, the challenges are

such as for memory and disk. The streams’ schemas also involve
more attributes. We simplify the scenario here for ease of presen-
tation.
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in the details: Automaton edges have predicates and there is non-
determinism. Also, our main goal is to integrate EE functionality
into RUMOR without significantly increasing RUMOR’s complex-
ity. Ideally, one should only have to add new specific m-ops and
m-rules to support EE style MQO inside RUMOR. The following
discussion shows how this can be achieved for Cayuga automata.
Our general approach can be extended to other automaton-based
systems, including the recently proposed NFAb [1] automata.

The basic building block of Cayuga automata are states like the
one shown in Figure 4. A state has an associated input stream
S and it maintains a set of active automaton instances. These
instances correspond to partially processed queries that have ad-
vanced to this state. Each instance has the same fixed schema;
its values record relevant data from previously matched events. A
state has three outgoing edge types: a single filter edge (top loop
edge), one or more forward edges (horizontal outgoing edge), and
a single rebind edge (bottom loop edge). States can only be con-
nected through forward edges, resulting in automata that are di-
rected acyclic graphs. Conceptually, whenever a new event arrives
on stream S, the Cayuga engine checks for each instance at state q
if any of the edge predicates is satisfied. These predicates can ref-
erence attributes of both the incoming event a well as the instance.
Instances for which no edge predicate is satisfied are deleted. All
others non-deterministically traverse all edges whose predicates are
satisfied. Non-determinism is implemented by duplicating the in-
stances and letting each copy traverse the corresponding edge.

When an instance traverses the filter edge, it remains at state q
unchanged. When it traverses the rebind edge, the automaton exe-
cutes formula Fr on the concatenation of the instance and the in-
coming event. It then stores the modified instance at state q. For
forward edges, the instance is also modified based on formula Ffo
and the incoming event, but it is sent to the corresponding next
state. Fr and Ffo are schema map functions. A schema map func-
tion can rename and project attributes, as well as introducing new
attributes via simple arithmetic computation or user-defined func-
tions. It is similar to a SQL projection operator (which implements
the SQL SELECT clause). Details can be found in [7, 8].

A complete Cayuga automaton with states q1, q2, and q3 is
shown in Figure 5(a). States q1 and q3 are start and final state,
respectively. The start state has only forward edges, while the final
state has no outgoing edge. For state q2 the rebind edge is omitted,
which is equivalent to having a rebind edge with θr = false.

Ideally we would like to map all edge predicates θ to selec-
tion operators and all schema map functions F to the correspond-
ing combination of projection, renaming, and arithmetic manipula-
tions. Unfortunately, the semantics of filter and rebind edges makes
it necessary to introduce two special m-ops into RUMOR. Given an
automaton state with a filter edge but no rebind edge (θr = false),
that state will be translated into an m-op denoted as;. Its semantics
is the same as its counterpart in the Cayuga algebra [7]. Intuitively,
; is a sequence operator concatenating two input events. Similarly,
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an automaton state with a filter and a rebind edge is translated into
an m-op denoted as µ, whose semantics is also the same as its coun-
terpart in the Cayuga algebra. µ is an iterative version of;, capa-
ble of concatenating an unbounded number of input events into an
event sequence pattern. The formal definitions of; and µ can be
found in [7]. Forward edges, however, can be mapped to a selec-
tion operator followed by a schema mapping operator as expected.

We have developed a formal mapping from Cayuga automata
to RUMOR query plans. For simplicity, we illustrate this process
through an example. For the Cayuga automaton in Figure 5(a), we
start with the input stream S1, read by q1. Predicate θ1 on the for-
ward edge of q1 is translated to σθ1 in the query plan. Similarly, the
schema map function F1 on the same edge is translated to πF1 in
the query plan, reading the output stream of σθ1 .2 Next, we trans-
late state q2 into a binary operator;θf

, reading the output stream
of πF1 as well as S2. Finally, the forward edge from q2 to q3 is
translated in a similar way as the forward edge from q1 to q2. We
use σθ2 and πF2 respectively to implement the predicate θ2 and the
schema map function F2 on that forward edge. The output stream
of πF2 is equivalent to the output stream of the automaton. This fin-
ishes the translation. The resulting query plan is shown in Figure
5(b).

The translation of a Cayuga automaton involving states with re-
bind edges is similar. For example, if state q2 in Figure 5(a) also
had a rebind edge with predicate θr , then the operator;θf

in Figure
5(b) would be replaced with µθf ,θr .

EXAMPLE 2. The RUMOR query plan for Query 1 in Section
4.1 is shown in Figure 6(a). For clarity, we omit projection opera-
tors and the parameters of some operators in the query plan.

The input stream is denoted as S. α denotes the sliding win-
dow aggregate operator for smoothing the CPU load readings of
each process. σs and σe are respectively the starting and stopping
conditions. µ builds up the event sequence pattern consisting of
monotonically increasing values in the CPU loads of a particular
process. Finally, as in Example 1, we use the query name Q to
denote its output stream name.

4.3 Expressing Automata Based MQO
Techniques in RUMOR

In Section 4.2, we achieved the unification of an RE and an EE on
a single automaton level, by translating an automaton into a query
plan. This was done by adding only two operators to RUMOR.

2Here π denotes the more expressive SQL projection operator (SE-
LECT clause), as opposed to the projection operator in relational
algebra.
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To efficiently process a large number of event pattern queries, an
EE often employs a set of MQO techniques specially designed for
automata. To make RUMOR practical for event processing applica-
tions, we have to express these techniques as m-rules. We again use
Cayuga as a representative EE which adopts MQO, and express all
its MQO techniques by m-rules and m-ops in RUMOR. New MQO
techniques for EEs could be integrated similarly.

Given that we have introduced two new operators; and µ into
RUMOR in Section 4.2, next we add a new m-rule for each of these
two operators. The m-rule s; for; (resp. sµ for µ) maps a set of
; operators (resp. µ operators) to an m-op, if they read the same
pairs of streams, and have the same definition. These two m-rules
are shown in the second-to-last row in Table 1.

There are two major categories of MQO techniques in Cayuga,
state merging and indexing. We show how these techniques can be
expressed by m-rules.

State merging. The first type of state merging in Cayuga is pre-
fix state merging. Intuitively, given an existing automaton F , and
a new input automaton A, A can be merged into F by identifying
the longest prefixes ofF andA that are identical, and share the two
prefixes in the merged automaton.

As a concrete example, the existing automaton and the input au-
tomaton to merge are shown respectively in Figure 7(a) and 7(b).
In this example, suppose inductively that state P and P ′ have been
merged, and state Q and Q′ read the same stream (in this case it is
S2), then we can merge states Q and Q′. The resulting automaton
is shown in Figure 7(c).

This prefix state merging technique is expressed by the m-rules
s; and sµ together. We illustrate this with the above example. The
query plans corresponding to the existing automaton and the input
automaton are shown respectively in Figure 8(a) and 8(b). Note
that the operators;θf

in Figure 8(a) and in Figure 8(b) respectively
implement states Q and Q′ in the corresponding automata.

Suppose inductively that the common sub-expressions below op-
erator;θf

in Figure 8(a) and in Figure 8(b) have been merged. The
m-rule s; corresponding to; is now applicable to;θf

in both figures,
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since by assumption they read the same pair of streams, and have
the same definition. Hence, they are mapped by the m-rule s; to
the same m-op, which we still denote as;θf

, since it has the same
definition as the two input operators that are merged. The result-
ing query plan is shown in Figure 8(c). The prefix state merging
performed on multiple µ operators can be done in a similar way.

Note that we have translated the prefix state merging MQO tech-
nique on automata into the well-known MQO technique on query
plans: Common Subexpression Elimination (CSE). This is a good
example for how a common optimization framework can help avoid
duplicate work (in this case the development of “new” specialized
automaton state merging techniques).

In addition, in RUMOR, we have more opportunities for inlin-
ing, illustrated as follows. An input Cayuga query that is not left-
associative, such as S1;(S2;S3), has to be implemented by two
Cayuga automata A and B, where A implements S2;S3, produc-
ing an intermediate stream S′, and B implements S1;S

′. This is
referred to as resubscription in [7], and in this case A cannot be in-
lined into B. However, this query can be implemented by a single
query plan, which effectively inlines the query plan corresponding
to A to that corresponding to B, providing additional MQO oppor-
tunities.

Automaton indexing. There are three types of indices in
Cayuga. Below we describe how to express the Forward-Rebind
(FR) Index technique in RUMOR. The other two indices, Active
Node Index and Active Instance Index [7, 8], are handled similarly.
We omit their description due to space constraints.

FR Index is a per-state index on some of the predicates of for-
ward/rebind edges of its associated state. For example, in Figure
7(c), the predicates θ2 and θ′2 associated with the forward edges
going out of state Q can be managed by an FR Index. For an in-
coming event e from stream S2 which does not satisfy the filter
edge predicate θf associated with state Q, e will be used to probe
this FR index to obtain the set of satisfied predicates associated
with the forward edges (i.e., a subset of {θ2, θ′2}).

An FR Index on state q can be expressed by the m-rule sσ in
RUMOR as follows. Let the operator corresponding to q in the
translated RUMOR query plan be o (o is of type; or µ). For those
selection operators that are consumers of the output stream of o,
we apply the m-rule sσ to map them to the same m-op. That m-op
effectively implements the FR Index for the translated query plan.

For example, recall that for the automaton shown in Figure 7(c),
its corresponding query plan in RUMOR is shown in Figure 8(c).
For the FR Index on the forward edges of state Q in Figure 7(c),
which we described above, it can be expressed by applying sσ to
σθ2 and σθ′2 above the;θf

operator in Figure 8(c).
To conclude, we have shown that with RUMOR, all the MQO

techniques employed by Cayuga can be expressed elegantly as m-
rules on RUMOR query plans. Hence, asymptotically, the evalu-
ation efficiency of a set of event pattern queries in RUMOR is at
least as good as that in the Cayuga engine, as is confirmed by our
experiments.

EXAMPLE 3. The RUMOR query plan for n query instances of
Query 2 in Section 4.1, denoted asQ1 throughQn, is shown in Fig-
ure 6(b). The aggregation operator α is shared by all n queries. It
produces a single stream called SMOOTHED in Query 1, and mul-
tiplexes it to all its consumer operators. The n starting conditions
are implemented by the m-op σ{s1,··· ,sn}, which produces n out-
put streams corresponding to that of σs1 through σsn . µi builds
the event sequence pattern for query Qi. It reads the two streams
produced by σsi and α respectively. Its output stream is consumed
by σei , the stopping condition for Qi.

Note that in Example 3, even though the µi operators have
the same definition, they cannot share work, since their left input
streams are different. The same observation holds for the σei oper-
ators. This is a limitation for RUMOR without channels, and is also
the case for Cayuga automata. We will show in the next subsection
how to use channels to overcome this limitation.

4.4 Query Plans with Channels
In the previous subsection, we have discussed how to express all

Cayuga MQO techniques as m-rules and m-ops in RUMOR. In this
subsection, we demonstrate one of the major benefits of integrating
MQO techniques from RE and EE into a single framework. More
precisely, we show that, somewhat surprisingly, there are event pat-
tern queries that can be evaluated more efficiently in the form of



RUMOR query plans than in the Cayuga engine. This is due to
new MQO opportunities with channels, illustrated through the fol-
lowing example.

EXAMPLE 4. Let us revisit Query 2 from Section 4.1, and con-
sider how to process n instances of this query more efficiently than
the query plan shown in Figure 6(b). The sliding window aggrega-
tion part of these queries for smoothing the input stream is already
shared. For the pattern matching part, a good evaluation strategy is
to first evaluate the starting conditions in the n queries. If any sub-
set of them is satisfied, we remember this information and continue
to match the monotonic sequence patterns of these queries, imple-
mented by the µ operators. When the stopping condition is satis-
fied, we then use the information we remembered for which θsi ’s
are satisfied to produce result tuples for the right set of queries.

The RUMOR query plan implementing this evaluation strategy
is shown in Figure 6(c). As in Figure 1(c), we use dashed arrows
to represent channels. However, note that this evaluation strategy
is outside of the Cayuga automata model, and therefore cannot be
used by the Cayuga engine.

In order to produce the desired query plan with channels shown
in Figure 6(c), we add one m-rule for; and µ each. The m-rule for
;, denoted as c;, maps a set of;operators to a single m-op, if these
operators satisfy (a) they have the same definition, (b) they read
sharable input streams for the first input stream parameter, where
these input streams are produced by the same m-op, and (c) they
read the same input stream for the second input stream parameter.
In this case, we encode the first input streams of these operators
with a channel. The new m-rule for µworks in a similar way. These
two m-rules are shown in the last row in Table 1. The stream share-
ability computation and the channel-based MQO sharing criteria
defined in Section 3 are extended accordingly for; and µ.

We now show how to use the m-rules to optimize n instances of
Query 2, denoted as Q1 through Qn. Starting from the query plan
in Figure 6(b), we first apply the m-rule sσ to the set of starting
conditions in Q1, . . . , Qn, and encode their output streams with a
channelC. Next, we apply the m-rule cµ to the set of µ operators in
the n queries, and again encode their output streams with a channel
D. Finally, we apply the m-rule cσ to the set of stopping conditions
in Q1, . . . , Qn, resulting in a selection m-op that reads channel D
as input, and produces n output streams for the n queries.

5. PERFORMANCE EVALUATION
We have implemented in Java a prototype stream engine based

on RUMOR, which is capable of processing RE queries, EE
queries, as well as hybrid queries. In this section we report the
performance of our engine in evaluating the optimized query plans.
The experiments are conducted on a machine with Intel Pentium
D 2.80 GHz processor and 2 GB main memory, running Sun Java
Hotspot Server VM 1.6.02 on Windows Vista.

To leverage the JVM just-in-time code optimization, for each ex-
periment, we first process the input stream for a few iterations, be-
fore we start to measure throughput. To reduce experimental vari-
ance, we perform each experiment for ten times, and report the
average throughputs we measured.

5.1 Setup
We first use a synthetic benchmark to measure the performance

of our system for processing event pattern queries and hybrid
queries. We do not measure the performance for RE queries, be-
cause RUMOR is query-plan based like REs. RUMOR therefore
can use the same query plans as these systems, which have been
well studied [2, 5].

Variable Default Value
Number of queries 1000
Number of attributes in stream schemas 10
Constant domain size 1000
Window length domain size 1000
Zipfian parameter 1.5

Table 3: Parameters (default values)

The stream schema we choose consists of 10 integer attributes,
denoted as a[0], · · · , a[9], and 1 (integer) timestamp attribute. We
generate two streams conforming to this schema, denoted as S and
T , as follows. The generated stream tuples have consecutive times-
tamps, starting from 0. For each tuple, we set its 10 integer at-
tributes to integer values from 0 to 999 chosen uniformly at ran-
dom. We interleave the generation of tuples for S and T . That is,
tuples with timestamps 0, 2, · · · belong to S, and tuples with times-
tamps 1, 3, · · · belong to T . For each experiment, we generate a
total of at least 100000 tuples, and feed the tuples from S and T in
their timestamp ordering.

We use the following common parameters to generate query
loads. For each randomly generated query, we choose a window
length for it from 1 to 1000, where 1000 is the default domain
size for generating window lengths. Each window length is chosen
with a Zipfian distribution, favoring larger windows (i.e., a window
of length 1000 is most likely to be chosen). The default Zipfian
parameter value is 1.5. The Zipfian distribution is to model com-
monality among queries that is often observed in real, large-scale
workloads. The parameters are summarized in Table 3.

5.2 Event Pattern Queries
In Section 4, we have chosen Cayuga as a representative event

engine, and shown how to express its automata queries and MQO
techniques in RUMOR. In this subsection, we compare the perfor-
mance of our system based on RUMOR with Cayuga. Due to the
significant differences in the architecture and implementation plat-
form of both systems, a comparison of their absolute performance
is not meaningful. Instead, we follow the experimental approach
used in SASE [21], and report normalized throughput obtained as
follows: as the query processing load changes from light to heavy
in each experiment, we use the throughput for the lightest work-
load to normalize other measurements. This approach allows us
to observe and compare the performance trends of both systems
when we vary the values of experimental variables, indicating sys-
tem scalability.

Workload 1. In the first query workload, we generate a set of
queries of template σθ1(S) ;θ2∧θ3 T , where ; is the Cayuga se-
quence operator. θ1 is of form a[0] = c, where c is chosen at ran-
dom between 0 and 999 with the same Zipfian distribution as for
window lengths. Similarly, θ3 is of the same form and generated
in the same way, but it is evaluated on each T tuple, whereas θ1 is
evaluated on each S tuple. θ2 is a “duration predicate” in Cayuga
terminology — it expresses the window length of this query. Note
that this query workload benefits from the AN index and FR in-
dex in Cayuga, which we described in Section 4.3. In particular,
the θ1’s of the set of queries we generate can be indexed by an FR
index, while the θ3’s can be indexed by an AN index.

We first vary the number of queries. Figure 9(a) shows that by
expressing AN indexes and FR indexes with m-rules in RUMOR,
our system scales very well. Note that even if the predicates θ1
and θ3 on each query are quite selective, this is not a trivial query
workload — with 100K queries in the system, the input stream of
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(c) Window Length Domain
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Figure 9: Event Pattern Query Workload Exercising AN Index and FR Index in Cayuga

100K events generates a total of 1.7 million output events.
Next, we vary the domain size from which query constants are

drawn. Intuitively, the larger this domain size, the more selective
θ1 and θ3 are, and therefore the lower load each query generates.
The result in Figure 9(b) matches our expectation.

We then vary the size of the domain from which sliding win-
dow lengths are drawn. For a sliding window join query, the larger
the window length, the more expensive the query becomes, since
it needs to hold more state and may produce more output tuples.
However, the Cayuga sequence operator has the special semantics
that when a tuple in the operator state is matched by an incom-
ing tuple from its second input stream, that tuple in the state is
deleted. For this query workload, most tuples in the operator states
are matched by incoming tuples, before they fall out of the query
windows and expire. Therefore, as we increase the size of window
length domain, creating queries with larger windows, the load of
the queries does not significantly increase. This is confirmed by
the result shown in Figure 9(c).

Finally, we vary the Zipfian parameter value used to generate
window lengths and predicate constants, and report the result in
Figure 9(d). As we increase the Zipfian value, there is increased
commonality among the generated queries. When two queries
share a common subexpression, both systems will avoid repeated
evaluation of the common subexpression. As a result, the through-
puts of both systems increase. However, the impact of Zipfian value
is not very significant for this query workload (the throughputs of
both systems increase by a factor of around 2 when the Zipfian
value increases from 1.2 to 2). This is because with the use of an
AN index and an FR index, the added value of Common Subexpres-
sion Elimination in terms of increasing throughput is little. This is
consistent with the conclusion drawn in previous work [7].

Workload 2. We next use a query workload which benefits from
the AI index technique in Cayuga, an MQO technique which can
again be expressed in RUMOR.

The query template we use is S;θ1∧θ2 T , where θ1 is of form
S.a[0] = T.a[0], and θ2 expresses the window length of this query,
as in the previous workload. The AI index in Cayuga indexes for
each query the input tuples from S that remain in the state of;. This
is so that the evaluation of θ1 on the input T tuples can be sped up.

The result of varying the number of queries is shown in Figure
10(a). This query workload is more expensive than the previous
one, since each query here does not specify predicates that compare
S and T tuples with constants. Intuitively, a query in this workload,
which looks for a pair of S, T tuples with the same value on a[0], is
a parametrized version of a query in the previous workload, which
looks for a pair of S, T tuples with a[0] values specified by the
predicate constants. Hence, when we process each query in this
workload, each input S tuple is inserted into the; operator state,
and each input T tuple probes the operator state. Still, our system is

able to maintain high throughput in the presence of 10000 queries.
We also tried a variant of the query template used in this work-

load: S µθ1∧θ2,θ3 T . Here µ is the Cayuga iteration operator. θ3
is the “rebind predicate” which is defined by T.a[1] > last.a[1],
where last.a[1] denotes the a[1] value of the last input event that
contributes the event pattern being built by this query. Intuitively,
each such query looks for an event sequence pattern starting with
an S tuple, followed by a sequence of T tuples with increasing a[1]
values. The result of varying the number of queries of this template
is shown in Figure 10(b). The throughput trends of both systems are
similar to those in 10(a). However, the absolute values are lower,
since µ is a more expensive operator to evaluate than;.

Similarly to the experiments for the previous workload, we also
varied other parameters for this workload, and obtained similar re-
sults. We omit them due to space constraints.

Conclusions of Workload 1 and 2. As we observe in the above
results, both systems display similar trends of throughputs when
we vary the experimental parameters in the above settings. This
is expected since the Cayuga MQO techniques are translated into
RUMOR, and are used by the RUMOR query plans.

Workload 3. The above experiments do not involve channels.
Next, we use channels to further share work among queries gener-
ated in a variant of Workload 2, with the techniques described in
Section 4.4. In this workload variant, the query template we use
is Si;θ1∧θ2 T , where the predicate parameter of; is defined in the
same way as above workload. The first input stream Si’s for the
generated queries are different streams but sharable as defined in
Section 3.2, and they are encoded with the same channel, denoted
as C. The second input stream T is the same for all the queries. By
default, there are 10 different Si streams, referred to as S1 through
S10. For a channel, we define the number of streams encoded by it
its channel capacity. Thus the default channel capacity of C is 10.

As we have compared the performance of our system with
Cayuga in the above workloads, to quantify the benefits of using
channels, here we compare the performance of our system with
channel against that of our system without using channel. Since
both competitors are based on the same software infrastructure, we
report absolute throughput in the results below.

We modify the way we generate stream tuples as follows. When
we use channels in the query plan, we interleave the generation of
tuples from C, encoding S1 through S10, and the generation of tu-
ples from the channel encoding T alone. Each C tuple belongs to
all Si’s. In the case when we do not use channels in the query plan,
we use a round robin policy to generate stream tuples: we first gen-
erate 10 tuples respectively from S1 through S10, and then generate
a tuple from T . The set of 11 consecutive tuples is referred to as a
round of tuples. We then repeatedly generate rounds of tuples. To
ensure fairness in the comparison, We make the first 10 tuples in
every round have the same content. This way, the generated stream
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Figure 10: Event Pattern Query Workload Exercising AI Index in Cayuga

used for the query plan with channels, and the one used for the
query plan without channels, have exactly the same content.

Figure 10(c) reports the result of varying the number of queries.
The throughput of our system using channel is one order of magni-
tude higher than that of our system not using channel. Note how-
ever that this workload generation is optimistic, in that it assumes
eachC tuple belongs to all Si’s. In a realistic workload, it is usually
the case that a channel tuple belongs to a subset of streams the chan-
nel encodes, which we measure in Section 5.3. Nevertheless, Fig-
ure 10(c) shows that channel is a very good mechanism for sharing
work. Figure 10(d) reports the result of varying channel capacity.
Clearly, when our system uses channels, the more streams channel
C encodes, the higher throughput it achieves. We also performed
experiments on channels with query template Siµθ1∧θ2,θ3T , and
obtained similar results.

5.3 Hybrid Queries with Real Datasets
The experimental results on our synthetic benchmark showed

that our system is efficient and scalable. We next test our system
with hybrid query workloads and two real datasets.

The two performance counter datasets are both collected with
the Performance Monitor component of Windows Vista. For the
first dataset, called D1, we chose 104 long running processes on a
developer’s office machine, and collected the CPU usage of these
processes over a 24-hour period of time. For each process, for ev-
ery second, one stream tuple is recorded for the amount of CPU
percentage that process has used in the last second. The second
dataset, called D2, is collected in a similar way, recording the CPU
usage of 28 long running processes on a home machine over a day.

For the query workload of this experiment, we choose the set
of hybrid query instances of Query 2 with the following modifi-
cations to make our query workload more challenging. First, in-
stead of monitoring a particular process with a specified pid in the
query, each query monitors all processes. Thus, if the input stream
contains performance readings for n processes, where n = 104
for dataset D1, one query in our workload corresponds to n in-
stances of Query 2, each monitoring a particular process out of
the n processes. Second, for each query, we increase the window
length of the sliding window aggregation operator used to smooth
the CPU loads of each process from 5 seconds (as in Query 1) to
60 seconds. We still denote the smoothed stream as SMOOTHED.
Third, we reduce the selectivity of the stopping condition of each
query, by setting the stopping condition to CPU.load > 10, in-
stead of CPU.load > 90 (as in Query 1). As a result, each query
in our workload may produce more output tuples than an instance
of Query 2. Finally, for the starting condition of each query, we use
a parameter sel ∈ [0.0, 1.0] to control its selectivity. Intuitively,
if sel = 0.0 for all queries, no stream tuple from SMOOTHED will
pass the starting conditions, so no event patterns will be produced.
With a higher sel value, each SMOOTHED tuple may pass a subset
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Figure 11: Hybrid Query Workload with Real Dataset D1:
Note each query corresponds to 104 instances of Query 2

of starting conditions of all the queries. We assume these start-
ing conditions are not indexable (since they may have inequality
or more complex predicates as in Query 1) , but still use the m-
rule sσ to map all of them to an m-op, denoted as σ{s1,··· ,sn} as
in Figure 6(b), which sequentially evaluates them for each input
SMOOTHED tuple. Without using channels, σ{s1,··· ,sn} produces
one tuple for each σsi that is satisfied by the current SMOOTHED tu-
ple being processed. With channel, however, σ{s1,··· ,sn} produces
one (channel) tuple for all σsi ’s that are satisfied, as in Figure 6(c).

We report the throughputs of the RUMOR query plan without us-
ing channels (Figure 6(b)), and the query plan using channels (Fig-
ure 6(c)). In Figure 11(a), we fix sel = 0.5, and vary n, the number
of hybrid queries. We are able to achieve very high throughputs in
this very challenging hybrid query workload, especially when we
use channels in the query plan. This shows that RUMOR is very
effective in sharing work among a set of queries. In Figure 11(b),
we fix n = 10, and vary the selectivity of the starting conditions in
the 10 queries. With a higher selectivity, the query plan without us-
ing channel experiences a significant degradation in throughput, as
more tuples are produced by σsi ’s, so µi’s have to do more work.
As we expected, after the throughput of the query plan using chan-
nels experiences a drop when sel increases from 0.0 to 0.2, that
throughput remains stable with larger sel values. This is because
for each channel tuple t produced by σ{s1,··· ,sn}, the amount of
work for processing it in µ{1,··· ,n} remains the same, regardless of
how many stream tuples t encodes. As such, the more streams that
can be encoded by channels in the query plan, the more savings we
can obtain compared to the query plan without using channels.

We obtain similar results in processing D2, and omit them due
to space constraints.

6. RELATED WORK
Stream processing has been well studied as a computational

paradigm to continuously process and respond to high-speed data
streams [6, 3, 2, 5]. The importance of Multi-Query Optimiza-



tion, first studied in the context of relational database query pro-
cessing [19], is recognized in NiagaraCQ [6]. Subsequent work on
stream MQO focuses on individual query operator types, which we
summarize below. We have shown in this paper how to model all
of these MQO techniques as m-rules and m-ops in RUMOR.

The predicate indexing technique is studied in Le Subscribe [10]
and CACQ [16]. In [12], Hammad et al. develop techniques to
share work among multiple stream join operators which read the
same input streams and have the same join predicate but potentially
different window specifications. For multiple aggregate queries
with potentially different groupby specifications, Zhang et al. pro-
pose to maintain query states in two levels of granularity, such that
the aggregation computation performed at the finer-grained level
can be shared among queries [22]. For pattern matching queries,
state merging and indexing techniques, which we reviewed in Sec-
tion 4.3, are proposed in Cayuga to efficiently evaluate a set of
automata queries [7]. Similar indexing techniques, such as Parti-
tioned Active Instance Stack (PAIS), are used in SASE [21].

All of the above MQO techniques attempt to share work among
queries reading the same input stream(s). Krishnamurthy et al.
propose techniques to share work among queries reading different
streams, where these streams may share tuples of identical con-
tent [14, 15]. We generalize their techniques with the concept of
channel (Section 3), and show how channels can be used to share
work among multiple event pattern queries (Section 4.4).

Recent work also includes a new automaton model for event pro-
cessing and techniques for sharing state within a single automa-
ton [1]. Jiang et al. propose a three stage integration model for event
and stream processing [13]. Their work takes expressive event pro-
cessing features other than event pattern queries, such as event con-
sumption modes, into account, which our work has yet to consider.
In contrast, our focus is on integrating the MQO techniques for both
REs and event engines.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose RUMOR, a rule-based MQO frame-

work to express and evaluate query plans that share work among
multiple stream queries. RUMOR integrates existing and new
MQO techniques for both REs and EEs. As a result, we are able to
unify REs and EEs, and efficiently process a large number of RE
queries, EE queries, and hybrid queries in a single engine.

This work opens up several avenues for future research. First,
more work is needed to decide which streams to combine into chan-
nels. Second, as is mentioned in Section 3.3, on an input query
plan, multiple m-rules can become applicable at the same time.
Some conflict resolution strategies will be useful in this case. For
example, to reduce or completely eliminate nondeterministic rule
applications, rule priorities can be assigned to establish a partial
order or a total order in the m-rule set. Furthermore, static analy-
sis techniques can be developed to reason about the confluence of
the rule-based query rewrite system. Finally, as in relational query
optimization, it is valuable to supplement the rule-based query op-
timizer with a cost model, such that the optimizer can drive the
rule applications based on a cost function, reducing the chance of
producing a globally suboptimal query plan.
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