
Rule-Based Refinement of Petri Nets:

A Survey�

J. Padberg and M. Urbášek

Technical University Berlin, Germany
Institute for Software Technology and Theoretical Computer Science

{padberg,urbasek}@cs.tu-berlin.de

Abstract. This contribution provides a thorough survey of our work on
rule-based refinement. Rule-based refinement comprises the transforma-
tion of Petri nets using rules while preserving certain system properties.
Petri net rules and transformations are expressed by morphisms and
pushouts. This allows an abstract formulation of our notions indepen-
dent of a specific Petri net class, as place/transition nets, elementary
nets, predicate/transition nets etc. Hence, it is adequate to consider our
approach as rule-based refinement of Petri nets in general. We have pre-
sented various results in recent years at different conferences. So this
contribution gives an overview of our work in a compact form leaving
out the technical details.

1 Introduction

Our work on rule-based refinement of Petri nets has been part of the research
project “DFG- Forschergruppe Petrinetz-Technologie”. Here we present
our results concerning Petri net transformations that preserve system properties.
These properties comprise safety properties as well as liveness of Petri nets.
The formal foundation is expressed in a categorical way in order to achieve an
approach that is valid for different net classes. We illustrate the concepts at
length with several examples in different net classes. Here we concentrate on
the intuitive notions and the meaning of the main results. As the underlying
category theory is based on morphisms we introduce the basic definitions of the
involved morphisms and of the rules as well as the transformations.

First in Subsection 1.1 a motivation for Petri net transformations is given
stating the advantages of this specific approach as well as relating it to the
main work of the “DFG- Forschergruppe Petrinetz-Technologie”. In Sub-
section 1.2 we discuss the basic concepts of transformation of Petri nets and the
way properties of nets can be preserved. As the last part of the introduction we
relate our work to literature. Subsequently we present two extensive examples
� This work is part of the joint research project “DFG- Forschergruppe Petrinetz-

Technologie” between H. Weber (Coordinator), H. Ehrig (both from the Technical
University Berlin) and W. Reisig (Humboldt-University Berlin), supported by the
German Research Council (DFG).

H. Ehrig et al. (Eds.): Petri Net Technology ... , LNCS 2472, pp. 161–196, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

162 J. Padberg and M. Urbášek

in Section 2. The one for place/transition (in Subsection 2.1) nets shows how
a token ring is refined preserving certain safety properties as well as liveness. The
second example (in Subsection 2.2) concerns the refinement of coloured Petri nets
using a simplified example from the context of ETCS (European Train Control
Systems). Since the main technical contents is based on morphisms, in Section 3
we give a brief outline of the involved morphism classes both for place/transition
nets (in Subsection 3.1) and coloured Petri nets (in Subsection 3.2). Then in Sec-
tion 4 we state the results. These results are independent of a specific net class,
so we need not to differentiate between place/transition nets and coloured Petri
nets. We give a short summary and discuss future work in Section 5.

1.1 Motivation

We focus on the specification process of a system in contrast to approaches
concerning the verification of (distributed) algorithms as for example in [Peu02]
in this book.

Stepwise modification of Petri nets has been an issue as long as they have
been used for specification purposes. The need to develop a model in several
steps arises as soon as large models are needed for the specification of a system.
Our approach - as it is called - is based on rules and provides a visual way of ex-
pressing the development steps of a net. The transformation of a net is achieved
by applying a rule to the given net. Representing changes as rules in a visual
form is very intuitive and does not require a deep understanding of the mathe-
matical theory behind it. In particular we claim that the examples in Section 2
can be followed and even worked out without the knowledge of the underlying
theory. But modification alone is often not sufficient. The model describes some
desired system properties that need to be guaranteed after each development
step. Verification of each intermediate model requires a lot of effort and hence
is cost intensive. Obviously the idea of refinement concerns the modification of
nets so that system properties are preserved. Hence the verification of those
properties needs only to be done once when introduced. Rule-based refinement
modifies Petri nets using rules so that specific system properties are preserved.
Preservation of system properties by a transformation is to be understood in the
following way: If a Petri net has a certain system property (e.g. safety proper-
ties, liveness, etc.) then the transformed net has the corresponding property as
well. Preservation of system properties is of interest in many applications as it
allows omitting the tedious verification of system properties at different stages
of the development. Our transformations are based on the double-pushout ap-
proach as first introduced for graphs. Rules are given as a span of two Petri net
morphisms and its application is achieved by two pushouts (see the following
Subsection 1.2); hence the name double-pushout approach.

The notion of Petri net techniques has been developed in the research project
“DFG- Forschergruppe Petrinetz-Technologie” and is inspired by the need
to have a more application-oriented presentation of Petri nets. The definition of
Petri net techniques has been one of the main research areas in this project (see
the corresponding papers in these proceedings [WER99, WER01] and [ERW02]

Rule-Based Refinement of Petri Nets: A Survey 163

in this book). The concept of Petri net techniques focuses on Petri nets as a spec-
ification technique, hence it comprises more than the Petri net model. It may
include structuring and refinement of nets, tool support or exchange formats, or
process model and exemplary methodology, so that adequate and scalable use of
nets is provided for specific application domains (for more details see [ERW02]).
The formal Petri net technique is the formal description of Petri net technique.
Within a formal Petri net technique one important way to manipulate nets is
rule-based refinement. One motivation for Petri net techniques has been the
need for generalizing various notions of Petri nets. Many concepts of Petri nets
are given for specific net classes, e.g. place/transition nets, elementary nets,
algebraic high-level nets, predicate/transition nets, etc. only. Nevertheless, in
principle they often are independent of the specific net class. So we have chosen
a generic description method. Our approach to rule-based refinement is indepen-
dent of specific net classes as it is formulated in a more abstract way. We employ
category theory that allows coping with objects (i.e. nets) and morphisms. We
characterize specific properties a category (i.e. a net class) has to provide and
achieve our results on this abstract basis. In fact, the results do not hold for
Petri nets only but can be transferred to other specification techniques as state
charts, algebraic specifications, graphs etc. We have ensured that rule-based re-
finement fits into the concept of a Petri net technique. One of the main features
of a technique is that the offered possibilities to cope with nets of that specific
class are compatible with each other. Rule-based refinement is compatible with
various structuring techniques as union and fusion (see [9]). Furthermore process
models [7, 5] based on rule-based refinement are provided.

1.2 Basic Ideas

Rules and transformations of Petri nets are given by an instantiation of high-level
replacement systems. These can be considered as general description of replace-
ment systems, where a left-hand side of the rule is replaced by a right-hand side.
Generally, rules and transformations fully capture the replacement and thus can
define any kind of system development or modification. High-level replacement
systems have been introduced in [3] as a categorical generalization of graph
transformations. The application of high-level replacement systems to different
domains as place/transition nets, algebraic specification [1] etc. requires a suit-
able category. High-level replacement systems are formulated for an arbitrary
category CAT with a distinguished classM of morphisms calledM-morphisms.
Here we give the corresponding notions of replacement systems in terms of Petri
nets and not on the abstract level as in [9]. In this paper we have focused on
place/transition and coloured Petri nets. The same approach can be applied to
other net classes, e.g. algebraic high-level nets [13].

We now explain the used notions rather informally to show that the complex
category theory behind it can be omitted in applications. The reader interested
in details of the theory is referred to the corresponding papers. The most impor-
tant notion from category theory used almost throughout whole theory of high-
level replacement systems is the notion of a pushout. In the next paragraph we

164 J. Padberg and M. Urbášek

describe the pushout construction. For illustration see also the Figure 1. Next
we briefly address other necessary notions as rules, transformations, property
preserving rules, structuring techniques and proof rules.

Pushouts of Petri nets. Pushouts are a categorical construction that requires a
commutative square and has some universal properties.

Fig. 1. An example of a pushout

Informally, a pushout can be character-
ized as the “largest” object, that yields
a commutative square for two given mor-
phisms without “new” nodes. A pushouts
of Petri nets can be considered as a union
of nets with respect to a common inter-
face. That is, for injective morphisms we
glue the nets together as illustrated in
Figure 1. For coloured Petri nets the con-
struction of pushouts has to take addi-
tional components like e. g. the data, arc
inscription, transition guards, etc. into ac-
count. Basically the construction of these
components is analogous to the presented
construction of the net structure.

Rules. A rule r = (L k1←− K
k2−→ R) consists of the Petri nets L, K and R, called

left-hand side, interface and right-hand side respectively, and two M-morphisms
K

k1−→ L and K
k2−→ R.

Transformations. Given a rule r = (L k1←− K
k2−→ R) a direct transformation

N1
r=⇒ N2, from N1 to N2 is given by

the following two pushout diagrams (1)
and (2). The morphisms L −→ N1 and
R −→ N2 are called occurrences. The
net C is called pushout complement.

L

��
(1)

K
k1�� k2 ��

��
(2)

R

��
N1 C�� �� N2

Informally, a rule r = (L k1←− K
k2−→ R) is given by three nets L, K, and R.

Moreover,K is a subnet of both L and R expressed by the morphisms k1 and k2.
Application of a rule to net N1 is a transformation of N1. The transformation
means replacing a subnet specified by the left-hand side of the rule with the net
specified by the right-hand side. More precisely, we first identify the subnet L
in N1. Then we delete those parts of the subnet L which are not subnets of the
interface net K as well. This results in an intermediate net C, where in a further
step we add the difference of R and K to the preserved subnet C to obtain
the transformed net N2. In case the left-hand side is empty, we simply add
the right-hand side to the first net. A transformation sequence N1

∗=⇒ Nn+1

between nets N1 and Nn+1 means that there is a sequence of n ≥ 1 direct
transformations: N1

r1=⇒ N2
r2=⇒ . . .

rn=⇒ Nn+1. In this case we also denote the
sequence as N1

r1,r2...rn=⇒ Nn+1.

Rule-Based Refinement of Petri Nets: A Survey 165

Structuring. There are two abstract structuring constructions in the theory of
high-level replacement systems, namely union and fusion. Generally, they com-
bine two subnets or two different nets into one. The union of two Petri nets
is given with respect to a defined subnet. Union is defined as the pushout of
two nets and is given by a span of morphisms. The resulting net preserves the
common subnet, i.e. the source of both morphisms and keeps the rest of the two
nets distinct, e.g. see Figure 1. The fusion is the gluing of two subnets within
one Petri net.

Refinement. Based on the notion of rules and transformations, the general the-
ory of high-level replacement systems has been enriched by the Q-theory in order
to formulate abstraction/refinement morphisms of structures These morphisms
are more suitable for the stepwise development of of systems. The main idea
is to add an abstraction/refinement morphism to a rule going from left-hand
side of a rule to the right-hand side or vice versa (see the drawing in the next
paragraph). The main advantage of this approach is the fact that the additional
abstraction/refinement morphisms can be defined as preserving or reflecting cer-
tain properties. This means that certain important system properties may be
preserved by transformations as defined below. The general theory of rules and
transformations with additional refinement morphisms has been introduced in [9]
in the general framework of high-level replacement systems.

System Properties. Petri nets are an adequate specification technique for behav-
ioral aspects of a system. So, the desired properties of the system to be specified
usually concern the behavior of the model. These properties can be expressed
in various ways, e.g in terms of Petri nets (as liveness, boundedness etc.), in
terms of logic (e.g. temporal logic, logic of actions etc.) in terms of relation to
other models (e.g. bisimulation, correctness etc.) and so on. Up to now we have
focused on liveness of Petri nets and on safety properties in the sense of tem-
poral logic. Liveness of nets means that no deadlock and even livelock of a net
can occur, i.e. there always exists a firing sequence which enables any chosen
transition from any reachable marking. A safety property is expressed by a logic
formula stating facts about markings of a net. A formula is given in terms of
numbers of tokens on places. For a place/transition net the static formula 2d∧3a
is true for a marking m where at least 2 tokens are present on the place d and
at least 3 tokens on the place a. The always operator � in a safety property
�(2d ∧ 3a) requires that the static formula (2d ∧ 3a) is true for all reachable
markings from m. The adaptation of safety properties to coloured Petri nets has
to be made due to the different structure of the marking.

Property Preserving Rules. A pair (r, f) is a property preserving rule, if r =
(L k1←− K

k2−→ R) is a rule with morphisms k1, k2 ∈ M and with

– either a property preserving morphism f : L ����� R s.t. f ◦ k1 = k2.

– or a property respecting morphism f : R ����� L s.t. f ◦ k2 = k1.

166 J. Padberg and M. Urbášek

According to the notion of property preserving morphisms and rules, we can
now define property preserving transformations. The general idea is that the
application of a rule that preserves properties leads to a net transformation that
also preserves these properties.

Property Preserving Transformations. Given a property preserving rule (r =
(L ← K → R), f) with f : L → R being a property preserving morphism
(f : R → L being property respecting, respectively). Then the direct transforma-

tionN1
(r,f)
=⇒ N2 is a property preserving transformation1 with a property preserv-

ing (respecting, respectively) morphism f : N1
����� N2 (f : N2

����� N1,
respectively). The graphical representation of such transformations is depicted
below.

L

f

��� � � � � � �

��

K
k1

��
k2

��

��

R

��
N1

f

��� � � � � � �C�� �� N2

L

��

K
k1

��
k2

��

��

R

��

f

�� �������

N1 C�� �� N2

f

�� �������

Property preserving
transformations repre-
sent a strong theoreti-
cal result with an obvi-
ous impact to the appli-
cations. The interpreta-
tion of the results is usu-
ally stated in form of so-

called proof rules. The proof rule indicates the property (stated under the line)
which can be derived for a system when certain assumptions (stated above the
line) are fulfilled. For the property preserving transformations N1 =⇒ N2 we
have the following proof rule:

(r, f) is a property preserving rule; N1 satisfies the corresponding
property

N2 satisfies the property too

The following property introducing transformations are a special kind of general
transformations with the empty set on the left-hand side of the rule.

Property Introducing Rules and Transformations. Given a rule r = (∅ ← ∅ → R)
such that R satisfies certain property, then the rule is called property introducing
rule yielding property introducing transformations N1 =⇒ N2 and the following
proof rule.

r = (∅ ← ∅ → R) is a rule; R,N1 satisfy a certain property2

N2 satisfies the property too

1 provided the morphisms satisfy certain assumptions
2 sometimes this condition can be relaxed in such a way that there is no assumption
on N1 made

Rule-Based Refinement of Petri Nets: A Survey 167

The proof rules are a powerful expression of the properties of transformations.
They are very useful for designers as they abstract from this theory and focus
on applications only. Therefore the complicated theory of high-level replacement
systems is applicable in practice.

1.3 Related Work

As the reader may already have noted we have in this paper two ways of referring
to literature. We have split the references, by having listed our papers on rule-
based refinement separately and by referring to other publications as usual.
References of our papers on rule-based refinement are given by numbers, the
other as an abbreviation of the authors names.

Intuitively, a safety property expressed by a temporal logic formula in the
sense of [MP92] means that “nothing bad” can happen in the system, and is thus
important for correctness. The combination of transformations with the preser-
vation of safety properties is relevant in software engineering as the verification
of such properties in large and complex systems is often necessary, but very com-
plicated (if possible at all) and thus expensive. Thus, it is desirable to state and
prove safety properties at an early state and to preserve them throughout the
subsequent development. In the area of low-level Petri nets there are many con-
tributions concerning verification with temporal logic [DDGJ90, BS90, HRH91]
and refinement [BGV91], [DM90, GG90, BDH92]. In the area of high-level nets,
verification [Jen94, Sch96] is much more difficult and even more the compati-
bility of system properties with refinement. One main problem of verification in
formal software engineering can be described by the following demand: Rigor-
ous software development requires continuous verification during all phases of
the software development process. Nevertheless, resources are restricted and an
entirely new verification at each step is usually considered to be too expensive
and time consuming. Thus, vertical structuring techniques should preserve veri-
fied properties. Refinement of nets in a way that liveness is preserved is another
thoroughly investigated area of Petri nets. Liveness for Petri nets states the fact
that in a net all transitions can fire from all reachable markings. Nevertheless,
the combination with stepwise modification of nets based on replacement rules
has been investigated in [8, 16] only. This approach is in line with previous pub-
lications concerning rule-based modification preserving safety properties of nets,
see e.g. [13, 15, 14]. A related idea has been pursued in [DA92], where various
reduction methods for ordinary nets have been proposed. These methods operate
on the net structure and also preserve liveness, by basically shortening paths in
the net. The analysis in this case is based on a Petri net reduction. One disad-
vantage is that the whole Petri net has to be developed entirely and only after
the design of a Petri net is finished the analysis can start. Similar remarks hold
for reductions presented by other authors in [ES91, Esp94, CT90, FWL]. Au-
thors also use reductions algorithms to decrease the size of the net. J. Esparza,
etc. in [ES91, Esp94] investigated the class of free-choice Petri nets, J. Favrel
in [FWL] is focused on coloured Petri nets based on the results for generalized
Petri nets proposed earlier. In [CT90] the certain subclass of Petri nets, called

168 J. Padberg and M. Urbášek

regular blocks, is investigated. A work on synthesis methods preserving liveness
properties has also been made. In the area of free-choice Petri nets the synthesis
preserving liveness properties was described along the reduction methods by J.
Esparza, etc. in [ES91, Esp94]. Similar ideas not only for P/T Petri nets can
be found in [BGV91, Sou91]. In the area of workflow modeling the notion of
soundness which comprises liveness has turned out to be of special importance.
In a row of papers, see e. g. [vdA97, vdA98, vdAtH98], v. d. Aalst has stated
important results concerning composition of sound nets [vdA98].

In cited papers, the synthesis and/or reduction rules are depicted on more
intuitive level. Although our approach is very close to these papers, formalization
and net class make an important difference.

2 Examples for Rule-Based Refinement of Petri Nets

In order to illustrate the concepts of rule-based refinement described in Sec-
tion 1.2 we will present stepwise development of two small systems in this section.
The first example is a development of a token ring based on place/transition nets.
The another one is a development of a train control system based on coloured
Petri nets. A short version of this one can be found in [11]. Together with the
development of the systems we gradually introduce system properties as liveness
or safety properties. In further development steps these system properties are
preserved and thus do not have to be proven again. The process of developing
the system is technically based on rules and transformations in the sense of [2].
More formal introduction of used notions and morphisms follows in Section 3.

2.1 Place/Transtion Nets: Token Ring

A token ring is a classical example of a communication protocol between several
computational units (CU) on a shared medium. All computational units are
connected such that they form a cycle. There is a so-called token sent from one
unit to another. The unit which possesses the token can decide either to pass
the token through to the next unit or to keep the token and send a message. The
sent message propagates through the medium from one unit to another reaching
the sending unit sooner or later. Before the sending unit can pass the token to
the next unit, the sent data has to be removed from the medium. When a unit
receives a data, it retransmit a message to the next unit.

In order to model the token ring system with rule based refinement, the usage
of place/transition nets as a basic class of Petri nets is sufficient. The necessary
conditions this system has to have are:

1. There exists a unit which possesses a token.
2. The token cannot be doubled, i.e. only one unit has a token.
3. The system is live (without livelocks and deadlocks).

The first proposal of a token ring system with three computational units is
given in the Figure 2. This proposal is really a very coarse model of a system.

Rule-Based Refinement of Petri Nets: A Survey 169

Nevertheless, it can be refined to get a model which is more suitable. The three
conditions of the system stated above can be expressed in this model as follows.

1. ✷(CU1 ∨CU2 ∨CU3)
2. ✷((CU1 ⇒ ¬CU2 ∧ ¬CU3) ∧ (CU2 ⇒ ¬CU1 ∧ ¬CU3) ∧

∧ (CU3 ⇒ ¬CU1 ∧ ¬CU2))
3. The net is live.

The first two conditions can be shortened by using the exclusive-or operator
(non-equivalence) as: ✷((CU1 xor CU2 xor CU3) ∧ ¬(CU1 ∧CU2 ∧CU3)).

CU

CUCU

1

23

PPPP

PP

1

2

3

Fig. 2. Token ring - first
proposal

Modeling within a rule-based framework
starts with a special kind of a rule, which
introduces a first proposal of the model.
In our example such a rule looks like the
one in the Figure 3. This rule is a so-called
si- and li-rule, short for safety introducing
and liveness introducing rule, respectively
(for description see Section 3.1).

The rule introduces a system, which is live and has a safety- property:
✷((CU1 xor CU2 xor CU3)∧¬(CU1 ∧CU2 ∧CU3)). The dashed arrow from
the left-hand side to the right-hand side expresses the existence of a place pre-
serving morphism between these nets (as formally introduced in Section 3.1).

2 3

1 2 3

1
(CU CU CU))

Live
CU

CUCU

1

23

PPPP

PP

1

2

3

((CU xor CU xor CU)

Fig. 3. Introducing the token ring

The proposal of the model
does not express the func-
tionality of the computa-
tional units. It only ex-
presses the fact that there
is a cycle with three units
which are connected to-
gether. To model full func-
tionality, the first coarse
model must be decomposed.
The decomposition is done
via transformations based

on rules. The modeled system has a safety property and is live. We would like
to preserve the properties during transformations and omit the check of these
properties for final system. We employ so-called liveness preserving rules, which
also translate safety properties in some sense. The special kind of transition re-
finement rules called lp-rules are used (see Section 3.1). We can then perform
three transition refinements, one for each unit i = 1...3, as sketched in the Figure
4. The dashed arrow means that there exists a collapsing morphism going from
the right-hand side net to the left-hand side one in the rule. Surely, in the case
of the refinement of PP1 both places CU1 in the corresponding rule (for i = 1)
are marked.

Explanation of used abbreviations:

170 J. Padberg and M. Urbášek

CU i

CU
(i+1)mod 3

PP
i

CU i

CU
(i+1)mod 3

UO i
PTi

TDi

RD
i

RTD i

CU i

CU
(i+1)mod 3

DIi

DOi

Fig. 4. Transition refinements

PT . . . passing a token to next unit, no transmission of data
TD . . . transmitting data
RD . . . removing data from the medium
RTD. . . retransmitting data received via medium
UO . . . unit not operating
DI . . . receiving data
DO . . . sending data

The system after refinement is depicted in the Figure 5. Performed transition
refinements preserve liveness. The safety property is transformed to:

✷(((CU1 ∨ ¬UO1) xor (CU2 ∨ ¬UO2) xor (CU3 ∨ ¬UO3)) ∧
¬((CU1 ∨ ¬UO1) ∧ (CU2 ∨ ¬UO2) ∧ (CU3 ∨ ¬UO3)))

as lp-rules preserve liveness and transform safety properties (as formally ex-
plained in the Section 3.1). The transformation of the safety property expresses
the fact that when certain computational unit CUi possessed the token in the
simple original system then an adequate expression after refinement is that ei-
ther a token is on the place CUi or the corresponding added subnet (refinement
of PPi) is running, i.e. there is no token on the place UOi. The last step in our
example is to model a shared medium for data transmission by connecting of
apropriate transitions in the Figure 5. For this reason it is necessary to glue a
transition DIi of one unit with a transition DO(i+1)mod 3 of the next unit. The
gluing can be obtained using three l-transition gluing rules as sketched in the
Figure 6.

Rule-Based Refinement of Petri Nets: A Survey 171

RTD 1

RTD 2

RTD 3

UO
2

UO3 UO
1

RD3

RD
2

RD
1

CU1

CU 2
CU 3

PT3

PT2

PT1

DI1

DO1

DI2 DO2

DI3

DO
3

TD
1

TD
2

TD
3

Fig. 5. Refined system

DIi

The rest
of the net

DO
(i+1)mod 3

.

.

all places, no transitions, no arcs

The rest
of the net

.

.

Fig. 6. Transition gluing

The dashed arrows ex-
presses the fact that there
exists a l-gluing morphism
(and therefore also plain
gluing morphism) going
from the net on the left-
hand side to the one on the
right-hand side. In order
to simplify the figure, the
transitions after gluing are
without labels. The final
system then is shown in the
Figure 7. Liveness and

safety properties are preserved via l-gluing morphisms. So, the model developer
does not have to check liveness and safety-property for the final model. These
properties have been preserved (transformed) during the transformation process
and are therefore valid for the final net. Surely, this may save time and effort
needed to check system properties, especially in the case of large and complex
systems. This approach was also used for rule-based modeling of a large medical
information system as presented in [4, 9] . The model developer can, of course,
continue in the detailed specification of the model, if necessary.

172 J. Padberg and M. Urbášek

RTD 1

RTD 2

RTD 3

UO
2

UO3 UO
1

RD3

RD
2

RD
1

CU1

CU 2
CU 3

PT3

PT2

PT1

TD
1

TD
2

TD
3

cycle established.
Shared media

Fig. 7. Final system

2.2 Coloured Petri Nets:
Stepwise Development of a Train Control System

High-level nets can be considered as the integration of process and data type
description. Some of the most prominent classes are coloured Petri nets [Jen92,
Jen94, Jen97], Predicate/Transition nets [GL81, Gen91] and algebraic high-level
nets [Vau87, Rei91, 10]. Coloured Petri nets are the focus of this subsection,
since they are widely known and constitute a very popular class of high-level
Petri nets. The practical relevance of coloured Petri nets is considered to be
very high, not at least due to the successful tool Design/CPN [JCHH91]. The
presented example concerning train control has been inspired by a case study
of a level crossing in a large research project3 [Ehr97, Jan97], but is of course
incomparable with respect to complexity.

3 DFG-Schwerpunktprogramm “Integration von Techniken der Softwarespezi-
fikation für Ingenieurwissenschaftliche Anwendungen”, see also WWW-page
http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/

Rule-Based Refinement of Petri Nets: A Survey 173

Simple Model In our example we develop a coloured Petri net concerning
a train’s passage of a level crossing, which is one of several situations the train
has to meet while traveling to its destination. Figure 8 depicts a simple coloured
Petri net, called CPN1, of the train’s behavior in this situation. The used data
enclosed in the upper right corner are

1. The train’s data consisting of its identity (integer), the distance to a critical
section of the track (DISTANCE), and some other data (string) like the
schedule or the number of wagons which are not relevant for this example.

2. The distance data is a positive interval of integers, where the lower limit
denotes the minimal distance at which the train has to start braking in order
to come to a full stop at the critical section. The upper limit is considered
to be infinite represented by the value w.

3. The state of the critical section, resp. level crossing, being either safe or
unsafe.

4. A black token for requesting the state.

Initially, the train travels along with no knowledge of the next critical section.
When it approaches a level crossing, the remaining distance is set by firing of the
transition approach to level crossing in the Figure 8. Consequently, the train
is alarmed and requests the state of the level crossing by the transition request
state of level crossing . The level crossing state can be either safe or unsafe
modeled by the arc inscription of the transition set state. Until the state of the
level crossing is set, the train awaits the result. There are three possibilities of
action: The train can still come nearer to the level crossing modeled by coming
nearer to level crossing decreasing the distance to the level crossing; or it
has already reached the point at which it must begin to brake in which case the
transition braking is enabled. Or — provided the state of the level crossing is
safe — it can proceed regularly by the transition proceed resulting in its passage
of the level crossing.
In case of braking, it comes to a full stop before the level crossing. The train has
to wait until the state of the level crossing is made safe (by the driver). Subse-
quently, the train may pass. Finally, it exits the level crossing returning to its
initial state. Together with the net there is given a safety property, depicted at
the bottom line of the Figure 8. For security reasons it should always be guaran-
teed that the state of the level crossing is safe when the train passes. This fact is
expressed as an appropriate logic formula. Let α ∈ C(passing level crossing) =
TRAIN be a variable of the colour of the place passing level crossing. The safety
property �(α,passing level crossing) =⇒ (safe, state of crossing) in the Fig-
ure 8 means that “In any case, if a train is passing the level crossing, the level
crossing is safe”. And it is satisfied for the initial marking based on the initializa-
tion function. Intuitively, we can argue as follows: The formula (α,passing level
crossing) =⇒ (safe, state of crossing) is satisfied in the initial state. Moreover,
the two transitions proceed and making l .c. safe are the only ones to put
a token on passing level crossing, which makes the premise of the formula true.

174 J. Padberg and M. Urbášek

travelling

TRAIN

(ID=1,DIST=w,MISC=nothing)

approach to
level crossing

alarmed

TRAIN

request state of
level crossing

requesting
state

E

waiting

TRAIN

coming nearer to
level crossing

[#DIST(train)=
mindist]

braking proceed

set state

state of level
crossing

STATE

stopped

TRAIN

making l.c. safe

passing level
crossing

TRAIN

exit level
crossing

val mindist = 10;
val w = 10000;

color DISTANCE = int with mindist .. w;
color E = unit with e;
color OTHER = list string;
color STATE = bool with safe |
unsafe;
color TRAIN = record ID : int*
 DIST: DISTANCE*
 MISC: OTHER;

var s : STATE;
var train : TRAIN;

train

set_dist(train)

train

e

train

decrease_dist(train)train

train

e

s

safe

train

train

train

train

train

DIST(train)=w

train

safe

s

s

� (α, passing level crossing) =⇒ (safe, state of crossing)

Fig. 8. CPN1 Train passing a level crossing

Rule-Based Refinement of Petri Nets: A Survey 175

Both transitions put a token coloured ‘safe’ back to the place state of
crossing, such that also the conclusion is fulfilled. Next, the only transition
(namely exit) withdrawing that token from state of crossing also removes the
train from the place passing level crossing and leads to the initial marking. Fi-
nally, as the net is cyclic and each cycle satisfies the formula (α,passing level
crossing) =⇒ (safe, state of crossing), this formula is always satisfied, i. e. for
each reachable marking. In the following we will modify, respectively enrich this
model CPN1 by complexity. Of course, we also want the resulting net to satisfy
the important safety property. In other words, the already proven safety prop-
erty should be preserved by the modification. Thus we employ safety property
preserving and introducing transformations.

Developing Steps We are now going to enhance the model by gates for de-
taining road traffic from crossing the tracks. This is done by adding the coloured
Petri net description of gates and connecting it to the first net CPN1. The ad-
dition of gates to the simple model is realized by application of the rule rgates

depicted in the Figure 9.

empty net empty net

check readiness

open

E

e

STATE

checked

close remain
open

closed

E

open

safe unsafe

e

e

e

s

s

� (e, open) ∨ (e, closed)
∨(β, checked)

Fig. 9. Rule rgates for adding gates

Initially, the gates are open. There can be a check of readiness, see transition
check readiness, which results in the token coloured safe, if the gates are ready,
or unsafe if they are not. Depending on this result, the gates may either remain

176 J. Padberg and M. Urbášek

open, or they can be closed. If so, they might be opened again leading to the
initial state. Again, there is a safety property given together with the net. For
β ∈ C(checked) = STATE the safety property � (e, open)∨ (e, closed) ∨
(β, checked) informally states, that the state of gates is either open or closed or
checked. Obviously, this safety property holds in the net on the right-hand side of
the Figure 9. As the rule rgates not only adds a subnet but also introduces a new
safety property we call it si-rule, short for safety introducing. Applying this rule,
of course, we do not want to lose the safety property “In any case, if a train is
passing the level crossing, the level crossing is safe”, which we already proved
for the first net. Moreover, the introduced safety property should be propagated
to the net resulting after applying the rule rgates. The preservation of the old
safety properties and the satisfaction of the newly introduced safety properties
is stated in the next section. This means that the net gained by application of
the rule rgates to the first net satisfies the safety property introduced by the rule
and also the originally stated safety property in the first net.

The application of the rule rgates to the first net CPN1 yields a disconnected
coloured Petri net CPN2. Intuitively, we would suppose the two transitions
check readiness and set state to be somehow synchronized, i. e. the state
should conform to the result of the check. Therefore, we are now going to glue
these transitions together. This is achieved by the rule rglue in the Figure 10. It
is compatible with the safety properties as stated in the next section meaning
that in the resulting net still all safety properties hold. The resulting net CPN3

after applying rgates to the net CPN2.

requesting
state

E

set state check readiness

state of level
crossing

STATE

open

E

e

STATE

checked

e

s

s

s

←

requesting
state

E

state of level
crossing

STATE

open

E

e

STATE

checked

→

requesting
state

E

set state

state of level
crossing

STATE

open

E

e

STATE

checked

e

s

e

s

Fig. 10. Rule rglue for gluing transitions

Last, we want the gates to open only after the train has left the level crossing.
Therefore, we send a message to the gates indicating the exit of the train. Only
then, the gates may be opened. The rule rmsg in the Figure 11 takes the two
corresponding transitions exit level crossing and open and connects them by
a place finished. This rule does not change the pre- and postdomains of the
neighboring places and thus it is place preserving. By the result presented in the
following section it also preserves safety properties.

Rule-Based Refinement of Petri Nets: A Survey 177

travelling

TRAIN

(ID=1,DIST=w,MISC=nothing)

state of level
crossing

STATE
passing level
crossing

TRAIN

exit level
crossing

open

E

e

closed

E

open

train s e

eDIST(train)=w

←
travelling

TRAIN

(ID=1,DIST=w,MISC=nothing)

state of level
crossing

STATE

passing level
crossing

TRAIN

open

E
e

closed

E

→

travelling

TRAIN

(ID=1,DIST=w,MISC=nothing)

state of level
crossing

STATE
passing level
crossing

TRAIN

exit level
crossing

open

E

e

closed

E

openfinished

E

train s e

e

e e

DIST(train)=w

Fig. 11. Rule rmsg

The final net CPNfinal, which is the result of applying the rule rmsg to
CPN3 is presented in Figure 12. It models a train’s passage of a level crossing
where the opening and closing of the gates is taken into account.

travelling

TRAIN

(ID=1,DIST=w,MISC=nothing)

approach to
level crossing

alarmed

TRAIN

request state of
level crossing

requesting
state

E

waiting

TRAIN

coming nearer to
level crossing

[#DIST(train)=
mindist]

braking proceed

set state

state of level
crossing

STATE

stopped

TRAIN

making l.c. safe

passing level
crossing

TRAIN

exit level
crossing

open

E

e

STATE

checked

close remain
open

closed

E

openfinished

E

train

set_dist(train)

train

e

train

decrease_dist(train)train

train

e

s

safe

train

train

train

train

train

DIST(train)=w

train

safe

s

s safe unsafe

e

e

e

e

s

e

e e

Fig. 12. CPNfinal Final net

178 J. Padberg and M. Urbášek

Summarizing, we have developed the model as follows: starting with CPN1

in Figure 8 we iteratively applied the rules rgates, rglue, and rmsg depicted in
the Figures 9, 10, and 11, respectively. A graphical representation of this trans-
formation sequence is given below, where all arrows depict (different kinds of)
morphisms:

Lgates �����

��

Rgates

���
��������
Lglue �����

��

Rglue

��	
					

			
Lmsg ������

��

Rmsg

��
CPN1

����������� CPN2
���������� CPN3

����� CPNfinal

Lr and Rr denote the left-hand side of the rule r, resp. the right-hand side
of r and we omitted the interface nets for brevity. More precisely, we have gradu-
ally developed a coloured Petri net modeling a train’s passage of a level crossing.
We proved an important safety property that “In any case, if a train is passing
the level crossing, the level crossing is safe” for the first net CPN1. This safety
property has been preserved by the subsequent refinement of the first net. Addi-
tionally, we introduced a new safety property for the gates, which then has been
preserved as well. The main advantage of our approach is that we do not have
to prove the safety properties in the final net but just for the first net and for
the rule introducing a new safety property. By this we could add further safety
properties, which were preserved by transition gluing as well as place preserving
rules.

3 Morphism Classes and System Properties

In next subsections we introduce used notions on a formal basis. The achieved re-
sults concerning horizontal structuring, safety property and liveness preservation
are summarized in the Section 4.

3.1 Place/Transition Nets

In this section we summarize main notions about the class of place/transition
nets and its properties. The proper definitions are beyond the scope of this
contribution. Presented results can be found fully elaborated in [6, 8, 17]. First
we give a short intuition of the underlying basics. The precise definition can
be found in [8]. Next we introduce formally different classes of net morphisms.
We will also define the notions of specific systems properties such as safety
properties and liveness. Finally, we list all the features which the introduced
morphisms classes have. Technical details and proofs can be found in the cited
papers.

Preliminaries. Here we use the algebraic notion of place/transition systems
(shortly p/t systems) as introduced in [MM90]. Hence a place/transition sys-
tem is given by the set of transitions and the set of places and the pre- and

Rule-Based Refinement of Petri Nets: A Survey 179

post-domain function. N = (T
pre ��
post

�� P⊕, m̂), where P⊕ is the free commuta-

tive monoid over P , or the set of finite multisets over P and markings are ele-
ments of P⊕, especially m̂ stands for the initial marking. The category PTSys
of place/transition nets has plain morphisms, which consist of two functions
f = (fT , fP). Elements of the free commutative monoid over P are given mostly
as finite linear sums, hence we use the extended operations ⊕,�,≤, <> etc.
Moreover we need to state how often a basic element is given within an element
of the free commutative monoid. We define this for p ∈ P and w ∈ P⊕, λ ∈ N

with w|p = λp ∈ P⊕. This is extended to subsets P ′ ⊆ P with w|P ′ so that
there is w = w′ ⊕ w′′ with w|P ′ = w′ ∈ (P \ P ′)⊕ and w′′ ∈ P ′⊕. The notions
•e, e• stand for sets of input and output elements of an element e (transition or
place) of a net. For the firing of Petri nets we use the usual notations, that is
m[t〉 means marking m enables transition t; m[t〉m′ denotes firing of transition
t under marking m yielding marking m′. Reachable markings from m are given
by the set [m〉. Paths of firing steps are denoted by arrows with the following
special meanings m ∗−→ m′ arbitrary, but possibly no firing steps from m to m′.
m

t1,...,tn−→ m′ denotes firing steps using transitions t1, ..., tn. A path m
...,t,...−→ m′

denotes firing steps where the transition t occurs.

Sequentially Independent Transitions [17]. Given N = (P, T, pre, post, m̂) a
place/transition system. The set of transitions TI = t1, ..., tn ⊆ T is called set of
sequentially independent transitions if the following holds:

For every reachable marking m ∈ [m̂〉 such that some transition t ∈ TI is

enabled, there exists a path m
t′1,...,t′n−→ m′ satisfying following conditions:

1.
n∑

i=0

pre(ti) ≤ m′

2. m′ ⊕
n∑

i=0

(post(ti)� pre(ti)) ≥ m� pre(t)⊕ post(t)

3. t′1, ..., t′n �∈ TI .

The Item 2 states that every transition sequence t1...tn fireable from m1 :
m[t〉m1 t1...tn−→ is also fireable from m′ : m′ t1...tn−→ m2.

Basic and Derived Place/Transition System-Morphisms and Categories. Given
Ni = (Pi, Ti, prei, posti, m̂), i ∈ {1, 2} two place/transition systems.
A morphism f = (fP , fT) : N1 → N2 with functions fP : P1 → P2 and fT :
T1 → T2 is called

loose [6] if the following embedding conditions hold for all t ∈ T1 and p ∈ P1:
1. f⊕

P (pre1(t)) ≤ pre2(fT (t)) and f⊕
P (post1(t)) ≤ post2(fT (t))

2. f⊕
P (m̂1|p) ≤ m̂2|fP (p)

transition preserving [6] if it is loose and the following condition holds:
3. f⊕

P ◦ pre1 = pre2 ◦ fT and f⊕
P ◦ post1 = post2 ◦ fT

180 J. Padberg and M. Urbášek

– A transition preserving morphism is called marking strict [6] or plain
[8] if f⊕

P (m̂1|p) = m̂2|fP (p)

for all p ∈ P1.
– It is called strict if it is marking strict and injective.

place preserving [6] if it is a loose morphism and the following place preserv-
ing conditions hold:

4. •(fP (p)) = f⊕
T (•p) and (fP (p))• = f⊕

T (p•) for all p ∈ P1

where •p =
∑

t∈T post(t)(p) · t and p• =
∑

t∈T pre(t)(p) · t define
the pre and post sets of p.

5. fT and fP are injective
6. m̂2|fP

= f⊕
P (m̂1)

transition gluing [6] if it is a loose morphism and the following holds:

7. fP is isomorphism
8. f⊕

P (m̂1) = m̂2

9. fT is surjective s.t. pre2(t2) =
∑

t1∈f−1
T (t2) pre1(t1)

with t1 ∈ T1 and t2 ∈ T2. post analogously.

l-transition gluing [17] if it is transition gluing and the set of transitions
TG = {t ∈ T1|∃t′ �= t : fT (t) = fT (t′)} (the set of transitions not mapped
bijectively) is a set of sequentially independent transitions.

Example 1. In the Figure 3 the dashed arrow expresses a special case of a place
preserving morphism. The domain of the morphism is empty, therefore all the
places are preserved and new places are added.

In the Figure 6 the transition gluing morphism is used. It glues two transi-
tions to one and keeps the rest of the net unmodified. This morphisms is also
l-transition gluing as it glues transitions with empty preset and postset respec-
tively.

In [8] it is shown that a special type of transition refinement preserves liveness
in Petri nets. The idea is based on abstracting morphisms, which are closely
related to vicinity respecting morphisms (introduced in [DM90]). Abstracting
morphisms allow abstracting transitions and places to a single transition. A
certain subclass of abstracting morphisms, called collapsing morphisms, allows
the description of transition refinement as collapsing of a special subnet (called
live in-out cycle) to one transition. The formal introduction of abstracting and
collapsing morphisms follows.

Abstracting Morphisms [8]. Given two place/transition systems Ni = (Ti
prei ��
posti

�� P⊕
i , m̂i) for i = 1, 2. An abstracting morphism f : N1 → N2 is given

by f = (fT , fP) with functions fT : T1 → T2 and fP : P1 → (T2 � P2) such that
the following conditions are satisfied:

Rule-Based Refinement of Petri Nets: A Survey 181

1. for all t ∈ T1 we have fP (•t) = {fT (t)}
or
pr ◦ f⊕

P ◦ pre1(t) = pre2(fT (t))
where pr : (T2 � P2)⊕ → P⊕

2 is the corresponding projection
analogously for the post function.

2. for all t2 ∈ fT (T1) we have:
∃tin ∈ T1 with fT (tin) = t2 and pr ◦ f⊕

P ◦ pre1(tin) = pre2(t2)
analogously for the post function.

3. marking strict:
∀p ∈ P1 with fP (p) ∈ P2 we have f⊕

P (m̂1|p) = m̂2|fP (p)

4. for all p ∈ P1 with fP (p) ∈ T2 we have fT (•p) = {fP (p)}
analogously for the post function.

T1

fT

��

pre1 ��
post1

�� P⊕
1

f⊕
P ��

f̂P :=pr◦f⊕
P		

(T2 � P2)⊕

pr ��
T2

pre2 ��
post2

�� P⊕
2

Collapsing Subnet [8]. Given an abstracting morphism f : N1 → N2. We have for
all transitions t ∈ T2 the collapsing subnet substf(t) = (P̃ t,f , T̃ t,f , p̃ret,f , p̃ost

t,f
,

m̂t) ⊆ N1 with

– P̃ t,f = {p1 ∈ P1 | fP (p1) = t}
these are all places mapped to t

– T̃ t,f = {t1 ∈ T1 | fT (t1) = t}
these are all transitions mapped to t

– p̃re
t,f (t1) = pre1(t1)|P̃ t,f for all t1 ∈ T̃ t,f

the pre- and post-domain restricted to collapsing places
p̃ost

t,f
is defined analogously.

– m̂t = m̂1|P̃ t,f

Moreover, we define the following sets:

– Sf ⊆ T2 with Sf = {t|P̃ t,f �= ∅}
– Tf ⊆ T1 with Tf =

⋃
t∈Sf T̃ t,f

– Pf ⊆ P1 with Pf =
⋃

t∈Sf P̃ t,f

We omit the superscripts ()t,f and ()f , if unambiguous.
Live In-Out Cycles describe those subnets that are live, and are equipped

with a guarding place. This guarding place ensures that each run within the
subnet has to be completed before it may run again.

182 J. Padberg and M. Urbášek

Live In-Out Cycle [8]. Given a place/transition system N = (T
pre ��
post

�� P⊕, m̂).

We call N live in-out cycle if the following conditions hold:

1. there are two distinguished subsets Tin and Tout of T , called set of in-
transitions Tin and set of out-transitions Tout of N such that there is a place
c ∈ P , called guarding place, which is in the predomain of all in-transitions
ti ∈ Tin, and in the post-domain of all out-transitions to ∈ Tout

with pre(t)|c =
{
1 ∗ c ; t ∈ Tin

ε ; t /∈ Tin
and post(t)|c =

{
1 ∗ c ; t ∈ Tout

ε ; t /∈ Tout

2. m̂|c = 1 ∗ c
3. N is live
4. place c is safe (1-bounded)

With respect to the number of tokens in the place c, the evolution of the
live in-out cycle can be expressed in the form of a finite automaton below.

����������1

t�∈Tin

��

t∈Tin\Tout

��

t∈Tin∩Tout

��

��������0 t�∈Tout
��

t∈Tout\Tin

��

The number inside the particular
state is the number of tokens which
reside in the place c. Due to the
definition the state 1 is the initial
state. From the behavior of this au-
tomaton one can infer important
property of every live in-out cycle.
The firing of one of the input tran-
sitions alternates (sooner or later)
with the firing of one of the output
transitions.

Collapsing Morphisms [8]. A collapsing morphism f : N1 → N2 is an ab-
stracting morphism which additionally satisfies the following conditions:

1. fT is surjective,
and fP is quasi-surjective,i.e.

the restriction fP : P1 \ P → P2 is surjective
2. fT and fP are quasi-injective, i.e.

For all t, t′ ∈ T1 \ T we have fT (t) = fT (t′) implies t = t′

For all p, p′ ∈ P1 \ P we have fP (p) = fP (p′) implies p = p′
3. ∀t ∈ S the following holds:

substf(t) is a live in-out cycle with ct the guarding place so that
it is only connected to the rest of N1 via the in- and out-transitions:

(a) for all ti ∈ Tin ⊆ T̃ t holds pre2(t) = f̂P (pre1(ti)� ct)
(b) for all to ∈ Tout ⊆ T̃ t holds post2(t) = f̂P (post1(to)� ct)
(c) for all ts ∈ T̃ t \ Tin holds •ts ⊆ P̃ t

(d) for all ts ∈ T̃ t \ Tout holds ts• ⊆ P̃ t

Example 2. In the Figure 4 the dashed arrow from right-hand side to the left-
hand side of the depicted rule is a collapsing morphisms as it collapses a subnet
to a one transition. This morphism is also abstracting.

Rule-Based Refinement of Petri Nets: A Survey 183

Next, we specify the meaning of a safety property and liveness in order to be
able to present our main results concerning preservation (translation) of these
properties. We recall safety formulas over markings (in the sense of [MP92]),
their translations via morphisms and used notion of liveness.

Safety Properties, Translations [6]. Consider a place/transition system N with
a set of places P .

1. A static formula λp over N is given for λ ∈ N and p ∈ P . The set of all
static formulas over P is denoted by F ; static formulas are build up using
the logical operators ¬ and ∧ :

ϕ1 ∈ F =⇒ ¬ϕ1 ∈ F ,
ϕ1 ∈ F , ϕ2 ∈ F =⇒ ϕ1 ∧ ϕ2 ∈ F

The validity of formulas is given w. r. t. the marking of a net. Let m ∈ P⊕

be a marking of N then:

m |=N λp iff λp ≤ m,
m |=N ¬ϕ1 iff ¬(m |=N ϕ1) and

m |=N ϕ1 ∧ ϕ2 iff (m |=N ϕ1) ∧ (m |=N ϕ2).

2. Let ϕ be a static formula over N . Then �ϕ is a safety property. The safety
property �ϕ holds in N under m iff ϕ holds in all states reachable from m:

m |=N �ϕ ⇐⇒ ∀m′ ∈ [m〉 : m′ |=N ϕ.

If m is the initial marking m̂ we also write N |= �ϕ instead of m̂ |=N �ϕ.
3. The translation Tf of formulas over N1 along a morphism f = (fP , fT) :

N1 → N2 to formulas over N2 is given for atoms by

Tf (λp) = λfP (p).

The translation of formulas is given recursively by

Tf (¬ϕ) = ¬Tf (ϕ),
Tf (ϕ1 ∧ ϕ2) = Tf (ϕ1) ∧ Tf (ϕ2) and

Tf (�ϕ) = �Tf (ϕ).

4. The l-translation (in [17]) LT f of formulas over N2 along a collapsing mor-
phism f = (fT , fP) : N1 → N2 to formulas over N1 is given for atoms
by

LT f (λp) = λf−1
P (p) if(p•) ∩ Sf = ∅,

LT f (λp) = λf−1
P (p) ∨

∨
ti∈(p•)∩Sf

¬(1 ∗ cti), if(p•) ∩ Sf �= ∅.

The l-translation of formulas is given recursively by

LT f (¬ϕ) = ¬LT f (ϕ)
LT f (ϕ1 ∧ ϕ2) = LT f (ϕ1) ∧ LT f (ϕ2) and

LT f (�ϕ) = �LT f (ϕ).

184 J. Padberg and M. Urbášek

Liveness. A place/transition system N = (T, P, pre, post, m̂) is called live if for
arbitrary m1 ∈ [m̂1〉 and arbitrary t1 ∈ T1 there exists some m′

1 ∈ [m1〉 such
that m′

1[t1〉.

Theorem Properties of Morphisms.

1. Place Preserving Morphisms Preserve Safety Properties [6]
Let f : N1 → N2 be a place preserving morphism . Let �ϕ be a safety
property. Then the following holds:

N1 |= �ϕ =⇒ N2 |= Tf (�ϕ)

2. Transition Gluing Morphisms Preserve Safety Properties [6]
Let f : N1 → N2 be a transition gluing morphism and let �ϕ be a safety
property then we have

N1 |= �ϕ =⇒ N2 |= �ϕ

3. L-Transition Gluing Morphisms Preserve Liveness [17]
Given f : N1 −→ N2 a l-transition gluing morphism and let N1 be live. Then
the net N2 is live as well.

4. Collapsing Morphisms Respect Liveness [8]
Given a collapsing morphisms f : N1 → N2 and let N2 be live. Then the net
N1 is live as well.

5. Collapsing Morphisms Translate (Backwards) Safety Properties [17]
Let f : N1 → N2 be a collapsing morphism. Let �ϕ be a safety property.
Then the following holds:

N2 |= �ϕ =⇒ N1 |= LT f (�ϕ)

Achieved results based on foregoing theorems are summarized in the Sec-
tion 4.

3.2 Coloured Petri Nets

In this section we are going to present the results leading to preservation of
safety properties in coloured Petri nets by transformations. We use coloured
Petri nets [Jen92] and define different kinds of morphisms. These morphisms
have different properties and are used for different purposes. We define formulas
expressing safety properties and their preservation by a special kind of morphism,
the safety preserving morphisms.

Coloured Petri nets [Jen92]. A non-hierarchical coloured Petri net is a tuple
CPN = (Σ,P, T,A,N,C,G,E, I) according to the description below:

1. Σ is a finite set of non-empty types, called colour sets.
2. P is a finite set of places.
3. T is a finite set of transitions.

Rule-Based Refinement of Petri Nets: A Survey 185

4. A is a finite set of arcs s.t:
P ∩ T = P ∩A = T ∩A = ∅.

5. N : A → P × T ∪ T × P is a node function.
6. C : P → Σ is a colour function.
7. G : T → EXPB(Σ) is a guard function, where EXPB(Σ) denotes Boolean

expressions over the colour sets in Σ.
8. E : A → EXP(Σ)MS is an arc expression function, where EXP(Σ) denotes

expressions over the colour sets in Σ and ()MS multi-sets thereover.
9. I : P → EXPclosed(Σ)MS is an initialization function, where EXP(Σ)

denotes closed expressions over the colour sets in Σ and ()MS multi-sets
thereover.

A marking of a coloured Petri net is given as a multiset over the set of token
elements TE = {(c, p)|p ∈ P and c ∈ C(p)}.

Safety Property Preserving Morphisms

The morphisms we now introduce are based on mappings of the net components.
That is, a CPN-morphism maps places to places, transitions to transitions, arcs
to arcs, and expressions over colour sets to expressions over colour sets. Moreover,
we distinguish different kinds of morphisms that have different properties.

CPN-Morphisms. A CPN-morphism f : CPN1 → CPN2 with coloured Petri
nets CPNi = (Σi, Pi, Ti, Ai, Ni, Ci, Gi, Ei, Ii) for i = 1, 2 is given by the map-
pings of the components f = (fΣ,fP , fT , fA) with
fΣ:EXP(Σ1) → EXP(Σ2), fP : P1 → P2, fT : T1 → T2, and fA : A1 → A2.
A CPN-morphism is called:

loose if the following compatibility conditions hold:
1. N2 ◦ fA = fPT ◦N1

where fPT : P1 × T1 ∪ T1 × P1 → P2 × T2 ∪ T2 × P2

with fPT (x, y) :=

{
(fP (p), fT (t)) (x, y) = (p, t)
(fT (t), fP (p)) (x, y) = (t, p)

That means, that the following diagram commutes:

A1

fA

��

N1 �� P1 × T1 ∪ T1 × P1

fP T

��
A2

N2 �� P2 × T2 ∪ T2 × P2

2. C2 ◦ fP = fΣ◦C1

3. G2 ◦ fT = fΣ◦G1

4. E2 ◦ fA = fΣ◦E1

5. fΣ(I1(p)) ≤ I2(fP (p))
transition preserving if it is loose and the transition preserving condition

holds:

186 J. Padberg and M. Urbášek

6. no “new” arc is connected to “old” transitions, that is
for all A ∈ A2\fA(A1) we have :

N2(A) ∈ P2 × T2\fT (T1) ∪ T2\fT (T1)× P2

A special case are strict morphisms with fΣ(I1(p)) = I2(fP (p))
place preserving if it is loose and the place preserving conditions hold:

7. no “new” arc is connected to “old” places, that is
for all A ∈ A2\fA(A1) we have :

N2(A) ∈ P2\fP (P1)× T2 ∪ T2 × P2\fP (P1)

8.
∑

p∈P1

fΣ(I1(p)) ≤
∑

p∈P2

I2(p)

9. fP , fT are injective
10. fΣ is persistent in the sense of [EM85], meaning intuitively, that Σ2 is

a consistent enrichment of Σ1

transition gluing if it is loose and the transition gluing conditions hold:
11. fA is bijective
12. fT is surjective
13. fP and fΣ are identities
14. I1 = I2

Remark 1. Conditions 1 - 4 ensure the compatibility of componentwise map-
pings. Condition 5 states that the initialization function of the target net is
place-wise greater than the source net. The difference to condition 8 concerns
the identification of places by non-injective fP . Condition 6 guarantees that the
neighborhood of transitions remains unchanged, whereas condition 7 ensures
this for places. Condition 11 ensures that the identification of transitions by
non-injective fT does not affect the adjacent arcs.

Example 3. In the Figures 9, 10 and 11 the morphisms denoted by �� are
transition preserving, as there are no transitions in the interfaces of the rules.
The morphism denoted by ����� is place preserving, as in the right-hand side
of the corresponding rule all new arcs are connected only to new places. The
morphism denoted by �� is a transition gluing morphism.

Safety Properties. We use a simple kind of temporal logic formulas over the
marking of the places in order to express safety properties. We merely employ
the always operator � as the outermost operator. This yields safety properties
in the sense of [MP92]. More precisely, we have: λ(c, p) is a static formula for

λ ∈ N, p ∈ P , and c ∈ C(p). Static formulas are generated using the logical
operators ∧ and ¬. �ϕ is a safety property, where ϕ is a static formula.
The validity of formulas is given w. r. t. the marking. Let M be a multi-set over
the set of token elements TE = {(c, p)|p ∈ P and c ∈ C(p)}, e. g. an arbitrary
marking m of a coloured Petri net CPN then

Rule-Based Refinement of Petri Nets: A Survey 187

CPN |=m λ(c, p) if and only if λ(c, p) ≤ m.
For CPN |=m ¬ϕ1 if and only if ¬(CPN |=m ϕ1) and CPN |=m (ϕ1 ∧ ϕ2)

if and only if CPN |=m ϕ1 ∧ CPN |=m ϕ2. The safety property �ϕ holds in
CPN under m if and only if ϕ holds in all states reachable from m:

CPN |=m �ϕ if and only if ∀m′ ∈ [M〉 : CPN |=m′ ϕ.
The translation of formulas Tf over CPN1 to formulas over CPN2 along a

morphism f : CPN1 → CPN2 is given for atoms by
Tf (λ(c, p)) = λ(fΣ(c), fP (p)).

The translation of formulas is given recursively by Tf (¬ϕ) = ¬Tf (ϕ), and
Tf (ϕ1 ∧ ϕ2) = Tf (ϕ1) ∧ Tf (ϕ2), and Tf (�ϕ) = �Tf(ϕ)

Theorem Properties of Morphisms.

1. Place Preserving Morphisms Preserve Safety Properties [12].
A place preserving morphism f : CPN1 → CPN2 preserves safety proper-
ties, i.e. for all safety properties �ϕ we have :

CPN1 |= �ϕ =⇒ CPN2 |= Tf (�ϕ)
2. Transition Gluing Morphisms Preserve Safety Properties [12].

A transition gluing morphism f : CPN1 → CPN2 preserves safety proper-
ties, i.e. for all safety properties �ϕ we have :

CPN1 |= �ϕ =⇒ CPN2 |= Tf (�ϕ)

4 Summary of Results

In this section we summarize the results we have obtained for rule-based refine-
ment of Petri nets. Moreover, we give for these results an interpretation of its
meaning. For proofs and technical details we refer to the corresponding papers.

The presented results comprise preservation of system properties via transfor-
mations by different rules and compatibility of transformations with horizontal
structuring.

4.1 Preservation of Properties

Subsequently we refer to conference papers [15, 11, 16], but due to space limita-
tions there many proofs are given in more detail in the corresponding technical
reports [6, 12, 8].

Theorem [15, 11]. Given a rule (r = (L ← K → R), f : L → R) with f being

– either a place preserving morphism
– or a transition gluing morphism

then for a transformation step N1
(r,f)
=⇒ N2 holds:

N1 |= �ϕ =⇒ N2 |= Tf (�ϕ)

These rules are called sp-rules.

188 J. Padberg and M. Urbášek

Theorem [15, 11]. Given a rule (r, f) with r = (∅ ← ∅ → R) so that R |= �ϕ

with a occurrence g : R → N2. Then for a transformation step N1
(r,f)
=⇒ N2 holds:

N2 |= Tg(�ϕ).

We call these rules si-rules.

Theorem [16, 17]. Given a rule (r = (L ← K → R), f : R → L) with f being

a collapsing morphism. Then for a transformation step N1
(r,f)
=⇒ N2 holds:

N1 |= �ϕ =⇒ N2 |= LT f (�ϕ)

N1 live =⇒ N2 live1.

We call these rules lp-rules.

Theorem [17]. Given a rule (r = (L ← K → R), f : L → R) with f being a

l-transition gluing morphism. Then for a transformation step N1
(r,f)
=⇒ N2 holds:

N1 live =⇒ N2 live.

These rules are also called lp-rules.

Theorem [17]. Given rule (r, f) with r = (∅ ← ∅ → R) so that R is live. Then

for a transformation step N1
(r,f)
=⇒ N2 holds:

N1 live =⇒ N2 live.

These rules are called li-rules.

Interpretation. Foregoing paragraphs contain an overview of achieved results.
The interpretation of these theorems can be done in a succinct way as proof-
rules, which are of interest for model developers.

Consider a net transformation N1
(r,f)
=⇒ N2. Then there are the following

proof-rules (according to the results):

(r, f) is a sp-rule; N1 satisfies �ϕ

N2 satisfies �Tf (ϕ)

(r, f : L → R) is a si-rule; g : R → N2; R satisfies �ϕ

N2 satisfies Tg(�ϕ)

1 under appropriate occurrence morphisms, see [8] for details

Rule-Based Refinement of Petri Nets: A Survey 189

(r, f) is a lp-rule; N1 is live

N2 is live1

(r, f : L → R) is a li-rule; R, N1 are live

N2 is live

(r, f) is a lp-rule; N1 satisfies �ϕ

N2 satisfies �LT f (ϕ) resp. �Tf (ϕ)

4.2 Compatibility Results

Theorem Church-Rosser and Parallelism.
Given two rules r1 and r2 that satisfy certain
independence conditions (see [2]) then we have:
If we can apply r1 and r2 sequentially to N0

and then to N1, then we can apply them in
parallel as well as in the opposite order.

N1

r2

N0

r2

r1

���������

������� r1+r2 �� N3

N2

r1

���������

�������

Interpretation. These Church-Rosser theorems state a local confluence in the
sense of formal languages. In the context of specification techniques they are
important as they state conditions for the independent development of different
parts or views of the system. These independence conditions hold for refinement
rules as well. The parallel independence states that the matches of both rules
overlap in parts that are not deleted only. Sequential independence states that
those parts created by the first transformation step are not deleted in the second.

N1

r1 �� N ′

1

NI

�������
N3

r1+r2 �� N ′
3

N2

������� r2 �� N ′
2

������

Theorem Union and Fusion Theorems.
Union theorem [9] states that - provided that
certain independence conditions hold - given
two rules r1 and r2 and a union N1 ← NI →
N2 of N1 and N2 then we obtain the same re-
sult (up to isomorphism) whether we derive
first N1

r1=⇒ N ′
1 and N2

r2=⇒ N ′
2 and then

construct the union of N ′
1 and N ′

2 resulting
in N ′

3 or whether we first construct the union N3 of N1 and N2 followed by
parallel transformation step N3

r1+r2=⇒ N ′
3.

190 J. Padberg and M. Urbášek

F
�� �� N1

��

r

��

N2

r

��
N ′

1
�� N ′

2

Fusion theorem [9] is expressed similarly.
Provided that certain independence condi-
tions hold and given a rule r and a fusion
F �� �� N1 then we obtain the same re-
sult (up to isomorphism) whether we derive
first N1

r=⇒ N ′
1 and then construct the fu-

sion F �� �� N ′
1 resulting in N ′

2 or whether
we construct the fusion F �� �� N1 result-
ing in N2 and then perform the transformation step N2

r=⇒ N ′
2.

Interpretation. Both theorems state that transformation of Petri nets is compati-
ble with the corresponding structuring technique under reasonable independence
conditions. These conditions ensure that the gluing affects those subnets only
that remain unchanged.

4.3 Open Problems

We have introduced several morphisms that preserve some property of the Petri
net. So we obtained various morphisms classes and different categories. Based on
these morphisms we can define rules and transformations that preserve stated
property as well. The open question is how do the morphisms interact?

– Different morphisms can be used for the same development as exemplified
in our examples in Section 2. We can use different proof-rules for the deduc-
tion of certain property although we achieve the transformations in different
categories.

– Another question is whether it is possible to find adequate morphism classes
that comprise the morphisms we have not yet defined and at the same time
still preserve those properties. We do not think so, as morphisms would need
to be so general that they will not preserve anything.

– Last but not least we think it would be promising to extend the abstract
theory in order to cope with different morphism classes.

Very often are properties of communicating and reactive systems stated as
temporal logic formulas. Although safety-properties are such formulas, they do
not provide necessary expressive power. The open problem is how to integrate
temporal formulas preservation into the rule-based refinement.

5 Conclusion

We conclude with a summary and a discussion of future work. Summarizing, we
have for different net classes the following results for rule-based refinement in
table 1. This table illustrates we have already developed quite a complex theory.
There are various possibilities how to proceed open. Future work can comprise
among others the following activities.

Rule-Based Refinement of Petri Nets: A Survey 191

Table 1. Achieved results

Notion/Results PT-nets AHL-nets CPNs

Rules, Transformations
√ √ √

Safety property preserving transformations
with

transition-gluing morphisms
√ √ √

place-preserving morphisms
√ √ √

Safety property introducing transforma-
tions

√ √ √

Liveness preserving transformations
√

? ?

Liveness introducing transformations
√

? ?

Independence Conditions
√ √ √

Church Rosser I + II
√ √ √

Parallelism
√ √ √

Union
√ √ √

Fusion
√ √ √

– The extension of our approach of liveness preserving transformation to high-
level Petri nets is an obvious way to continue. The basic ideas remain the
same but the data type part has to be dealt with.

– Other system properties, especially liveness properties in the sense of tempo-
ral logic [MP92, Lam94] are most promising to integrate into this approach.
In order to do so, morphisms have to be defined that preserve such proper-
ties. Then a specific set of conditions have to be satisfied in order to achieve
similar results for rules and transformations.

– Tool support is for the practical use the main precondition. The involved
morphisms are quite complex, so the user needs tool support for defining
and applying rules. The tool should assist the choice as well as the execution
of rules and transformations.

– The integration of the various morphisms classes as discussed in Subsec-
tion 4.3 is one of the demanding and urgent tasks.

– Collapsing morphisms are very specialized and thus quite restrictive. We
think that it is possible to extend the notion of collapsing morphisms in
a natural way in order to obtain more expressive notion of liveness respecting
morphisms.

– Preservation of system properties under horizontal structuring is also of in-
terest for future investigation.

192 J. Padberg and M. Urbášek

References

[BDH92] E. Best, R. Devillers, and J. Hall. The Box Calculus: a new causal algebra
with multi-label communication. In Advances in Petri Nets, pages 21–69.
Lecture Notes in Computer Science 609, 1992. 167

[BGV91] W. Brauer, R. Gold, and W. Vogler. A Survey of Behaviour and Equiva-
lence Preserving Refinements of Petri Nets. Advances in Petri Nets, Lec-
ture Notes in Computer Science 483:1–46, 1991. 167, 168

[BS90] J. Bradfield and C. Stirling. Verifying temporal properties of processes. In
J. C.M. Baeten et al., editor, Lecture Notes in Computer Science; CON-
CUR’90, Theories of Concurrency: Unification and Extension. (Confer-
ence, 1990, Amsterdam, The Netherlands), pages 115–125, Berlin, Ger-
many, 1990. Springer Verlag. 167

[CT90] Y. Chen and W.T. Tsai. An algebraic approach to Petri net reduction
and its application to protocol analysis. Technical report, University of
Minnesota, 1990. 167

[DA92] R. David and H. Alla, editors. Petri Nets and Grafcet. Prentice Hall (UK),
1992. 167

[DDGJ90] W. Damm, G. Döhmen, V. Gerstner, and B. Josko. Modular verification of
petri nets: The temporal logic approach. In J.W. de Bakker et al., editors,
Lecture Notes in Computer Science; Proceedings of the REX Workshop on
Stepwise Refinement, 1989, Mook, The Netherlands, pages 180–207, Berlin,
Germany, 1990. Springer-Verlag. 167

[DM90] J. Desel and A. Merceron. Vicinity Respecting Net Morphisms. In Ad-
vances in Petri Nets, pages 165–185. Springer Verlag, 1990. Lecture Notes
in Computer Science 483. 167, 180

[Ehr97] H. Ehrig et al. Integration von Techniken der Software Spezifikation
für ingenieuwissenschaftliche Anwendungen. Antrag für ein Schwer-
punkprogramm an die DFG, http://tfs.cs.tu-berlin.de/SPP/index.html,
1997. (akzeptiert als DFG-SPP von Januar 1998 bis Dezember 2003).
172

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoret-
ical Computer Science. Springer Verlag, Berlin, 1985. 186

[ERW02] H. Ehrig, W. Reisig, and H. Weber et al. The Petri Net Baukasten of
the DFG-Forschergruppe PETRI NET TECHNOLOGY. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber, editors. Advances in Petri
Nets: Petri Net Technologies for Modeling Communication Based Systems.
LNCS. Springer, 2002. To Appear. 162, 163

[ES91] J. Esparza and M. Silva. On the analysis and synthesis of free choice
systems. Lecture Notes in Computer Science; Advances in Petri Nets 1990,
483:243–286, 1991. 167, 168

[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer
Programming, 23:151–195, 1994. 167, 168

[FWL] J. Favrel, H. Wu, and K.H. Lee. Reduction method of coloured Petri nets.
In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics. 167

[Gen91] H. J. Genrich. Predicate/Transition Nets. In High-Level Petri Nets: Theory
and Application, pages 3–43. Springer Verlag, 1991. 172

[GG90] R. J. van Glabbeck and U. Golz. Equivalences and Refinement. In Seman-
tics of Systems of Concurrent Processes, pages 309–333. Springer Verlag,
1990. Lecture Notes in Computer Science 469. 167

Rule-Based Refinement of Petri Nets: A Survey 193

[GL81] H. J. Genrich and K. Lautenbach. System Modelling with High-Level Petri
Nets. Theoretical Computer Science, 13:109–136, 1981. 172

[HRH91] R.R. Howell, L. E. Rosier, and Chun Yen Hsu. A taxonomy of fairness
and temporal logic problems for Petri nets. Theoretical Computer Science,
82(2):341–372, 1991. 167

[Jan97] L. Jansen. Referenzfallstudie Verkehrsleittechnik. http://www.ifra.ing.tu-
bs.de/ m33/spezi/, 1997. 172

[JCHH91] K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN. A Ref-
erence Manual. Meta Software Cooperation, 125 Cambridge Park Drive,
Cambridge Ma 02140, USA, 1991. 172

[Jen92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use, volume 1: Basic Concepts. Springer Verlag, EATCS Mono-
graphs in Theoretical Computer Science edition, 1992. 172, 184

[Jen94] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 2: Analysis Methods. Springer Verlag, EATCS
Monographs in Theoretical Computer Science edition, 1994. 167, 172

[Jen97] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 3: Practical Use. Springer Verlag, EATCS Mono-
graphs in Theoretical Computer Science edition, 1997. 172

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems 16, 3:872–923, 1994. 191

[MM90] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and
Computation, 88(2):105–155, 1990. 178

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems, Specification. Springer Verlag, 1992. 167, 183, 186, 191

[Peu01] S. Peuker. Halbordnungsbasierte Verfeinerung zur Verifikation verteiler
Algorithmen. PhD thesis, Humboldt University Berlin, 2001.

[Peu02] S. Peuker. Concurrency based transition refinement for the verification of
distributed algorithms. In H. Ehrig, W. Reisig, G. Rozenberg, and H. We-
ber, editors. Advances in Petri Nets: Petri Net Technologies for Modeling
Communication Based Systems. LNCS. Springer, 2002. To Appear. 162

[Rei91] W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Computer
Science, 80:1–34, 1991. 172

[Sch96] K. Schmidt. Symbolische Analysemethoden für algebraische Petri-Netze,
volume 4. Bertz Verlag, versal edition, 1996. 167

[Sou91] Y. Soussy. Deterministic systems of sequential processes: a class of struc-
tured Petri nets. In Applications and Theory of Petri Nets, Gjern, Juni
1991, pages 62–81. Springer Verlag, 1991. 168

[Vau87] J. Vautherin. Parallel System Specification with Coloured Petri Nets. In
G. Rozenberg, editor, Advances in Petri Nets 87, pages 293–308. Springer
Verlag, 1987. Lecture Notes in Computer Science 266. 172

[vdA97] W.M. P. van der Aalst. Verification of workflow nets. In P. Azéma and
G. Balbo, editors, Application and Theory of Petri Nets, volume 1248 of
LNCS, pages 407–426. Springer-Verlag, June 1997. 168

[vdA98] W.M. P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. The Journal of Circuits, Systems and Computers, 8:21–66, 1998.
168

[vdAtH98] W.M. P. van der Aalst and A.H.M. ter Hofstede. Verification of Work-
flow Task Structures: A Petri-net-based approach. Forschungsberichte des
AIFB 380, Universität Karlsruhe, November 1998. 168

194 J. Padberg and M. Urbášek

[WER99] H. Weber, H. Ehrig, and W. Reisig, editors. Int. Colloquium on Petri Net
Technologies for Modelling Communication Based Systems, Part II: The
”Petri Net Baukasten”. Fraunhofer Gesellschaft ISST, October 1999. 162

[WER01] H. Weber, H. Ehrig, and W. Reisig, editors. 2nd Int. Colloquium on Petri
Net Technologies for Modelling Communication Based Systems, Berlin,
Germany, Sept. 2001. Researcher Group Petri Net Technology, Fraunhofer
Gesellschaft ISST. 162

[WLB01] H. Weber, S. Lembke, and A. Borusan. Improving the Usability of Petri
Nets with the Petri Net Baukasten. In H. Ehrig, G. Juhás, J. Padberg,
G. Rozenberg, editors, Advances in Petri Nets: Unifying Petri Nets, volume
2128 of LNCS, pages 54–78. Springer-Verlag, 2001.

Our Work on Transformations and Rule-Based Refinement

[1] H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-Level Replacement Systems
with Applications to Algebraic Specifications and Petri Nets, chapter 6, pages
341–400. Number 3: Concurrency, Parallelism, and Distribution in Handbook of
Graph Grammars and Computing by Graph Transformations. World Scientific,
1999. 163

[2] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From graph grammars
to high level replacement systems. In 4th Int. Workshop on Graph Grammars
and their Application to Computer Science, LNCS 532, pages 269–291. Springer
Verlag, 1991. 168, 189

[3] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Math. Struct. in Comp. Science,
1:361–404, 1991. 163

[4] C. Ermel, J. Padberg, and H. Ehrig. Requirements engineering of a medical
information system using rule-based refinement of petri nets. In Proc. IDPT
Conference (International Design and Process Technology), pages 186–193, 1996.
171

[5] M. Gajewsky. Concepts and Requirements for Transformations within Petri Net
Based Process Models. In A. Ertas, editor, 5th World Conference on Integrated
Design and Process Technology, Special Session on Model Integration, 2000. CD-
ROM, 8 pages. 163

[6] M. Gajewsky, K. Hoffmann, and J. Padberg. Place Preserving and Transition
Gluing Morphisms in Rule-Based Refinement of Place/Transition Systems. Tech-
nical Report 99-14, Technical University Berlin, 1999. 178, 179, 180, 183, 184,
187

[7] M. Gajewsky and F. Parisi-Presicce. On Compatibilty of Model and Class Trans-
formations . In M. Cerioli, and G. Reggio, editors, 15th International Workshop
on Algebraic Development Techniques and General Workshop of the CoFI WG,
Lecture Notes in Computer Science 2267. Springer Verlag, 2001. 163

[8] M. Gajewsky, J. Padberg, and M. Urbášek. Rule-Based Refinement for
Place/Transition Systems: Preserving Liveness-Properties. Technical Report
2001-8, Technical University of Berlin, 2001. 167, 178, 180, 181, 182, 184, 187,
188

[9] J. Padberg. Categorical Approach to Horizontal Structuring and Refinement of
High-Level Replacement Systems. Applied Categorical Structures, 7(4):371–403,
December 1999. 163, 165, 171, 189, 190

Rule-Based Refinement of Petri Nets: A Survey 195

[10] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation
systems. Mathematical Structures in Computer Science, 5:217–256, 1995. 172

[11] J. Padberg and M. Gajewsky. Rule-Based Refinement of Petri Nets For Modeling
Train Control Systems. In Š. Kozák and M. Huba, editors, Petri Nets in De-
sign, Modelling and Simulation of Control Systems, Special Session at the IFAC
Conference on Control Systems Design, pages 299–304, 2000. 168, 187, 188

[12] J. Padberg and M. Gajewsky. Safety Preserving Transformations of Coloured
Petri Nets. Technical Report 2000-13, Technical University Berlin, 2000. 187

[13] J. Padberg, M. Gajewsky, and C. Ermel. Rule-Based Refinement of High-Level
Nets Preserving Safety Properties. In E. Astesiano, editor, Fundamental Ap-
proaches to Software Engineering, pages 221–238. Springer Verlag, Lecture Notes
in Computer Science 1382, 1998. 163, 167

[14] J. Padberg, M. Gajewsky, and C. Ermel. Rule-based refinement of high-level nets
preserving safety properties. Science of Computer Programming, 40:97–118, 2001.
www.elsevier.nl/locate/scico . 167

[15] J. Padberg, K. Hoffmann, and M. Gajewsky. Stepwise Introduction and Preser-
vation of Safety Properties in Algebraic High-Level Net Systems. In T. Maibaum,
editor, Fundamental Approaches to Software Engineering, pages 249–265. Springer
Verlag, Lecture Notes in Computer Science 1783, 2000. 167, 187, 188

[16] M. Urbášek and J. Padberg. Preserving liveness with rule-based refinement of
place/transition systems. In Society for Design and Process Science (SDPS), edi-
tors, Proc. IDPT 2002: Sixth World Conference on Integrated Design and Process
Technology, 2002. to appear. 167, 187, 188

[17] M. Urbášek. Another Safety Property and Liveness Preserving Morphisms of P/T
Systems. Technical Report, Technical University of Berlin, 2002. 178, 179, 180,
183, 184, 188

www.elsevier.nl/locate/scico

196 J. Padberg and M. Urbášek

A Notation

Basics
N natural numbers
P power set

Free commutative monoids
P⊕ free commutaive monoid over the set P
⊕,� operations on monoid elements
≤, <> comparison predicates on monoid elements
w|p, w|P ′ restrictions of monoid elements with w|P ′ := w′ for w ∈

P⊕ and w = w′⊕w′′ where w′ ∈ P ′⊕ and w′′ ∈ (P \P ′)⊕

Petri nets
m̂ initial marking
m

∗−→ m′ firing path from m to m′

m[t > m′ firing of t from m to m′

m[t > t is enabled under m
m′ ∈ [m > m′ is reachable from m
•x, x• pre- and post-set of a place or a transition x
c, ct guarding place

Petri net examples
p place p
t transition t

Morphisms
f : N1

�� N2 transition preserving Petri net morphism (i.e. mapping
transition onto transition, place onto place)

f : N1
����� N2 property preserving or property respecting morphism

System Properties
λp atomic formula over a place/transition net with λ ∈ N

and p ∈ P
λ(c, p) atomic formula over a coloured Petri net with λ ∈ N,

p ∈ P , and c ∈ C(p)
ϕ static formula generated over atomic ones using the log-

ical operators ∧ and ¬
�ϕ safety formula
N |=m̂ �ϕ net N with the initial marking m̂ satisfies �ϕ
Tf translation of formulas over a net N1 along a morphism

f : N1 → N2

LT f l-translation of formulas over a net N2 along a collapsing
morphism f : N1 → N2

High-Level Replacement Sytems
r = (L ← K → R) rule
N1

r=⇒ N2 transformation step using rule r

N1
(r,f)
=⇒ N2 property preserving transformation step using rule r and

property preserving morphism f

N1
∗=⇒ N2 transformation sequence

	Rule-Based Refinement of Petri Nets: A Survey
	Introduction
	Motivation
	Basic Ideas
	Related Work

	Examples for Rule-Based Refinement of Petri Nets
	Place/Transtion Nets: Token Ring
	Coloured Petri Nets: Stepwise Development of a Train Control System

	Morphism Classes and System Properties
	Place/Transition Nets
	Coloured Petri Nets

	Summary of Results
	Preservation of Properties
	Compatibility Results
	Open Problems

	Conclusion
	Notation

