
DOCUMENT R SUPT

ED 167 119 IN 006 065

AUTHOR

TITLE

INSTITUTION
SPANS AGENCY

REPORT NO
PUB DATE'

NOTE

AVAILABLE

Waterman, D. A.
Rule-Directed Interactive Transaction Agents: An
Approach to Knowledge Acquisition.
Rand Corp., Santa Monica, Calif.
Advanced Research ProlLcts Agency (DOD) shington,

D.C.

R-2171-ARPR
Feb 78

58p.

FROM Rand Corporation, Santa Monica, California 90406

($5.00)

FORS PRICE
DESCRIPTORS

ABSTRACT

MF-$0.83 Plus Postage. BC Not Available frzm EDRS,
*Computer Assisted Instruction; *computer Programs;
*Information Processing; *Mar Machine Systems; Cn

Line Systems; *Programing; Programing Languages

This report describes -elopment of computer

programs called user agents, which, through intracticn with users,

can either learn new facts and store the it a data base or learn net,

procedures for data manipulation and represent them as programs.

These programs are written in RITA, the Rule-directed Interactive

Transaction Agent system, and are organized as sets of If -T_ BEN rules

or,"production systems.m The programs are able to act as "personal

computer agents" to ,perform a variety of tasks. Fort types of RITA

agents are (1) an exemplary programing agent that watches a user

perform an_srbitrary series of operations On the computer and then

writes a program (a n--PITA agent) to perform the same task; (2) a

self - modifying agent tkat_performs ARPAnet file - transfer tasks for

the user, modifying itself so that each sutseguent time it performs

the task; it can do so with less help from the-user; (3) a tutoring'

agent that watches an expert demonstrate the use of an interactive

-computer language or local operating system and-then creates a

teaching agent that can help naive users become familiar with the

language- or system demonstrated by the expert; and 00 a
reactive-message creating agent that elicits text from a user (the

Sender) and uses it to create a new RITA agent which is a reactive

message ;4. the reactive message is then sent to some other user (the

recipient), who interacts with it; and during the course of the

interaction, a record of the recipient's responses is sett back to

the sender. (Author/CMV)

* ************ *** *** *** 4******

Reproductions supplied by EDRS are the lies
from the original documen

************* **************** * ******

**** *** ** ********

that can be made

OE PAN VMI7 T OT liF AL TN

EUUCATION WI:LIARE
NATIONAL INSTITUTE or

EDUCATION

I 111 I N 1,11" PM),

(10(11 II tl A', III (V 1 14()M

014 0141fANItAlION (04111N-

f. 1101, 11 1'01N (0 VII WON OINION4
11 0 D1) N111 NI (I 16A101 Y fit 1'C41

NI 1)1 I If IA' NAT i()NAI INilill)11 01
I DU(A !ION 1'11%1 I ION 1114 PO1 II V

R-2171-AkPA

February 1978

AIWA ORDER NO.: 3473

8P10 Infclrntatlont Procc%iIng recliniques

Rule- Di rected Interactive

Transaction Agents: An Approach

to K, e,) wledge Acquisition

D. Waterman

A Report prepdred for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SANTA MONICA, CA. 90406

PREFACE

This report describes results achieved applying current roduction systeti
technology, as embodied in the Rule-directed Interactive Transaction ,RITA)

system, to the iroblem of developing computer programs th. .t t,ce cupa'ile of learn-

ing new facts 'd procedures by observing and interacting with a user. RITA was

developed une h- sponsorship of the Information Proceing Technique? Office, 'If

the Defense Aov, -1(Research Projects Agency (ARPA) for ILL., as a F. ont end to

remote compute. ?ms, and as a limited heuristic modeling fool. here its use ao

a man-machine intenaCe that can acquire or learn new infbrmation is eNplored in

depth.
The report doCtimeni; the ,2urrent status of a Rand effort t«develop: ophi-ticat-

ed information processing mechanisms for the acquisition, organization. -,ad utiliza-

tion of knowledge that should help users interface comfbrtably with complex com-
puter operating systems. The work deScribed here, representing a firrit step in the

development of knowledge acquisition techniques, should be of intei c,:t to computer

and information scientists involved in matching the needs and abilities of computer

users with the characteristics of computer systems they' would like to access. It

should also be of interest to researchers studying the development of learning
programs and program synthesis.

iii

SUMMARY

This report describes the development of computer programs called user agents,

which, through interaction with users, can either learn new facts and store them
in a data base or learn new procedures for data manipulation and represent them
as programs. These programs are written in RITA, the Rule-directed Interactive
Transaction Agent system, and are organized as sets of IF-THEN rules or "produc-

tion systems." The programs nre able to net as "personal computer agents" to
perform a variety of tasks.

Four types of RITA agents are described:

1. An exemplary programming agent that watches a user perform an arbi-
trary series of operations on the computer and then writes a program (a
new RITA agent) to perform the same task.
A self-modifying agent that performs ARYAnet file-transfer tasks fbr the
user, modifying itself so that each subsequent time it performs the task, it

can do so with less help from the user.
A tutoring agent that watches an expert demonstrate the use of an interac-

tive computer language or local operating system and then creates a teach-

ing agent that can help naive users become familiar with the language or
system demonstrated Ey the expert.

4. A reactive-message creating agent that elicits text from a user (the sender)

and uses it to create a new RITA agent which is a reactive message; the
reactive message is then sent to some other user (the recipient), who in-
tencts with it. During the course of the interaction, a record of the recipi-

ent's responses is sent back to the sender.

AC'K.NOACKNOWLEDGMENTS

The comments and criticisms of Robert IL Anderson and other staff members
of the Information Sciences Department at The Rand Co-poration are gratefully

acknowledged.

CONTENTS

PREFACE_

SUMMARY

ACKNOWLEDGMENT S

Section

vii

I. IN -'0DUCIION 1

II. KNi,NLEDGE ACQUISITION 4

Exemplary Programining 4

User Agents 5

Applications 7

III. PROGRAM CREATION THROUGH USER AGENTS 10

EP-1: An Exemplary Programming Agent. . . 10

TRANSFER: A File-Transfer Agent 19

IV. DATA ACQUISITION THROUGH USER AGENTS_ 23

TEACH: A Tutoring Agent 23

TUTOR: A Passive Exemplary Programming Agent 25

Reactive-Message Agents 25

V. CONCLUSIONS 35

Appendix
A. A RITA Agent that Transfers a File from an Arbitrary

ARPAnet Site to Rand-UNIX 37

B. A Protocol or a User Running the TASK Agent 40

C. A Protocol of a User-TEACH Interaction 42

D. A Protocol of a User-TUTOR Interaction To Create
a Program To Teach LISP 47

E. A Protocol of the Use of the TEACH Agent Created

for LISP 49

BIBLIOGRAPHY 51

I. IN RODUCT1ON

RITA is a specialized software system that combines production-system control

structure with man-machine design technology (Anderson and Gillogly, 1976E). The

goal -of: the RITA design and development effort is to produce a system that can
ultimately reside in a computer tez minal and execute programs, called agents,
which provide an intelligent interface between the user and the outside computer
world. The RITA architecture is interesting and useful for three reasons: First, the
use of a production-system control structure provides the degree of simplicity and

modularity needed to make program organization straightforward and program
modification relatively easy. Second, the system is human-engineered in the sense
that the programs, or RITA agents, have an English-like syntax which makes them
easy to write and understand. Thus it is possible to create RITA agents that are
selldocumenting. Finally, language primiti;:res in RITA permit the user to interact

with other computer systems, even to the extent of initiating and monitoring several

jobs in parallel on external systems.
RITA is the embodiment of a particular production-system architecture; that is,

within the RITA system one can create specific production systems or RITA agents.
Production systems have a long and diverse history, originating from early work in
symbolic logic (Post, 1943). Current production systems den be thought of as a
generalization of Markov normal algorithms (Markov, 1954; Galler and Perlis,
1970). A production system is a collection of rules of the form conditions actions

(Newell and Simon, 1972; Waterman, 1976b, Waterman and Hayes -Roth, 1978),

where the conditions are statements about the contents of a global data base and

the actions are procedures that may alter the contents of that data base. Many types
of production system architectures have been developed in the past few years. Some

are designed to facilitate adaptive behavior (Waterman, 1970, 1975, 1976a), some to

model human cognition and memory (Newell, 1972, 1973; Newell and McDermott,

1974), and others to study the usefulness of production- system control structures in
artificial-intelligence tasks (Buchanan and Sridharan, 1973; Lenat, 1976; Rychener,
1975, 1976; Vere, 1975). What these architectures have in common is that they are
all left-hand-side (LEIS) or condition-driven, i.e., when all the conditions of a-produc-

tion rule are true with respect to the data base, the rule "fires," causing the associat-

ed actions to be executed. Another type of production-system architecture currently

in use is based on a right-hand-side (RHS) or action-driven' control structure (Ander-
son and Gillogly, 1976a; Davis, et al., 1975; Davis, 1976; Duda, Hart, and Nilsson,

1976; Elahr, 1975; Shortliffe, 1976). Here, the system is given a condition to make

true, a premise to prove, or, in effect, a question to answer through deductive
inference- The right-hand sides of rules are examined to find one which, when
executed, will make the desired condition true or prove the premise being deduced.
When such a rule is found, its left-hand side is examined to see if all its conditions

are true. If they are, the rule is fired; if not, the process continues recursively in an

attempt to make each condition in the left-hand side of the rule true.
The RITA architecture encompasses both LI-IS and RHS control schemas; thus,

`Also relerred to as goal-driven, consequent-driven, or backward-chaining.

2

. it is possible to create RITA agents which are entirely 1411S-driven, entirely
driven, or some combination of both, The production rules accessed from the I,FIS

are called rules, and those accessed from the RI-IS are called gouts. They both operate

on a data base composed of objects for which attributes and values have been defined.

An example ula simple RITA agent is shown in Fig. 1. When this agent is executed,

Rule 1 fires, because all three of its premises are true. Firing, the rule consists of

executing its actions, in this case a deduce and a send. When the. deatiee is executed,

it initiates a deduction for the type of the operating system. This means that all goals

are searched to find one whose set of actions modifies the type of ,he operating

system. Since Coal 1 is applicable, it is used to deduce this information, and the data

base is automatically updated once the information is obtained. Finally, the second

action of Rule 1, the send, is executed and the sentence "This is a TENEX system"

is printed at the user's terminal.
This report is concerned with the doqign and development of RITA agents that

can acquire knowledge through interiictions with users or external computer pro-

grams, The knowledge can be represented either us facts gored in a data base or as

procedures for data manipulation which are stored in production-rule form. The
general problem of knowledge acquisition within the personal computer framework

is discussed in Sec. 11. The remainder of the report consists of specific examples of

agents that can acquire knowledge.

RULE

ATIA BASE

1' operating-system: .

host - computer IS

prompt-character IS

net- address IS

0FIJ EC'T operating-system:

type

host-computer

prom pt- character

net-address

IS

IS

IS

IS

RULE S&'

"PDP.10",
II

"sumex-aim";

"UNIX",

"PDP-1I",

"rand-unix";

, MERE IS an operating-system
WHOSE host-computer IS KNOWN

AND WHOSE prompt-character IS KNOWN

AND WHOSE type IS NOT KNOWN

THEN: DEDUCE the type OF the operating-system
AND SEND concat("This is a

the type OF the operating-system,
" system") TO user;

GOAL 1:

IF: the host-computer of the operating-system IS "PDP-10"
AND the prompt-character of the operating-system IS "O"

THEN: SET the type OF the o ingSystem TO "TENEX";

Fig, 1An example of a RITA agent using both LHS-driven
and RHS-driven prodUctior rules. (RITA reserved words

are shown in upper case without quotation marks.)

II. NOWLEDGE r ACQUISITION

Creating and debuggingprograms is clearly an important and difficult task, one

that. consumes an inordinate amount of time and energy. For this reason, much
effort has been devoted to develpping rnetbodi for making programming easier. One

thrust of this activity has been the creation of high-level, speci, -purpose languages

such as PLANNER (Hewitt, 1972), CONNIVER (Sussman and McDermott, 1972),

QA4 (Rulifson et al., 1972), and KRL (Bobrow and Winograd, 19 6), to mention just

a few. These languages have sophisticated mechanisms built in or commonly used

processes such as pattern-matching and backtracking.

Another approach to the problem has been the develop ment of techniques for

automatically creating working computer programs.''This research has taken sev-
eral different paths: program synthesis by selection (Goldberg, 1975), where the user

provides information about his particular application and the system integrates that

information into an existing program or puts together a program from modules
selected by the user; program synthesis from rule-based specifications (Green and

Barstow, 1975; Manna and Waldinger, 1975), where rules about programming are

accessed by pattern-directed invocation; program synthesis through natural-lan-
guage understanding (Balzer, 1972,1973; Buchanan, 1974; Lenat, 1975), where the

task is specified interactively or in some domain-dependent language and the systeM

must understand the task and map it into executable code; and prOgram synthesis

from examples (Biermann and Krisbnaswarny, 1974; Biermann, 1976; Siklossy and

Sykes, 1975; Green, et al., 1974; Green, 1976), Aare the partial states of the process-

ing are presented and the system must twethwWprierae4he;

EXEMPLARY PROGRAMMING

Exemplary programming (EP) is a type of program sy nthesis by example that

relies on program specification from examples or traces of the activity to be per-

formed. The user tells the EP system what he warts done by actually doing it rather

than by presenting the system with a,general description of the process. The primary

difficulty with this approach is in providing the EP system with techniques for
making generalizations about what the user has done. This can be accomplished

either by building into the system domain-specific knowledge for making inference's;

about which aspects of the process are invariant and which are not, or by permitting

the system to interact with the user to extract this information. A program is
usually thought of as procedural knowledge, but the distinction between procedural

and declarative knowledge is often blurred. Although we will distinguish between
the acquisition of procedural knowledge (program creation) and the acquisition of

declarative knowledge (data acquisition), both. processes will be termed knotbledge

acquisition, and the acquisition of procedural or declarative knowledge through
analysis of examples obteieed via man-machine interaction will be called exemplary

programming.
In its most basic form, EP may be defined as the user and the machine working

together to provide the machine with the knowledge it need's to perform some task

4

for the user. This report explores the EP approach to providing the machine with
information, as well as several more conventional methods, within the framework
of the interactive transaction agent, called a user agent.

usgR AGENTS

A user agentis a program that can act as an interface between the user and the
local or external computer systems. he might want to acceas. This type ofiirograrn

is usually small and often j esides in a user's terminal (or in a portion of a central
timesharing system). The agent typically displays many of the characteristics of a
human assistant. For example, it may have the ability to carry on a dialogue with
either the user or external computer systems, It may have specific knowledge about

particular users, i.e., user A wants his mail retrieved from system X every Friday
at 10 A.M., or user B tends to accidentally invert pairs ofletters when he types, often

typing "If oin" for "login." The user agent may also have the ability to interact with

other agents that are currently operational in the terminal or even to create other
agents and initiate their operation.

User agents can be classified along two different dimensions: one Which describes

the way the agent relates to the user, and another which describes the knowledge

acquisition capability of the agent. The agent can relate to the uier in a very direct
way and hence be considered an active agent, or it can relate in a very indirect way
and be considered a passive agent. Neither of these classifications is absolute; actual
agents can exhibit both active and passive properties to a varying degree.

The active agent, as shown in fig. 2, stands between the user and the external
system, hiding the characteristics of that system. The agent may carry on a dialogue
with the user in one language and

to

the external system in another, never
permitting the user to talk directly to the external system. This type of agent can
take the user's input, translate it into something the external system will under-
stand, and immediately send it to the system. Or it may gather a large amount of
knowledge from the user, process it, and then use it later to perform some task for
the user. Alternatively, the agent may never interact' with the user but may instead
perform some periodic, routine task and leave the result where the user can find it
when he wants it.

USER

/ I

Fig. 2--Ac ye user agent

SYSTEM

8

In contrast, a passive agent, as shown in Fig. 3, passes the user's input directly

to the external system and passes the system's reply directly back to the user. Thus
it maintains a low profile, giving the user the impression that he, is talking directly
to the ether system. The passive agent tends to let the.us'er take the initiative and
guide the course of the interaction, i.e., the user may ask the agent questions, give
it commands, and generally maintain control of the situation. The active agent, on
the other hand, may try to accomplish a particular task in some prespecified way
and often maintains control, by querying the user when task - specific infbrmation is

needed and then supplying him with the result when the task is completed.

3Passive user agent

SYSTEI4

1

If the user agent is classified in terms of its knowledge acquisition capability, it
may be termed either static (incapable of permanently acquiring new knowled e) or

dynamic (able to acquire new knowledge and later use it in new situations). this

report, we are particularly concerned with dynamic agents and will further' lassify

them as being either creative or adaptive. A creative agent is one that in so e sense

creates, builds, or modifies another agent. It acquires information and then repre-
sents this information in a form that can be used by some other agent. Figure 4
illustrates the operation of a creative agent.

information
USER

Information
4----- SYSTEM

Creative

user

agent

New task

agent

Acquired

knowledge

Fig. 4 pera ion of a creative user agent

7

The creative agent contains rules that tell it how to map the information it
receives from the user and from external systems into knowledge that can be used
by the new agent. This knowledge is either in declarative form (data) or procedural

form (rules) and is saved as part of the new agent.
The adaptive agent is similar to the creative one in that it also Maps external

information into permanent data or rules. The difference is that the adaptive agent

modifies itself rather than another agent, as shown in Fig, 5. Dynamic agents can
also be classified as acquiring either data or both program and data. Thus a creative

agent that mapped its knowledge into both rules and data objects for a new RITA

agent would be classified as a creative/program type. Conversely, an adaptive agent
that mapped its knowledge into new data for itself but not into new rules would be

classified as an adaptive/data type of agent.

In formatio
USER

Adaptive

user

agent

Information

Modification

to existing
agent

SYSTEM

Acquired

knowledge

Fig. 5Operation of an adaptive user agent

APPLICATIONS

User agents can perform a variety of tasks. Orie important task is that of
interfacing the user to external systems, i.e., providing the user with active help in

learning and using complex remote systems. A good example of this type of remote

system is the New York Timesinformation Bank (NYTIB), which contains abstracts
of recent news articles. In this situation, the agent could query the user about what

kinds of abstracts- he wanted to retrieve and could then access the NYTIB and
perform the retrieval. Alternatively, it could act as an interface between the user
and the NYTIB, answering all' the'queries from the NYTIB that it could and map-
:ping those it could_not_answer into a forrnintelligible to_the user_sothat he' could.

answer t'hem in real time. In general, when.the user is interacting with an external
system whose characteristics he wants to learn, such as an interactive program-
ming-language interpreter, he shouldchave available a passive help and tutoring
facility which does not mask any of the characteristics of the system. If he wants
only to expedite the interaction, then an active agent is usually appropriate.

Another impoffant type of task that user, agents can perform is message-han-

- dling (Anderson, 1977). This includes reading and analyzing incoming mail and

informing the user when important or high-priority messages arrive. Agents could
also be designed to initiate mail under certain circumstances and even to respond
to the replies that'were elicited. For example, if the agent were trying to use a local

system, such as a network control program, and got error messages when attempting

to call it, the agent could send a message to the person responsible for maintaining

the system, asking for help or maintenance. Sophisticated agents could be used to
help prepare outgoing mail; they couldas.semble and update form letters or even

query the user to obtain information needed to create reactive messages (see Sec.

IV). -

User agents are particularly useful for providing mundane, periodic services

such as network accessing, secretarial chores, and accounting operations. Typical

network-accessing operations include sending and retrieving files to and from
remote installations, initiating and running jobs such as statistical analysis pro-

grams on a remote computer, and managing transactions between services distrib-

uted over the network. Secretarial services that could be handled include reminding
the user of appointments, trips, deadlines, etc., and recording the outcomes for

future reference. Accounting operations include filling out timesheets, travel forms,

or any other type of questionnaire needed for accounting purposes. For example, the

agent might activate itself every two weeks, ask the user how his time was spent,

use the information to fill out the user's timesheet, and then send the completed

form to the accounting department..
A final, more esoteric application of user ageats is in the area of error detection

and correction. If an agent could maintain an accurate model of the user and his

current intentions within-some limited domain of activity, it could recognize the

user's errors And automatically correct them before passing his response on to the

system being accessed. Such a9.agent would provide more personalized correction

than the DWIM feature in INTERLISP (Teitelman, 1975), which applies general-

purpose spelling and syntax correction routines to input dealing with defining and

debugging of LISP programs.
RITA agents are like any other computer programs in the sense that Once they

are designed to perform some specific task, they must be modified or reprogrammed

before they can perform different or additional tasks, However, the language has

been designed to make this modification Or reprogramming as simple as possible,

mainly through the provision of a modular, stylized syntax which can be written to

resemble a few basic English constructs. Still, the job of making major modifications

to a RITA agent or of creating a new RITA agent to perform some new task is

difficult for the novice. The solution proposed here is to handle the task of changing

or creating a RITA agent in exactly_ the same way the tasks mentioned above are

handled: by using a RITA agent to assist the user. Creative and adaptive agents:
relatively sophisticated, knowledge-acquiring agentscan be used to perform this

type of complex information processing.
To illustrate the feasibility of this approach, we have devoted the remainder of

this report to the discussion of four dynamic RITA agents which have been imple-

mented and their offspring, static RITA agents that perform simple tasks for the

user. These agents are summarized in Table 1.

EP-1 watches a user perform a series of operations on the computer and then-

attempts to write a program (another agent called TASK) to perform the same task.

TRANSFER, the self-modifying agent, performs tasks with the help of the user, such

9

Table 1

RITA AGENTS

Name Task

Relation

to User

Knowledge

Acquisition Offspring

EP-1

TUTOR

TRANSFER

WRITER

TASK

TEACH

MESSAGE

Create an, agent to
perform same job

for the user

Passive/active Creative/program TASK

Modify an agent so Passive Creative/data TEACH

it will be capable 4 .

of tutoring the user

Assist the user in Active Adaptive /program- TRANSFER

retrieving files data

via the net

Assist the user in Active Creative /data MESSAGE

creating a reactive

message-

Perform some low- Active Static -None

level job for the

neer

Assist the user in Passive Static None

learning some
,external system

Interact with the Active Static None'

recipient of a
message and send

the result .to.the
. user (sender)

as a file transfer from one site to another, and then modifies itself so that the next

time it is asked to perform-the task it can do so with less help from the user. TUTOR

watches an expert demonstrate -how to use an external system and then modifies
TEACH so it can perform the demonstrations itself. TEACH is a teaching agent that
helps naive users become familiar with interactive computer languages or local
operating systems. WRITER is the agent that assists the user in creating MESSAGE,
the reactive-message agent. MESSAGE carries on a dialogue with the recipient of

the message, automatically sending the information elicited from the recipient back

to the sender of the message.
The first four agents in Table 1 are dynamic, that is, capable of producing or

modifying offspring (other agents). The last three agents are the offspring produced
by the dynamic agents. Section III describes the EP -1, TASK, and TRANSFER
agents; Sec. IV, the TUTOR and TEACH agents; and Sec. V, the WRITER and
MESSAGE agents: Concluding remarks are presented in Sec. VI.

7

III. PROGRAM CREATION THROUGH USER AGENTS

Program creation within the production - system framework can proceed quite

naturally in discrete steps or increments. This incremental programming can be
delimited by feedback to the system that describes the problems inherent in the
current code (Waterman, 1975. 1976a). The system would then in effect be writing
and debugging the program simultarieouslY. The two RITA agents described in this

section use a slightly different approach. These agents create the program incremen-

tally, but debugging (in the-form of extending and refining the program) is done as

a later step. The rationale is that it is easier and more efficient to create a complete

program that performs the task correctly most of the time,.then laterapply sophis-

ticated debugging techniques to fine-tune the prograin so that it will produce the
correct output for its range of likely inputs. Here,,our concern is with conceptual
errors rather than syntax errors, since the program-creating agents can be designed

to avoid making syntax errors.
The first two agents discussed below, EP-1 and TRANSFER, are program crea-

tors, i.e., they transform procedural knowledge into RITA rules or goals. The organi-

zation'and operation of these two user agents will be described in detail.

EP-1: AN EXEMPLARY PROGRAMMING AGENT

EP-1 iS a RITA agent that Watches the-liSef interact with an external -compute-f

system and then creates a new agent to-perform-the task-it-saw-the-user perform.

The information used to create the new TASK agent is derived two ways: (1) passive-

ly, as EP-1 observes the actions of the user and the associated responses of the
external system, and (2) actively, as EP-1 queries the user about what he is doing
during the interaction. Thus EP-1 has both passive and active characteristics,
though it is primarily a passive agent. The information flow between the user, EP-1,

and the external system is diagrammed in Fig. 6.
Initially, the user sends task commands to the external system and receives

system responses, using EP-1 as an intermediary that passes the messages back and

forth and asks questions about what is happening. The knowledge acquired from this

interaction is used to create the TASK agent incrementally, as the user performs
the task. When the user is finished, TASK is complete and can then be used to
perform the 'task, as Shown by the dotted lines in Fig. 6. TASK may itself be an
interactive program that queries the user when it needs help or information.

Modes of Operation

EP-1 currently has one mode of operation, the acquisition mode, but will even-
tually incorporate a training mode. In the acquisition mode, EP-1 watches the user

perform some interactive task, asks the user appropriate questions about the task,
and then writes a set of RITA rules to perform that task. In the training mode, the
situation is reversed: The user watches EP-1 run a rule set which performs some
interactive task, Whenever the rule set responds incorrectly to the system it is

10

EXTERNAL
SYSTEM

Ii
Request to

initiate task

Result of doing task

Acquired

knowledge

System responses

Fig. 6 Information flow in EP-1 agent

interact ng-with,the user tells-EP-1 what the correct response should-have beenland
possibly why it should have been made), and the EP agent modifies the rule set so

that it will thereafter make the correct response in that situation. The acquisition
mode is essentially a program-writing mode in which EP-1, with the help of the user,

is able to write a program from scratch. By contrast, the training mode is a debug-
ging mode, in which=EP-.1can_debug the program it creates during acquisition.

Acquisition Mode

Ideally, we would like End to monitor the behavior of the user, analyze that
behavior, and from it create new RITA agents to duplicate the behavior, without
having to interrogate the user. The questioning of the user by EP-1 is necessary

' because the current version is quite general: No domain - specific knowledge is built

into the agent. The questioning can be reduced or eliminated, by adding such knowl-

edge, but care must be taken to ensure that the rules produced use object, attribute,
and value names that are mnemonic, and that the rules have no unnecessary
premises.

Current Implementation. As a first pass at developing an EP agent, we have
created a working RITA program which operates in the acquisition mode. It watches

the user perform a task and then creates a new RITA agent capable of performing
the same task. The operation of EP-1 during acquisition consists of an initialization

stem

The, user is asked to supply a name for each type of information that will

be relevant for this particulai- task. This includes both general information

and I/O (input/output) information.

and repetitions of the following basic cycle:

The user is told to start the protocol. He then sends a message to the
external system he is interacting with and receives the reply from that

system.
The user is -asked for the current value of each type of information he
earlier declared relevant.
A RITA rule is crea. A whose premises reflect the state of the relevant
information before the -user made his last resp9nse, and whose actions
reflect the last response of the user and its effect on the state of the relevant

information.
The user is asked to continue the protocol, and the cycle is repeated until

the user types "'finished" in response to the "continue protocol" message:

To illustrate this sequence, assume that the user tells EP- I chat the following

three types of information are relevant:

. The name of the current system (the name of the operating system or
program the user or agent is currently accessing.)
The state of the agent (a term describing what the agent is currently trying

to accomplish, i.e., "logging in," or "giving passWord.")

e The value of the response (the response the user or agent receives from
the external system, '.e., "host:" from the FT P program.)

Furthermore, the user specifies that " value of response" is I/O information.
After EP-1 tells the user to start the protocol, assume that \he types a carriage
return, gets back a "%," and tells EP -1 that the name of the current system is "unix"
and, the state of the agent is "use the ftp program." In this situation, the dialogue
shown in Fig. 7 would lead to the creation cf a new rule.

EP-I:- Please continti the protoco

USER: ftp
SYSTEM: HOST:

EP -1 :. What is the name of the eurren

USER: file transfer program
EP-I: What is the state of the agent?

USER: give the host name

Fig. 7Dialogue needed for rule crentidn

At this point, EP-I creates a rule using the information just' elicited from the user

and the information elicited in the previous cycle. The rule created would be similar

to the one below:'

E

13

RULE n
IF: the name of the current-system is "unix"

and the state of the agent .is "use ftp"
and the value of the response contains a t`70 ")

THEN: set the name of the current-system to "file transfer projgra
and set the state of the "agent to "give the host name"
and set the value of the response to " "
and set the reply of the agent to "ftp";

A rule at the beginning of the rule set being created sends the reply of the agent
in this case "ftp," to the external system. Thus when rule n is fired, it will send "ftp"

to unix and set the values of the relevant,objects appropriately.

As the user is interacting with the external system, the EP agent is monitoring
the interaction, asking questions, creaLing RITA rules, and storing them in a disk
'file. When the user is finished with his task, the EP agent is also finished with the
job of creating the new rule Set or agent, and this rule set is available for immediate

use. The user is not required to examine or modify the rule set in any way-before
lie uses it to accomplish the desired task.

To illustrate more fully the operation of EP-1 during the acquisition phase, an

actual protocol of a very simple user-learner interaction is shown below. The task
is to determine who is currently using the unix system. User input is shown in
italics, EP agent response in normal type, and system response in boldface.

*run;
WharUksk are yOu-goltig-to per -forte

Seeirig who is using unix

What is relevant?
the name of the current sys e
What else?
the state of th.e agent
What else?

nothing
What do you want to call the
the value of the response

Please start the protocol to be learned

(carriage return)

What is the name of the current system ?

What is the state of the agent .
use the who command

Please continue the protocol earned

1

14

who

k2240 ttya Jul 6 15:26
don ttyf Jul 6 15:22

What is the name of the current system ?

(carriage return)

What is the state of he agent ?
quit_

Please continue the protocol to be learned

finished

done

The following RITA rules were written by EP-1 during the above interaction:

[OBJECTS:]

OBJECT agent<1

OBJECT current - system 1

OBJECT response<l):
value IS " "
input '"
count IS "0";

[RULES :]

RULE 1:

IF the prompt OF the agent IS KNOWN
THEN: SEND the prompt OF the agent TO user

& RECEIVE the NEXT {ANYTHING `line. Contents'
FOLLOWED BY "Ar}t FOR 15 SECONDS FROM user

& SET the the new-reply OF the agent TO line-contents'
& SET the prompt OF the agent TO NOT KNOWN;

RULE' 2:

IF the new-reply OF the agent IS KNOWN
& the new-reply OF the agent IS 110T "

THEN: SET the reply OF the agent TO the -nev..reply OF the agent
& SET the new - reply. OF the agent TO " 7;

RULE 3: --

IF : tithe reply OF the agent IS KNOWN
THEN: SEND the reply OF the agent TO system

& SEND TO user

11his statement reads the next line typed in by the user and calls it 'line- contents stripping
off the terminating carriage return (represented by "

15

& SEND concatl "sent: ", the reply OF the agent I TO user_
& SET the reply OF the agent TO NOT KNOWN;

RULE 4:
IF: the name OF the current-system IS NOT KNOWN

& the state OF the agent IS NOT KNOWN
& the value OF the response CONTAINS {" "}

THEN: SET the name OF the current-system TO "unix"
& SET the state OF the agent TO "use the why command"
& SET the value. OF the response TO "

& SET the reply OF the agent:TO ";

RULE 5:

IF: the name OF the current-system IS "unix"
& the state OF the agent IS "use the who command"
& the value OF the response CONTAINS (1% "1

THEN :_ the state OF the agent TO "quit"
& SET the value OF the response TO "
& SET the reply OF the aient TO "who";

RULE 6:

IF: the state OF the agent IS "quit"
& the value OF the response CONTAINS f"%

THEN: SEND "Seeing who is using unix has been completed"

TO user
&-RET-URN:SUCCESS:-

RULE 7:
IF: the input OF the response IS "

& the count OF the response IS LESS THAN 20

THEN: RECEIVE FOR 5 SECONDS FROM system

AS the input OF the response
& SET the count OF the response TO

1 the count OF the response;

RULE. 8:

IF: the Count OF the response IS LESS THAN 20
THEN: SET the value OF the response TO

concat(the value OF the response,

the input 'OF the response)
& SET the input OF the response TO "
& SET the count OF the response TO
& SEND concat("got: ", the value OF the response)

TO user;._

The first three rules are standard rules always generated to handle the median-
los of sending messages specified by the other,rules to either the user or the external

system. The last two rules are used to look for the response from the external system

and to limit the time expended so that the agent won't go into aloop if the etertlitr-
iystern never bothers to respond. Rules 4, 5, and 6 are the ones that de elge actual

el

16

task: that of checking to see if unix is running (entering a carriage return to see if
it elicits a %), using the "who" command, and then halting.

The actual protocol produced by running the above rule set created by EP-1 is

shown below. User input is shown in italics, EP agent response in normal type, and

system response in boldface.

run;

sent: ,(carriage -r

got: %®

urn)

sent: who
got: jal tty9 Jul _18 18:35

leone ttyd Jul 18 17:44
lai ttyi Jul 18 17:30
don ttym Jul 18 16:38

Seeing who is using unix has been completed

Appendix A presents a complex RITA agent written'by EP-1. This task agent
automatically retrieves files from remote sites on the ARPAnet and copies them into

a RAND unix file. It interrogates the user, asking him for the falloWingirffRmition:
_

Remote-site -name.

Account name at that site.
Password at that site.
Name of file to be retrieved.
New name for retrieved file.

If the user fails to respond to a question within a reasonable length of time (currently
---15 seconds), the agent goes on to the next question and assigns the default answer

for the unanswered question. As the agent obtains the information it needs, it-calls

the local file-transfer program, answers its questions, and initiates the retrieval. ,

When the retrieval is_cornplete, the agent informs the user -of- this - fact. and halts.

The file4ransfer agent'shown in App. A was written by Ei3-1 as it watched the

user transfer a file from' the Carnegie-Mellon University PDP10 system to the
RAND unix system. During the interaction, the user indicated which items of infor-

mation were to be considered variables by appending a colon and prompt to the user'

responses that defined those items. Figure 8, which is a continuation of the dialogue

of Fig. 7, illustrates

17

EP -1 Please continue the protocpl
USER: cmu-I0a:What system shall I retrieve the file from?.

SYSTEM: Connections established.
300 CMU10A 7.U5 /DEC 5.06B FTP Server 4(30)

EP-1: What is the name of the current-system?

USER: (carriage-return)
EP-1: What is the state of the agent?

USER: login

Fig. 8Dialogue illustrating creation of rules with prompts

The rule that would be created from the dialogue of Fig. 8 is shown below (see App.

A, Rule 5):.

RULE m

IF: the name of the current - system is
"file transfer program"

and the state of the agent is "give the host name"
and the value of the response contains {"Flost: ".}

THEN: set the state of the agent to "login"
_ _ and_set_the-reply-of-the agent-to "criu-10a"

and set the prompt of--the agent to
"What system shall I retrieve the-file from?. .

A rule at the beginning of the agent being created sends the value associated with
"the piempt of the agent" (in the above wimple, the "What system ..-." message)
to the user and then passes the user's reply on to the external system. If the user
does -not- respond to the prompt in time (or responds !,Vith a carriage return), the
agent -replies for the user, sending the value associated with "the reply of the agent'

(in the above example, "cmii -lOa ") to the external system. The above 'rule does not

reset "the name of the current-system," because the user indicated that this infor-
mation was not currently relevant by entering a carriage return rather than 'the
actual name of the current system during the dialogue that led to the creation of

the rule (see Fig. 8).
The operation of the task agent created by EF:1 is-illustrated in the protocol

given in App. B. Note that in some cases the messages sent by the agent were garbled

during transmission, and the agent received unexpected_errorinessages_frorrc-the-
external-sySTeriChi these cases, the' agent correctly backed up to the appropriate
spot,in the sequence of operations and repeated the messages until they were Cor-

rectly transmitted and received.
Expansion. This initial version of an EP agent could be expanded in-a number

of ways to make the acquisition phase more effective- First, a more sophisticated
method'could be developed for determining what part of the external response (the.
1/0 information) should be used in the rule being created at each step. In the
previous example there was no problem: The response was "T'o ," so the entire
response could be used in the left -hand side of the rule as part of the premise.

18

However, when the response consists of many lines Arid is not always exactly the
same for the same input to the external system, then something more is needed. The

current implementation of the EP agent handles the probleM by. simply using the
rst n characters of the last line, the external system gives as a response. This could

be slightly improved by using the first n characters of both the first and last lines.
,however, to effect any significant improvement it would be necessary to build into

EP-1 spec-ific knowledge about the tasks it could be asked to learn, plus rules telling

it how to decide what components of the system response are likely to be invariant
(or static info oration from several different examples would have to be induced).
The alternative would be to have the EP agent learn which components tire invari,
ant through empirical verification, which might prove time-consuming.

Secdnd, the EP agedcould be modified so that it would not ask the user for the

values of the relevant objects at each step, but instead would supply these values
itself- This would reduce the workload on the user but would introduce some difficul-

ties: (1) The mnemdnics created by the agent would not be as intelligible as those.
created by the user, unless the agent had clever heuristics for inferring good mne-
monics from the trace of the user-system interaction, and (2) global kndwledge about

the task being performed would have to be built into the EP agent so that it could
infer the values of the relevant objects, e.g., it would have to know that if the user
types a carriage return and gets back a "% ," the name of the current system is unix.
This type of inference is currently made by TRANSFER (the agent discussed next

in this section).
Finally, the EP agent could be made not only creative but also adaptive. The

result would be an agent capable of creating new agents, debugging them, and, in
the course of the debugging, modifying itself so that it would subsequently generate

agents with fewer bugs.

Training Mode

The training mode for the EP agent is not yet implemented, but it will feature
teractive rule acquisition and modification similar to that in TEIRESIAS (Davis,

1976). What follows is a partial specification of the features needed in this mode.,In
the training mode, the agent, with the help of the user, will debug a given RITA rule

sat by running the rule set and making corrections to it whenever it makes error.

Each time the rule set makes a decision (fires a rule), the EP agent will give`the user

an-OPpOrtunity to state that an incorrect decision was made and inform the agent
of the correct decision, The EP agent will then correct the rule set being debugged

by eitheraddina-neW-rule-or-modifying-arrexistinrone:Miypothetical protocol
for this process is s owmhelow:

SYSTEM: %
AGENT: sent: ftp

EP: was this ok?
USER: yes

SYSTEM: Host:
AGENT: sent: crnu

EP: was this ok?
USER: cmu-10b not emu

19

Now the EP agent modifies the new agent by changing all occurrences of emu in the

rule that just fired to cinu-/Obl it then starts the agent running again. If instead the

user says, -ask for site name,the EP agent adds to the currenf rule an action that

queries the user for the site name instead of considering it invariant;

AGENT: sent: cmu -lOh

EP: was this ok?
USER: yes

SYSTEM: Connection established.
300 CMU10B 7.U5/DEC 5.06 P Server

AGENT: sent: retrieve news ftpdata.
EP: was this ok?

USER: do: user A330DW28

Now the EP agent adds a new rule that says, in effect, when you get a "Connection
established" message send "user A330DW28" to the remote system. It then starts

the agent running again.

AGENT: sent: user A330DW28

EP: wa.. this ok?
USER: yes
,

During training, the EP agent, will be able to correct errors that were made
during the acquisition phase. As illustrated above, two types of errors will be correct-

ed: those caused by the user giving the EP agent incorrect information during
acquisition (e.g.; cmu instead of cmu-10b) and those caused by the user failing to
supply the EP agent with inforthation -about what to do in a given situation (e.g.,
login before you start retrieval). The EP agent Will also be able' o create new rules

that are modifications of existing rules. For example, if the above protocbl continued

witri the agent sending !!abc" for the password o. cmu-10b and the current host was

not cmu -lOb, the user could indicate that the p word was wrong in this instance,

with "bcd this time, not abc." The EP agent wou d then query the user to find-that
the current host (say, SRI-AI) was relevant at this point and add `a rule saying, in

effect, that if the host is SRI-Al, then the password is "bcd."

TRANSFER: A FILE.TRANSFER AGENT

TRANSFER is a sophisticated user agent designed to help the user transfer files

across the ARPAnet. It differs from the file-transfer agent created by EP-1 in-three

important respects: First, it contains information about-the characteristics evert
ous operating systems,-which enables it to recognize which system it is_ interacting

with and, take, the appropriate action. This is particularly important when system

errors occur and the agent ends up talking to an unexpected system. Itan recover
from such an error only if it knows that an error has occurred and redognizes the
system with which it is currently interacting;

Thesecond way in which TRANSFER differs from the EP1-created file-transfer

agent is that it has a goal-driven component. TRANSFER= initially attempts to

20

dedUce the information it needs for file transferthe file name, site name, account

name, etc. If it fails to find the information in the data base and cannot,deduce

TRANSFER automatically queries the user_for the information._
____-fhe_third and most important difference between thc,-Firo file-transfer agents is

that TRANSFER is adaptive,' i.e., it can modify itself on the basis of knOwledge

gained through interaction with the user. Once it obtains the information it needs

to login to a particular site, it retains it in the forrn-efclata objects -and goals so it

won't have to query tfie user again at some later date for the same information. To
illustrate, a pro-tocol of an actual user-agent interaction is shown below. User input

is shown in italics, TRANSFER response in normal type, and system response in

boldface:

°10 rita use.ft, new

run;
What is the name of the current-file?

Response: mail

What is the site-name of the current-file?
Response: aim

What is the site of the current -file?
Response: sumex -aim

What is the-account -name of the current -file?

Response: aihandbook
What is the password of the current-file?

Responie: abcdef
What is the directory of the current-file?

Response: <aihandbook>
Will now attetript to retrieve file <aihandbook mail

from the sumex-aim.system

Sent: ftp

Received from net: Ho

Sent: sumex-airn

Receivedfrorn ftp: Connections established.

300 SUMEX-AIM FrP Server 1.44.0.0 - at MON 19.-JUL-76 11 :37 -PDT

Sent: user aihandbook

Received from ftp: 330 User name accepted. Password, please.

21

Sent, pass defr,.

Received ftp: 230 Login completed,

Sent: retrieve <aihandbuok >r ail flpdata
rile has been transferred

Received from flp: 255 SOCK 3276965379

250 ASCII retrieve of <AIHANDB00K>PEOPLE4 started.
252 Transfer completed.

Sent: bye

Job fin 'shed
done

* exit;

exiting,

During the course of the above interaction, TRANSFER permane tfy acquired
the data objects' and goals shown in Fig. 9. This knowledge enabled the agent to
deduce the inkrrnation it needed the second time the user asked for the file to be

transferred, as shown by-the partial protocol below:

%, rite ase.

Ready. ..

new

run;
What is the name of the currentfile?

Response: nail

Will now attempt to retrieve file <aihandbook>mail
from the suniex =aim system

Sent: ftp

From this point on the p oleo' is the same as the one shown earlier for file retrieval

using TRANSFER.

The knowledge mapped into RITA goals by TRANSFER could have been repre-

sented more simply as RIT4'data objects. However, the use of_goals provided' the
agent with the implicit question asking capability of the goal-driven RITA monitor,
Thus no rules or goais were needed that explicitly directed the agent to ask the titer

for information. This request was handled by simply telling the agent to deduce the

information when it was needed.

OBJET_ known-files
names. IS ("mail");

O EC_ T known-sites< I>:
mes. IS ("surnex-mini ");

OBJECT sumex-ainvel-

, "supaliases IS ("aim' i -x I,

files IS "mail");

GOAL 5:

IF: the name OF the carrell -file. IS IN
the tiles OF the surnex-airn

THEN: SET the site OF the currentfile 'CO "surnex-aim"
& SET the site-name OF the current-file TO "sumex-ai

GOAL 6:

IF: the site OF the current-file IS "sumex-alin"
THEN: SET the password OF the current-file TO "abedel"

& SET the account-name OF the current-file TO

"a ihandboor
& SET the account -preface OF the current-file TO "user"

& SET the password - preface OF the current-file TO "pass";

GOAL 7:
IF: the site-name OF the current -tile IS IN

the aliases OF the sumex-aim
THEN: SET the site OF the current-die TO " u ex-aim

GOAL 8:

IF: the name OF the curreint-file IS "mail"
THEN: SET the directory OF the current-file 7 ndbook>

Fig. 9Data and goals learned by 7Rk.NSFER agent

IV. DATA ACQUI ITION THROUGH USER AGENTS

Data acquisition isn much easiereasiertrask than program creationit cons ists simply
of adding new knowledge to the existing data base, However, user agents that
employ data acquisition exhibit many of the dynamic characteristics of the more

powerful program-creating programs. The trick is to organize the agent being
created so that the fixed, unchanging portion of the knowledge it contains is proce-

dural, that is, represented as rules or goals. The fluctuating, context-dependent
portion is 'then represented as data for the procedkires to operate on This was the
approach taken in the design of both TEACH and MESSAGE. TUTOR, the agent
that creates TEACH. generates the data base for TEACH, but not the rules that
TEACH uses. Similarly, WRITER, the agent that creates MESSAGE, generates only

the data base for M ESS AGE. This results in the creat ion of useful programs because

the data bases of'T EACH and MESSAGE contain all the context.dependent knowl-

edge about the task to be perfbrmed.

TEACH. A TUTORING AGENT

TEACH is a RITA agent that can help a user learn how to use interactive
computer languages or local operating systems. It works by acting as an invisible
interface between the user and the system the user is trying to learn, passing all
standard use noriginated messages to the system and all system-originated messages
back to the user. In addition, TEACH recopizes special user-originated messages
and responds to them either by sending appropriate text to the user or by conducting
interactive demonstrations of the system's capabilities. Thus it appears to the user

that the system he is trying to learn is able to explain and demonstrate its own
operation.

The TEACH agent consists of 14 short RITA rules which are somewhat domain-

independent, that is, they can be used to teach Et variety of languages or operating
systems. The syntax of the special messages TEACH recognizes is quite simple:
either "show me <arbitrary string of cha r's>" to elicit an interactive demonstration,
"again" to elicit a new demonstration of whatever was last demonstrated, or "exit'
to terminate the TEACH program. The TEACH data base consists of RITA. objects
which are domain-dependent, and thus a different data base must be supplied for
each new language or operating system taught by TEACH.

The TEACH data base contains three types of objects: intros, texts, and demos.
Each intro contains a piece of text that is elicited when the user types the name of
the intro. A typical_ name is HELP, which supply the user with a message

explaining what special message's TEACH recognize text object also contains

a piece of text, but this is elicited only when the user types o w me <name of
text>." For example, if one text object is named "function name " then when the
user types "show me function names" he should elicit a list of all pertinent function

if the language being taught contains these messages as valid commands, they can be modified by
adding special control characters.

23

2,1

names. Each demo object contains a list of one or more sequences of commands.

When the user types "show rue <name of demos," TI ACI-1 sends one of the se-

quences of commands to the system in such a way that they appear to be user-
originated messages. The system-originated replies are returned to the user, and

thus the user sees a live demonstration of the system's capabilities.
When the user loads TEACH, the intro object with the name -what?' auto-

matically accessed and its text displayed. Thus a user-TEACH interaction might

proceed as- follows (user responses are shown in italics):

flux use.teach

Type "help" for help

help

Type "show me' followed
by "functions" or (any
function name).

Show me fund

The available functions
are plus, minus, and div

show ate plus

[demo of plus]

(user loads the TEACH agent)

(automatic intro message from agent)

(user types "help")

(agent displays text of the INTRO
named "help")

r types "show me functions")

(agent displays example of TEXT

named "functions ")

(user types "show me plus ")

(agent sends commands and receives
responses from system, displaying

all I/O to user)

TEACH uses a very simple control mechanism for its demonstrations: It cycles

through a list of commands, sending one to the system, receiving the response from

the system, and then sending the next command in the list, regardless of the value

of the response. This works well for teaching a programming language or local

perating system because the number of possible responses for any given command

is low (usually 1). However, this technique could not be used-to teach a user how to

interact with a complex system, such as the ARPAnet, which has many pOssible

responses for any given command. Teaching this type of system requires an agent

that sends commands based on the responses it receives, as does the TRANSFER

agent.
`There are a number of advantages to using TEACH in conjunction with the

typical printed reference manual, First, the information is on-line, so the user

always has it available when he is using the systeth. It occurs within the real on-line

context, so the user can freely mix experiment and query. Second, the demonstra-

tions are live, not canned, which means that if the system changes, the changes will

be seen the next time the demonstration is run. A reference manual with a listing

of a demonstration would simply become out-of-date. Finally, the demonstration is

a nice way to show the user how to make use of the facilities described in the

26

reference manual. Just giving the user a definition of command or function usually
does not show him how to apply it and make proper use of it in conjunction with

the other system facilities.
A 'protocol of an actual user-TEACH interaction is shown in App. C. This proto-

col shows how TEACH can be used to teach a novice how to use commands and

actions in the RITA system.

TUTOR: A PASSIVE EXEMPLARY PROGRAMMING AGENT

TEACH is itself created by another RITA agent called TUTOR. A primary
reason for organizing TEACH as a production system was to facilitate its creation

by TUTOR, TUTOR is a passive agent that watches the user demonstrate how to use

certain features of a system and then places the information needed to recreate that
demonstration into the data base of TEACH. This is another instance of EP. The
difference between this application and the use of EP-1 to create agents from exam-

ples of programming tasks is that with TUTOR the end result is declarative knowl-
edge in the form of RITA objects, while in the case of EP-1 the end result was
procedural knowledge in the form of rules.

A protocol of a user interacting with TUTOR to create a TEACH agent for LISP

(McCarthy et al., 1965) is shown in App. D. The use of the TEACH agent created for

LISP is shown in App. E. Note that by using TUTOR, a LISP expert who doesn't
know RITA can create a RITA agent to teach LISP.

REACTIVE-MESSAGE AGENTS

The reactive message is an offshoot of an earlier concept, the interactive letter
(Anderson and Gillogly, 1976a; Standish, 1974), which is a letter organized as a
computer program. The recipient of the letter "reads" it by interacting with the
program. When the dialogue between the user (recipient) and the letter (program)

is concluded, the letter transmits a record of the interaction back to the user who

sent the letter.
The reactive message is a particular type of interactive letter, one in which the

originator-recipient link is a one-to-many mapping. That is the message is organized

to be general enough to be sent by one originator to many different recipients. It is
this one-tomany mapping that makes the reactive message cost-effective. Reactive
messagesform letters, questionnaires, timesheets, etc.have been implemented
in RITA as RITA agents which contain not only the message to be. transmitted but'
all the machinery needed to initiate a dialogue with a user and transmit the result

back to the sender.
The reactive message has a number of advantages over other, more conventional

forms of communication. First, the act of reading the message can automatically
generate a reply which is transmitted back to the originator or sender of the mes-

sage. This means that the sender gets instant response. Also,- the recipient doesn't

have to worry about organizing and forwarding a reply to the message. Second, a
long message with lots of text can be "read" quickly by the recipient, since he doesn't

have to look at the entire message. Instead, he takes one path through the message,

26

reading only text that is relevant to his particular situation or inteieats, Finally, the
reactive message maps the recipient's replies onto a small set of expected responses,

and these mapped replies can easily be read and understood by another program or
agent, This second agent could process this information (e.g., tabulate the results of

all replies to a questionnaire) and transmit the end product to the sender,
There are also certain inherent disadvantages in the use of reactive messages.

From the point of view of the sender, the message is difficult to organize and create.
Since it is a program, some thought has to be given to the flow of control and how
it determines which text and questions will be presented in any given context of

recipient replies. Once the message is organized, the physical act of writing the
program is still a problem. This can be alleviated somewhat by having a messages

writing agent help the sender construct the message, but the work involved in
interacting with this agent is still greater than the work involved in creating an
ordinary piece of computer mail. Moreover, the reactive message presents some
special problems for the recipient. For example, he might like to read the message

without responding, or just skim it to, decide whether or not he wants to actually
read it. An even greater problem is created if he wants to back up to some previous

answer and start over. Providing such capabilities would result in a more complex
control structure for the reactive-message agent, but it would no doubt be worth-

while in terms of usefulness for the recipient.

Implementation of Reactive,Message Agents

An example of a reactive-message agent is MESSAGE, a RITA agent composed
of seven short production rules and a large data base organized as a simple semantic
net. These context-independent rules are used to search the data base for the next

piece. of text, send that text to the user, and then instigate a new search based on
the user's reply. All the text of the message is stored in the data base at the nodes

of the net, thus each reactive-message agent has a totally different data base in

terms of structure and content but exactly the same set of production rules to

perform 'the search."
A sample reactive-message data base is illustrated in Fig. 10. Note that there

are two types of nodes in the net: statement nodes and question nodes, Similarly,

there are two types of links: associative and alternative. The associative link con-
nects a statement to a lower node and has no user reply assigned to it. In contrast,
the alternative link connects a question to a lower node and always has a user reply

assigned to it.
One possible user-agent interaction that this might evoke is shown

below:

AGENT: Dear Professor Smith:

I'm currently trying to organize a
weekly seminar on message-handling
systems. The only available day of
the week is Tuesday.

'The ASKIJSER facility in INTERLISP Ifeitelrnan, 19751 also provides a way of defining a user-
system dialogue, but it is used more as a sophisticated prompting mechanism than as a mesaagehandling

system_

27

"I'm currently trying to organize' a weekly seminar
on message-handling systems. TInk only available

day of the week is Tuesday."

"Would y(m he nib rested in aettendin

such a series of seounars?-

"Good"

-What tone, between 11 a.m.

and 4 p.m., is best for you ?"

"Noon is a bad

time for most

people,"

"That sounds

good to me."
"I see.

What's your

second choice?"

"Thanks 'II get back to you when the

responses to this message are tabulated."

"Why _not ?"

"OK, thanks anyway
for your response."

Fig. 10Data base for a reactive message

"Goodbye"

28

Would you be interested in

attending such a series of

seminars?"

USER: OK, I guess so.

AGENT: Please answer with either a "yes" or "no"

Would you be interested in
attending such a series of

seminars?"

USER: Yes I would.

AGENT: Good.

What time, between 11am
and 4pm, is best for you?

USER: I guess sometime around 12 o'clock.

AGENT: Noon is a bad
time for most
people.

What's your
second choice?

USER: 3 in the afternoon.

AGENT: Thanks, I'll get back to
you when the responses to
this message are tabulated.

The user -agent interaction consists of the agent presenting statements and asking

questions and the user answering those questions. Each_ time the agent asks a
question, it searches the user's answer, looking for a reply that matches one assigned
to an alternative lower link of that question. If no match is found (as shown above
by the user's first answer), the set of alternatives is presented to the user and the
question repeated. This forces the user to make one of the desired responses. How-

ever, since it is virtually impossible to predict all reasonable responses the user
might want to make, a special category, designated by the asterisk('),.is permitted.
This is the catch-all category and, matches any answer the user gives. Thus in the
above example, if the user had replied "2 o'clock" to the question, "What time,
between 11am and 4Pm is best for you?,", the agent, after finding that neither "12"
nor ",1" was in the user's answer, would have called it a match on the third link and

responded with, "I see."
In general, the user is forced to make a predetermined response to questipris

whose_ alternative links contain no asterisks. He always knows what his options are

in this situation, since an undesired t eply elicts the list of deiired responses. On the

other hand,, questions whose alternative links do contain an, asterisk are never
repeated. The user's first reply is always mapped into one of the alternatives.

29

A certain amount of care must be taken in the construction ofa reactive message

to keep the user from being forced down a path he doesn't really want to take. The
saving factor here is that all the responses of the user are being saved by the agent
for transmittal back to the sender. So if the user replies "yes I do," and the agent
is looking for "yes," the reply matches but the entire sentence is transmitted back
to the sender, not just the "yes." Thus when the user cannot find an alternative he
likes, he can pick one anyway but qualify his reply with extra comments.

Design Considerations

The current design of the reactive message is rather unsophisticated. There are
a number of ways in which it could be extended to make it a more effective tool for
communication. Each extension, however, raises a basic design issue which must be

faced.

Exponential Growth If the data base is tree-structured, its size grows expo-.

nen tially as questions are added. One way around this problem is to organize the
data base as a net rather than a tree, Then interconnections between arbitrary
nodes eliminate redundancy and thus reduce the size of the data base. In the current

implementation, arbitrary nets are not permitted but some interconnection of nodes
is allowed.

Natural-Language Processing. The reactive message should b- e a short, yet
powerful program or agent for eliciting information from a user. These two goals are

not really compatible, however, as natural-language processing is a formidable task.

One problem is synonym recognition. If the user answers "OK" instead of "yes," the

agent should be able to recognize this as an equivalent reply. Two immediate issues
arise: (I) Should the sender or the message itself take responsibility for defining the

synonym classes? (2) Once the classes are defined; how should the message go about

mapping the user's reply into one of the classes? This issue is avoided in the current

implementation by not allowing synonym recognition.
Another, problem that confounds he synonym problem is that of recognizing

logical combinations of replies within a single response. For example, the sender
might want to specify that a particular alternative link should match only if the
user's response contains either a "yes" or a "no," or should match if it contains both
a digit and "morning" but not if it also contains an -except," Logical combinationd

are not allowed in the current implementation.
Back-up. The recipient of a reactive message. doesn't really know where he is

going until he gets there, i.e., he can't look ahead to see-what's corning. Conse-
quently, at some point in the interaction he may decide he made a mistake in a
previous answer and want to change the answer and start fresh from that point. Or
he may want to start over frond the beginning, or even abort the message in such
a way that it is terminated and nothing is sent back to the sender. Such a capability,
though sorely needed, will greatly increase the complexity of the program. ThiS issue

has not been addressed in the current implementation.
User-Originated Questions. It would be useful to hav'e the message capable

of answering questions as well as asking them. This would require some rather,
complex natural-language proceSsing capabilities, however, which would probably

be unjustifiably costly.-
Machine-Readable Output. Besides transmitting back to the sender_ the Corn-

plete protocol of the user-agent interaction, a mapping of the user replies onto the

30

expected replies should also be sent. This normalization of the user response would
make it relatively easy for another agent to analyze the response of the user and
make decisions based on that response,

C rreation of Reactive Messages

The reactive message is a fairly complicated program that talks to the user and
records his answers. Writing such programs can be a very tedious and time-consum-
ing task, one that requires remembering exactly where you are at all times in the
tree of questions being generated. To make this job easier, a second RITA agent
called WRITER has been designed to help the sender create his reactivemeSSage.

WRITER queries the sender, uses his replies to construe t the message, and automat-

ically sends the message to the user (recipient) along with a piece of standard
computer mail telling him he has a message. The message itself does the rest; that
is, it queries the user, records his responses (plus a complete record of the interac-
tion) on a file owned by the sender, and tells the sender that the transaction has

taken place.
The protocol of the agent-sender interaction that led to the creation of the

reactive message diagrammed earlier is shown below:

AGENT: What is your name?
SENDER: don

AGENT: To whom are you sending this message?

SENDER: Professor Smith

AGENT: If the text is
Dear Professor Smith:

and the reply is "[mile]"
then what is the new text?

SENDER. I'm currently trying to organize a
weekly seminar on meSsage-handling

systems, The only available day of
the week is Tuesday.

AGENT: What are the possible replies.

SENDER: [none] -

AGENT: If the text is
I'm currently trying to organize a
weekly seminar on message-handling

systems. The only available day of
the Week is Tuesday.

and the.reply is "[n"[none]"none

then whatis the new text?

SENDER: Would you be interested in
attending such a series of
seminars?

6

AGENT: Wha
SENDER: yes

no

re

31

the possible replies?

AGENT: If the text is
Would you be interested in
attending such a series or

seminars?

and the reply is -ye
then what is the new text?

SENDER: Good

AGENT: What are the possible replies?

SENDER: [none]

AGENT: If the text is
Would you be interested in
attending such a series of
seminars?

and the reply is no

then what is the new text?
SENDER: Why not?

AGENT: :What are the possible replies?

SENDER:

-AGENT: If the text is
Good

and the reply is "[none]

then what is the new text?

SENDER: What time, between llam
and 4pm, is best for you?

AGENT: What are-the possible replies?

SENDER: 12

1

AGENT: If the text

Why not?

and the reply is " "
then what is the new text?

SENDER: OK, thanks anyway

for your response.

AGENT: What are the possible replies?
SENDER: [none]

32

AGENT: If the text if4 :

What time, between 1 larn

and 4pm, is best for you?

and the reply is "12"

then what is the new text?

SENDER: Noon is a bad

time for most

people.

AGENT: What are the possible replies:

SENDER: [none]

AGENT: If the text is :

What time, between 11am

and 4pm, is best for you?

'and the reply is "1"

then what is the new text?

SENDER: That sounds

good to me.

AGENT: What are the possible replies?

SENDER: [merge]

AGENT: If the text is :

What time, betwr o 11am
and 4pm, is best for you?
and the reply is " "
then what is the new text?

SENDER: I see.

AGENT: What are the possible replies?
SENDER: [merge]

AGENT: If the text is
OK, thanks anyway
for your response.

and the reply is "[none]
then what is the new text?

SENDER: Goodbye

AGENT: What are he' possible

SENDER: /

AGENT: If the text is :

Noon is a bad

time for most

people.

and the reply is Trion f
then what is the new text?

SENDER: What's your
second choice?

AGENT: What are the possible replies?

SENDER:

AGENT: If the text is :

What's your
second choice?

and the reply is "
then what is the new text?

SENDER: Thanks, I'll get back to
you when the responses to
this message are tabulated

AGENT: What are the possible replies?
SENDER: .

AGENT: Who else are you sending this message to?

SENDER: nobody

AGENT: Finished

Note that the sender specifies the expected replies by typing one reply per line and
ending his sequence of lines with a period. In place of a reply, he can also type
none" to indicate an associative link to the next piece of text, "merge" to indicate
that the link being created is to be merged with the one that was just created, or
just a carriage return to indicate that the link being created will match any reply
of the recipient.

There are a number of problems involved in implementing a message-writing
agent. The main problem is in designing the message to take the form of a general

net structure but still be easy for the sender to create. The net structure, rather than
a restrictive tree structure, is needed to avoid repetition of similar substructures and
to curb the exponential growth of the data base. In the current implementation, only
merging is. permitted, which transforms the tree into a special type of net. It is clear

that simple ways of specifying general interconnections in the net are needed.
Another problem is putting the user into context during the.user-agent dialogue

that results in the creation of the message. The current approach is to have the agent

repeatthe last piece of text and the reply for the branch being extended, as shown
below:

AGENT: If the text is
What time, between 1 lam
and 4pm, is best for you?

and the reply is "1"
then what is the new text?

This, combined with the breadth-first generation of the tree, leads to a dialogue that

brings the user into context with a minim= of coniusion.A better approach would
be td display the entire tree (in some abbreviated Corm) each time the user is to enter
new text am' have him decide which branches should be extended next. He could

indicate his choice by pointing with a light pen or moving a cursor to the appropriate

spot. lithe message being created has a very complex structure, the user may find
it necessary to sketch a diagram or flow chart illustrating where the questions are
to be asked and What rules are to be expected for each one. In such a situation, a
flow chart would help keep the user from beeerning confused or lost during message

creation.

4 0

V. CONCLUCONCLUSIONS

The work that has been performed to date in knowledge acquisition using RITA

agents has a numberofirnplications for knowledge-based systems. first, the produc-

tion- system framework can be used for implementing dynamic programs, programs
that create new data and code.in particular, the RITA architecture is such that new

RITA agents can be created relatively easily through combined user agent interac-
tions. Here, the production system formalism is the critical factor when it comes to

the re prese ntat io of- the _program-being createdThat_ is,___the _success _wg _have_

obtained with RITA agents creating other RITA agents is due to the fact that the
prograrns being createdTASK TEACH, TRANSFER, and MESSAGEare all
based on the RITA production - system architecture.

Second, it has been demonstrated that user agents can be applied to the problem

of program creation and can produce programs that have some practical application.

The TASK agent produced by EP-I .is a viable, general program for file transfer. EP-1

has also been- used to create agents that access the New York Times Information
Bank and retrieve abstracts of news articles pertinent to the user's current interests.

The TEACH agent provides a way to tutor users without modifying the systems the

users have to interact with, and has been used to teach naive users about RITA. The

TRANSFER agent provides a way of automatically acquiring large amounts of data
about the use of the ARPAnet, in a form that can be applied directly to the problem
of file transfer. The MESSAGE agents created by WRITER Call be used for personal

communication between computer users but are particularly useful as data-gather-

ing tools, i.e, as interactive questionnaires__
Finally, the potential that egernplary programming has for rnman-ad-hin e inter-

fad-e applications has been demonstrated. It is a first step in helping the naive user

create programs without having to learn a programming languagle or other artificial

language for stating the problem to be solved. This technique is effective for pro-
rams that involve much repetition of similar sequences of processing with few

dynamic variables, such as man-machine interface programs. The crux of the learn-
ing problem in exemplary programming is how to generalize a program alter seeing
only one or two paths to the solution, i.e., one or two examples of how the task can _ _
be accomplished. We believe that this important problem is solvable and that consid-

erable time and effort should lie devoted to its solution!

Appendix A

A RITA AGENT THAT TRANSFERS A FILE FROM
AN ARBITRARY ARPANET SITE TO RAND-UN1X

[OBJECTS:]

OBJECT agent : ;

OBIEGT-eul-rentlystemcifT--

OBJECi' system <1 >

response IS "

input IS " "
count IS "0";

[RULES :]

RULE I:
IF: the prompt OF the agent IS ENOWN

THEN: SEND the prompt OF the agent TO user
& RECEIVE the NEXT ANYTHING 'line -eon

.FOLLOWED BY-""j

FOR 15 SECONDS FROM the rose

& SET the new-reply OF the agent TO 'line-contents'

& SET the proinpt OF the agent TO NOT KNOWN;

_ RULE 2:
IF the new-reply OF the agent IS KNOWN

the new-reply OF the agent IS NOT "
THEN: SET the reply OF the agent TO the new-reply OF the agent

& SET the new-reply OF the agent TO " ";

RULE 3:
IF: the reply OF,the agent IS ENOWN

THEN: SEND the reply OF the agent TO system

& SEND " TO user
& SEND coneat("sent: ", the reply OF the agent

& SET the reply OF the agent TO NOT KNOWN;

RULE 4:

IF the name OF the current -system"IS NOT KNOWN

& the state OF the agent IS NOT KNOWN
& the response OF the system CONTAINS f"

THEN: SET the name OF the current-system TO "file

prog-rari"
& SET the state, OF the agent 'TO "give the host name"

& SET the response OF the system TO "
& SET the reply OF the agent TO "ftp'';

37

easier

42

RULE 5:
IF: the name the current-system IS "file transfer progra

& the state OF the agent IS "give the host name"
& the response OF the system CONTAINS {"Host:

THEN: SET the state OF the agent TO "login"
& SET the response OF the system TO '

& SET the reply OF the agetit TO "crnu-10a"
& SET the prompt OF the age]

"What system shall I -retrieve the Ale from?. ..

RULE 6:

IF: the state OF the agent IS "login"
& the response OF the system CONTAINS {" >

THEN: SET the response OF the system TO "
& SET the reply OF the agent TO_ "user";

RULE 7:

IF: the response OF the system CONTAINS {"usermune:

THEN: SET the state OF the agent TO '-`give password"
& SET the response OF the system TO
& SET the reply OF the agent TO "a330dw28"
& SET the prompt OF the agent TO

"Whatis your user name on this system?...

RULE 8:
IF: the state OF the agent IS give password"

l& the response OF the system CONTAINS {"

THEN: SET the response OF the-system TO
& SET the reply OF the agent TO p

RULE 9:
IF: the response OF the system -CONTAINS { "Password :

THEN: SET the state OF the agent TO "retrieve the file"
& SET the response OF the system TO "

& SET the reply OF the agent TO "abeder
& SET the prompt OF the agent TO

"What is your password on this system?. ..

RULE 10:

IF: the state' OF the agent IS "retrieve the file"
& the response OF the system CONTAINS {1

THEN: SET the response OF the system TO ",
& SET the reply OF the agent TO ''retr";

RULE 11:
IF: the, responie OF the system CONTAINS { remotefil

THEN: SET the response OF the system TO
& SET the reply OF the agent TO "mail.boxa330dw28"'
& SET the prompt OF the agent TO

"What file do you want retrieved?, ,

39

RULE 12:
IF: the response OF the system CONTAINS Mocalfile: "1

TEEN: SET the state OF the agent TO "say goodby to the remote

host"
SET the response OF the system TO

& SET the reply OF the agent TO "newdata"
& SET the prompt OF the agent TO

"What do you want to call the retrieved file?.

RULE 13;
IF the state OF the 'agent IS "say goodby to the -remote host"

& the response OF the system CONTAINS { ">

TEEN. SET the_hanie OF__the current,systern_TO__"unie

& SET the state OF the agent TO "quit"
& SET the response OF the syStem TO
k SET the reply OF the agent TO "bye";

RULE 14:
IF: the name OF the current-system IS "unix"
& the state OF the agent IS "quit"
& the response OF the system CONTAINS f`h% }

TEEN: SEND "the fie transfer has been completed" TO user

eit RETURN SUCCESS;

RULE 15:
IF: the input OF the system IS

& the count OF the system; IS less THAN 20
TEEN: RECEIVE FOR 5 SECONDS FROM system AS the input OF

- the System

& SET the count OF the system TO I + the count OF the
system;

16:

IF: the count OF the system IS less THAN 2 C
TEEN: SET the response OF the systeM\TO

concat(the response OF the system, the input OF the
system)

& SET the input OF the system TO "
& SET the count OF the vsten TO 0
&_ uSsEerND concat("got: th response OF the cyst TO

44

em

Appendix B

A PROTOCOL- OF A USER RUNNING THE TASK AGENT

User input is shown in italics, TASK agent response in normal type, and system

response in boldface.

% riia go

sent: ftp
got: Flost:

What system shall I retrieve the fi le

sent: sri-ai
got: Connections established.

> > 300 SRI-AI FTP Sewer 1.44.0.0 = at THU 2 AY-76 10:21-PDT

sent: user
got: ?Command argument oo long
>->

sent: user
got: usernarne:
What is your user name on this system ?.. rand-

sent: rand
got: 330 User name accepted. Password, please.

sent: pass
got: Password:
What is your passworrd on this system?...abedef

sent: abcdef
got:

230 Login completed.

sent: retr
got: rernotefile:

What file do ybu want retrieved ?... test.bas

sent: test.bas,
got: ?Command argument too long
>>

40

45

41

sent: retr
got: ?Comrnand argument too long

sent: retr
got ?Command argument too long
> >

sent: retr
got: remotefile:.
What file do you want retrieved?... test. bas

sent: test.bas
got: localfile:

What do yob want to call the retrieved file?..
sent: newdata
got: 255 SOCK 3276932611

got: 255 SOCK 3276932611

250 ASCII retrieve of CRAND>TEST.BAS;1 started.

got: 255 SOCK 3276932611

250 ASCII retrieve .of <RAND>TEST.EAS;1 started.
252 Transfer completed.

sent: bye
got: 231 BYE command received.

the file transfer has been completed

* exit;

exiting.:

46'

Appendix

A PROTOCOL OF A USER-TEACH INTERACTION

User input is shown in italics, TEACH agent re
system response in boldface.

% rita use.teach

use.teach:

This is a RITA ruleset designed to help you learn
to use RITA. Type "help;" if you need help.

,[End all RITA commands with a semicolon(;)]

se in no type, and

help;

In addition to the standard RITA input, you may also type show me, followed

by either commands, actions, functions, rules, goals, (any command name), (any

action name), or (any function name). The result will be either text or an on-line

demo. Each -time you repeat the show me request, you will be given anew demo.

Typing again; is equivalent to typing the last show me command.

* show me commands;

continue
edit
exit
load

news

quiet
run

scratch
set ordered
set trace
set unordered
shell
verbose

(any RITA action)
(any rule body)

show me actions;

create
deduce
delete_

42

. 4 7

display
put
receive
remove

return
send

stop at
trace
unstop
untrace
(any function call)

show me un ions;

clock

concat
delay
div

index

minus-
nsubstr
plus
substr
times

show me Los Angeles;

rdon't know about Los Angeles;

* show e deduce;

[start of deduce demo]

* object boOk;

[Object book<l> added]

* display object book;
OBJECT book< 1>: ;

deduce the name of the book;

What is the nave of the book?
Response:Gone with the Wind

43

* display object book;

OBJECT book <I >:
name IS "Gone with the Wind";

48

* delete object book;

[end of demo: 2 deduce

* again;

(start of deduce:demo]

* object hat;
[Object hat 1> added]

44

no's available]

-*:goal demo
if the color of the hat is "brown"
then: set the owner of the hat to "Richard";

[Goal demo-added]

* deduce the owner of the hat;

What is the color of the hat
Response:brown

_* display object hat;

OBJECT hat< 1>:
owner IS "Richard",
color IS "brown";

* delete, object hat; delete goal demo;

[end of demo: 2 deduce demo's available]

show me trace;

[start of trace demo]

* rule testi
if value of count is greater than 4
then: send ',The value of count is 5." to the user

and return success;

[Rule testl added]

rule test2
if value 'of count is less than 5

then: set the value of count to

[Rule test2 added]

* object dount,value is 0;
[Object count<1> added]

value of'count;

trace all rules;

run;

rule test2 about to fire
> rule test2 about to fire
> rale,test2 about to fire
> rule test2 about to fire
> rule test2 about to fire
> rule testi about to fire

The value of count is 5.
Success!

* delete object count;

45

* untrace all rules; delete rule testl; delete rule st2;

[end of demo: 2 trace demo's available]

send "this is the user talking" to the user;
is is the user talking

* rule 1 if value of c is less than 5

then send value of c to user.
and set value of c to value of c

[Rule 1 added]

* run;
Failure.

-* object c value is Q;

[Object c<l> added]

* run;
0

1

2

3

4

Failure.

how me plus;

[start of plus denio]

end plus(3,4) to the user;

7

w

Appendix D

A PROTOCOL OF A, USER7TUTOR INTERACTION

TO CREATE A PROGRAM TO TEACH LISP

User input is shown in. italics,
system response in boldface.

% rita tutor
tutor
What is the.name of the system to be demonstrated?

lisp
What prompt character does lisp use?

-->

Please type a command to call the system to emonstrat+d

'%® sys

Type tent that would be appropriate as a
response to a query for help in the lisp system.

Terminate the text with double <carriage-return
Type ,"show me" fol wed by "functions" or a

name of a function elicit a list of function,
names or a demonstration of the function.

TOR agent response in norm

Classify the types.of capabilities you- intend to
demons'rate in lisp. On one line put the category name
and on the next the list of items in that category, e.g.:

commands
lOad news run exit.-

actions
put set send remove.-

terminating the text by typing a line

. .c on t a i n i n g just a <carriage return).

functions
car.

seta'

Please give a name for each demo when asked. A demo
can consist, of several examples. To indicate the end

of an example type "(end of example) ". To indicate

the end of all the examples'-of that particular demo,
type "(end of demo) ":

47

and

What are you- going td de

-> (car '(a bc d))
a
->(car '(this is a tesI
this
-> (car '((a b)(c d))),

(a b)
-> (end of example)

->(end of demo)

48

onstrate? car

What are you going to demonstrate? setq
-> (setq a 12)
12

->a
12

->(plus a -13)

25

-:>(setq b Yccief))

(ddef)
-> (cons a b)
(12c d e f)
->(end of example)
-> (setq a 'first)
first
->(setq b '(secor?d third))
(second third)
->(setq a (cons a b))
(first second- third)
- >a
first second third)
> (end of example)

- >(end of demo)

What are you going to demonstrate? (nothing)
111

' Type a corthmand to exit the system being demonstrated

- > (exit)

exiting.

Appendix ,E

A PROTOCOL OF THE USE OF THE TEACH AGENT
CREATED FOR LISP*

User input is shown in italics, TEACH agent e nse normal type, and

system response in bOldface.

% rita use.teach.0

use. ach.t:

rThii is a program designed \to help you learn
to use lisp. Type 'help' if.yoU need help.

-> help
Type show me, followed by functions or a

name of a function to elicit a list of function
names or a demonstration of the function.

-> show functions

car
-setq

-> show car

[start of car .demo]

> (car b c d))

->(car `(this is a to
_this

->(car '((a bXc cl)))

(a b)
[end of demo: 1 car dem o(s) available]

-> show me setg
I don't know abou

--> show me setq

of setq demo)

App. D.

49

->(setq a 12)
12

- >a

12

- >(plu

25

->(setq b '(c d e f))
(edefl
->(cons a b)
(12 edef)
[end of demo: 2 setq derno(s) available]

-> again

[start of setq demo'

->(setq a 'first)
first
- >(setq b '(second third))

(second third)
->(setq a (Cons a b))

(first second third)
->a
(first second third)
[end of demo: 2 setq demos) available]

- > (setq r `(this is a sentence))

(this is a sentence)
->(car r)
this
->(exit)

exiting.

BIBLIOGRAPHY

Anderson, R. H., "The Use of Production Systems in RITA To Construct Personal
Computer 'Agents,"' Proceedings of the Workshop on Pattern-Directed Inference

Systems, SIGART Newsletter No. 63, 1977, 23-28.(a)

Anderson, R. H., M. Gallegos, J. J. Gillogly, R. B. Greenberg, and R. Villanueva,
RITA Reference Manual, The Rand Corporation, R-1808-ARPA, 1977 (b).

Anderson, R. H., and J. J. Gillogly, Rand Intelligent Terminal Agent. (RITA): Design

Philosophy, The Rand Corporation, R-1809-ARPA, 1976.

Balzer, R. M., Automatic Programming, Institute Technical Memorandum, USC/
Information Sciences Institute, Los Angeles, 1972.

Balzer, R. M., "A Global View of Automatic Programming," Proceedings of the Third

International Conference on Artificial Intelligence, Stanford, California, 1973,

pp. 494-499.

Biermann, A. W., RegUlar LISP Programs and Their Automatic Synthesis from
Examples, Computer Science Department Report CS- 1976 -12, Duke Univer-

sity, 1976.
Biermann, A. W., and R. Krishnaswamy, Constructing Programs from Example

Computations, Computer and Information Science Research Center Report

CISRC- TR -74 -5, Ohio State University, 1974.

Bobrow, D., and T. Winograd, "An Overview of KRL, a Knowledge Representation
Language," Cognitive Science, Vol. 1, 1976, pp. 346.

Brooks, R., "Production Systems as Control Structures for Programming Lan-
guages," Proceedings of the Workshop on Pattern-Directed Inference Systems,

SIGART Newsletter, No. 63, 1977, pp. 33-37.
Buchanan, B. G., and N. S. Sridharan, "Rule Formation on Non-homogeneous

Classes of Objects," Proceedings of the Third International Joint Conference on

Artificial Intelligence, Stanford, California, 1973. .

Buchanan, J. R., "A Study in Automatic Programming," Computer Science Report,

Carnegie-Mellon University, 1974.
Davis, R, B. Buchanan, and E. Shortliffe, Production Rules as a Representation for

\ a Knowledge-Based Consultation Program, Stanford University, Artificial In-

teilligence Laboratory, Memo AIM-266, 1975.

Davis, R., Applications of Meta Level Knowledge to the Construction, Mainknarce

and Use of Large Knowledge Bases, Stanford University, Artificial Intelligence

Laboratory, Memo AIM 283, 1976.

Dud , R.O., P. E. Hart, and J. Nils Nilsson, Subjective Bayesian Methods for Rule-i\
\Based Inference Systems, Stanford Research Institute, SRI Technical Note 124,

\.p76. i

Galley; B., and A. Perlis, A View of Programming Languages, Addison - Wesley, 1970.

Goldb rg, P. C., "Automatic Programming," Programming Methodology, G. Goos
ai d J. Ilartmanis (eds.), "Lecture Notes," Computer Science, Vol. 23, Springer,

Verlag, New York, 1975.
Green', 6. The Design of the PSI Program Synthesis System, Second International

doiference on Software Engineering, San Francisco, California, 1976, pp. 4-18.

I

56

Green, C., and D. Barstow, "Some Rules for the Automatic Synthesis of Programs,"

Proceedings of the Fourth International Conference on Artificial Intelligence,

1975, pp. 232-239.
Green, C., J. Waldinger, R. Barstow, D. Lenat, B. McCune, D. Shaw, and L. Steinberg,

Progress Report on Program-Understanding Systems, Stanford University, Ar-

tificial Intelligence Laboratory, Memo AIM-240, 1974.

Hewitt, C., Description and Theoretical Analysis (Using Schemata) of Planner: A

Language for Proving Theorems and Manipulating.Models in Robots, TR-258,

Ph.D. thesis, MIT Artificial Intelligence Laboratory, 1972.

Klahr, P., The Deductive Pathfinder: Creating Derivation Plans for Inferential Ques-

tion-An.swering, System Development Corporation, SP-3842, 1975.

Lenat, D., "Beings: Knowledge as Interacting Experts," Proceedings of the Fourth

International Joint Conference on Artificial. Intelligence, 1975, pp. 126-133.

Lenat, D., AM: An Artificial Intelligence Approach to Discovery in Mathematics as

Heuristic Search, Stanford University, Artificial Intelligence Laboratory,

Memo AIM -286, 1976.

Manna, Z., and R. J. Waldinger, "Knowledge and Reasoning in Program Synthesis,"

Artificial Intelligence, 1975, Vol. 6, pp. 175-208.

Markov, A. A., Theory of Algorithms, National Academy of Sciences, USSR, 1954.

McCarthy, J., P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin, LISP 1.5

Programmer's Manual, The MIT Press, 1965.

Newell, A., "A Theoretical Exploration of Mechanisms for Coding the Stimnlus,

Coding Processes in Human Memory, A. W. Melton and E. Martin (eds.), Win-

ston and Sons, Washington, D.C., 1972.

Newell, A., "Production Systems: Models ofControl Structures," Visual Information

Processing, W. C. Chase (ed.), Academic Press, New York, 1973.

Newell, A., and H. A. Simon, Human Problem Solving, Prentice -Hall, Englewood

Cliffs, N.J., 1972.

Newell, A., and J. McDermott, PSG Manual, System Version PSG2, Carnegie-Mellon

University, 1974.
Post, E. L., "Formal Reductions of the General Combinatorial Decision Problem,"

American Journal of Mathematics, Vol. '65, 1943, pp. 197-268.

Rulifson, J. F., J. A. Derksen, and R. J. Waldinger, QA4: A Procedural Calculus for

Intuitive Reasoning, Stanford Research Institute, Menlo Park, 1972.

Rychener, M. D., The Student Production System: A Study of Encoding Knowledge

in Production Systems, DepaLmei4 of Computer Science, Carnegie-Mellon

University, 1975.
Rychener, M. D., Introduction to Psnist, Deprtrrient ofComputer Science, Carnegie-

Mellon University, 1976.

Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN, Elsevier Vol. 2

of the Artificial Intelligence Series, 1976. \
Siklossy, L., and D A. Sykes, -Automatic Program Syithesis from' Example," Pro-

ceedings of the Fourth International Joint Conferenee on Artificial Intelligence,

1975, pp_. 268-273.

Standish, T. A., "Scenarios for Use of an Intelligent Terminal,"-University of Cali-

fornia, Irvine, unpublished-manuscript.
Sussman, G. J., and D. V. McDermott, Why Conniving is Better than Planning, MIT

Artificial Intelligence Laboratory, Memo 255A, 1972.

53

Teitelman, W., INTERLISP Reference Manual, Xerox Palo Alto Research Center,
Palo A California, 1975.

Vere, S. A., Relational Production Systems, Department of Information Engineer-
ing, University of Illinois, 1975.

Waterman, D. A., "Generalization Learning Techniques for Automating the Learn-
ing of Heuristics," Artificial Intelligence, Vol. 1,1970, pp. 121-170.

Waterman, D. A., "Adaptive Production Systems," Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, 1975, pp. 296-303.

Waterman, D. A., "Serial Pattern Acquisition: A Production System Approach,"
Pattern Recognition and Artificial Intelligence, C. H. Chen (ed.), Academic

Press, New York, 1976, pp. 529-553 (a).
Waterman, D. A., An Introduction to Production Systems, The Rand Corporation,

P-5751, 1976 (b).

Waterman, D. A., and F. Hayes-Roth, "An Overview of Pattern-Directed Inference
Systems," Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-

Roth (eds.), Academic Press, New York, 1978.

Waterman, D. A., and A. Newell, "PAS-II: An Interactive Task-Free Version of an
Automatic Protocol Analysis System," IEEE Transactions on Computers, C-25,

1976.

5

