
Rule Extraction from Recurrent Neural

Networks: A Taxonomy and Review

Henrik Jacobsson
henrikj@ida.his.se

Abstract
Rule extraction (RE) from recurrent neural networks (RNNs) refers
to finding models of the underlying RNN, typically in the form of
finite state machines, that mimic the network to a satisfactory de-
gree. RE from RNNs can be argued to allow a deeper and more
profound form of analysis of RNNs than other, more or less ad hoc
methods. RE may give us understanding of RNNs in the interme-
diate levels between quite abstract theoretical knowledge of RNNs
as a class of computing devices and quantitative performance eval-
uations of RNN instantiations. The development of techniques for
extraction of rules from RNNs has been an active field since the
early nineties. In this paper, the progress of this development is
reviewed and analysed in detail. In order to structure the survey
and to evaluate the techniques, a taxonomy, specifically designed
for this purpose, has been developed. Moreover, important open
research issues are identified, that, if addressed properly, possibly
can give the field a significant push forward.

Technical report: HS-IKI-TR-04-002

School of Humanities and Informatics

University of Skövde

Box 408

SE-541 28 Skövde, Sweden

Contents

1 Introduction 1
1.1 Topic delimitation . 2
1.2 Contents overview . 3

2 Some thoughts on recurrent neural networks analysis 3

3 Background 5
3.1 Recurrent neural networks . 5
3.2 Finite state machines . 7
3.3 The basic recipe for RNN rule extraction 8

4 Evaluation criteria and taxonomy 10
4.1 Main criteria . 10

4.1.1 Rule type . 10
4.1.2 Quantisation . 10
4.1.3 State generation . 10
4.1.4 Network type and domain 11

4.2 Criteria from the ADT taxonomy 11
4.2.1 Expressive power . 11
4.2.2 Translucency . 11
4.2.3 Portability . 12
4.2.4 Quality . 12
4.2.5 Algorithmic complexity 12

5 RNN-RE techniques 13
5.1 Pre-RE approaches . 13
5.2 Search in equipartitioned state space 14
5.3 Search in state space partitioned through vector quantisation . . 17
5.4 Sampling-based extraction of DFA 20
5.5 Stochastic machine extraction . 23
5.6 A pedagogical approach . 24
5.7 RE-supporting RNN architectures 26

6 RNN-RE, Fool’s gold? 26

7 Discussion 27
7.1 Rule types . 27
7.2 State space quantisation . 28
7.3 State generation . 29
7.4 Network types and domains . 29
7.5 Relation to the ADT taxonomy 30

7.5.1 Expressive power . 30
7.5.2 Translucency . 30
7.5.3 Portability . 30
7.5.4 Quality . 31
7.5.5 Algorithmic complexity 33

i

8 Open issues 34
8.1 Development of scientific tools and measures 34
8.2 Deeper investigations of existing algorithms 35
8.3 Utilisation of RNN-RE algorithms 35
8.4 RNN-RE enhancement and development 36

8.4.1 Future goals/demands of RNN-RE algorithms 37
8.4.2 Other possible enhancements 38

8.5 Some more suggestions . 39

9 Conclusions 40

ii

Rule Extraction from Recurrent Neural

Networks: A Taxonomy and Review

Henrik Jacobsson

Abstract

Rule extraction (RE) from recurrent neural networks (RNNs) refers
to finding models of the underlying RNN, typically in the form of finite
state machines, that mimic the network to a satisfactory degree. RE
from RNNs can be argued to allow a deeper and more profound form
of analysis of RNNs than other, more or less ad hoc methods. RE may
give us understanding of RNNs in the intermediate levels between quite
abstract theoretical knowledge of RNNs as a class of computing devices
and quantitative performance evaluations of RNN instantiations. The
development of techniques for extraction of rules from RNNs has been an
active field since the early nineties. In this paper, the progress of this
development is reviewed and analysed in detail. In order to structure the
survey and to evaluate the techniques, a taxonomy, specifically designed
for this purpose, has been developed. Moreover, important open research
issues are identified, that, if addressed properly, possibly can give the field
a significant push forward.

1 Introduction

In this paper, techniques for extracting rules (or finite state machines) from
discrete-time recurrent neural networks (DTRNNS, or simply RNNs) are re-
viewed. We propose a new taxonomy for classifying existing techniques, present
the techniques, evaluate them, and produce a list of open research issues that
need to be addressed.

By rule extraction from RNNs (hereafter denoted RNN-RE) we refer to the
process of finding/building (preferably comprehensible) formal models/machines
that mimic the RNN to a satisfactory degree. The connection between RNNs
and formal models of computation is almost as old as the study of RNNs them-
selves as the origins of these fields are largely overlapping. The study of neural
networks once coincided with the study of computation in the binary recurrent
network implementations of finite state automata of the theoretical work on
nervous systems by McCulloch & Pitts (1943) (an interesting overview of this
topic is found in Forcada, 2002.) This common heritage has been flavouring
the development of the digital computer (von Neumann 1956, Minsky 1967)
although our current computer systems are very far from being models of the
nervous system.

In the early nineties, the research on recurrent neural networks was revived.
When Elman introduced his, quite well known, simple recurrent network (SRN)
(Elman 1990), the connection between finite state machines and neural networks

1

was again there from the start. In his paper, the internal activations of the
networks were compared to the states of a finite state machine.

1.1 Topic delimitation

Since the early nineties, an abundance of papers has been written on recurrent
neural networks1, and many of them have dealt explicitly with the connec-
tion between RNNs and state machines. Many contributions have been the-
oretical, establishing the connection between (analogue) RNNs (or other dy-
namical systems) and traditional (discrete) computational devices (Crutchfield
& Young 1990, Servan-Schreiber, Cleeremans & McClelland 1991, Crutchfield
1994, Kolen 1994, Horne & Hush 1994, Siegelmann & Sontag 1995, Casey 1996,
Tiňo, Horne, Giles & Collingwood 1998, Blank & 24 co-authors 1999, Omlin &
Giles 2000, Sima & Orponen 2003, Hammer & Tiňo 2003, Tiňo & Hammer 2003).
These papers cover a wide spectrum of highly interesting and important theo-
retical insights, but in this paper we will not dwell on these theoretical issues.
First of all because it is not the focus of this survey, but also because some
of these papers are already much like surveys themselves, summarising earlier
findings.

On the pragmatic side we find papers describing techniques for transforming
state machines into RNNs (rule insertion) and/or for transforming RNNs into
state machines (rule extraction) (Omlin & Giles 1992, Giles & Omlin 1993, Das,
Giles & Sun 1993, Alquézar & Sanfeliu 1994a, Omlin & Giles 1996a, Omlin &
Giles 1996c, Omlin, Thornber & Giles 1998, Omlin & Giles 2000, Carrasco,
Forcada, Muñoz & Ñeco 2000, Carrasco & Forcada 2001). This paper, however,
deals exclusively with algorithms for performing rule extraction from RNNs.

This paper is also not about analysis tools of RNNs other than just RE.
There are a multitude of methods used to analyse RNNs, and a survey on
this issue should definitely be written as well. A brief (and most probably
inconclusive) list of examples of other analysis tools that have been used on
RNNs is: Hinton diagrams (e.g. Hinton 1990, Niklasson & Bodén 1997), Hi-
erarchical Cluster Analysis (e.g. Cleeremans, McClelland & Servan-Schreiber
1989, Elman 1990, Servan-Schreiber, Cleeremans & McClelland 1989, Sharkey
& Jackson 1995, Bullinaria 1997), simple state space plots (e.g. Giles & Omlin
1993, Zeng, Goodman & Smyth 1993, Gori, Maggini & Soda 1994, Niklasson
& Bodén 1997, Tonkes, Blair & Wiles 1998, Tonkes & Wiles 1999, Rodriguez,
Wiles & Elman 1999, Rodriguez 1999, Tabor & Tanenhaus 1999, Lin̊aker &
Jacobsson 2001), activation values plotted over time (e.g. Husbands, Harvey &
Cliff 1995, Meeden 1996, Ziemke & Thieme 2002), iterated maps (e.g. Wiles &
Elman 1995), vector flow fields (e.g. Rodriguez et al. 1999, Rodriguez 1999),
external behaviour analysis of RNN-controlled autonomous robotic controllers
(e.g. Husbands et al. 1995, Meeden 1996), weight space analysis (e.g. Bodén,
Wiles, Tonkes & Blair 1999, Tonkes & Wiles 1999), dynamical systems theory
(e.g. Tonkes et al. 1998, Rodriguez et al. 1999, Rodriguez 1999, Boden, Jacobs-
son & Ziemke 2000), and ordinary quantitative evaluations of RNN performance
for different domains (basically every single paper where an RNN is applied).

Unlike previous surveys on rule extraction (Andrews, Diederich & Tickle
1995, Tickle, Andrews, Golea & Diederich 1997, Tickle & Andrews 1998), this

1Many of these are summarised in Kremer (2001) and Barreto, Araújo & Kremer (2003).

2

paper deals exclusively with rule extraction from recurrent neural networks (re-
sulting in quite different evaluation criteria than in previous RE surveys, as you
will see in Section 4). In fact, many of the RE approaches for non-recurrent
networks could potentially be used on RNNs, or at least on non-recurrent
networks in temporal domains (e.g. Craven & Shavlik 1996, Sun, Peterson &
Sessions 2001). There are also other symbolic learning techniques for “train-
ing” finite automata on symbolic sequence domains directly, without taking
the extra step of training a neural network, that could be mentioned (Sun &
Giles 2001, Cicchello & Kremer 2003). These techniques are certainly interesting
in themselves and should also be compared to RNN-RE techniques experimen-
tally, but this is something which is not further examined in this paper.

So, to summarize, this paper is oriented solely around RNN-RE techniques,
but this field is closely related to the above mentioned areas. It may also be
worth to mention that, as a review of techniques, this paper is not a tutorial.
So, for readers interested in replicating the techniques, we refer to the cited
papers.

1.2 Contents overview

First, in Section 2 we will discuss how rule extraction fits into a broader context
of RNN research. In Section 3 we will describe RNNs, finite state machines,
and describe common characteristics of RNN-RE algorithms. The evaluation
criteria underlying the construction of a taxonomy for appropriately classifying
and describing RNN-RE algorithms is described in Section 4. The techniques
are then described in Section 5 and some important criticisms of RNN-RE in
general is discussed in Section 6. The set of existing RNN-RE techniques are
then discussed in light of the evaluation criteria in Section 7 and open research
issues are summarised in Section 8. In Section 9, we present some conclusions.

2 Some thoughts on recurrent neural networks

analysis

In theory, RNNs are Turing equivalent2 (Siegelmann & Sontag 1995), and can
therefore compute whatever function any digital computer can compute. But
we also know that to get the RNN to perform the desired computations is very
difficult (Bengio, Simard & Frasconi 1994). This leaves us in a form of knowledge
vacuum; we know that RNNs can be immensely powerful computational devices,
and we also know that finding the correct instantiations of RNNs that perform
these computations could very well be an insurmountable obstacle, but we do
not have the means for efficiently determining the computational abilities of
our current RNN instantiations3. On a less theoretical level, we can simply
evaluate the performance of different RNNs to see to which extent we solved

2Actually McCulloch and Pitts (McCulloch & Pitts 1943) determined this equivalence
already in 1943, for discrete networks (Medler 1998).

3We do know some things of course, for example, that for an RNN successfully trained
on a regular language such that it robustly models the language, there exists a finite state
machine, equivalent to the RNN (Casey 1996). The problem is, however, to know whether a
network is robustly modelling a regular grammar before we attempt to extract this grammar
from the network.

3

the intrinsic learning problem for a specific domain. Such studies are conducted
in virtually all papers applying RNNs on a domain, and in some cases more
systematic studies are presented (Miller & Giles 1993, Horne & Giles 1995,
Alquézar, Sanfeliu & Sainz 1997). But even something as simple as evaluating
the performance of an RNN on a specific domain has some intrinsic problems
since implicit aspects of the evaluation procedure can have a significant impact
on the estimated quantitative performance (Jacobsson & Ziemke 2003a). So,
what we need to do is in-depth analyses of RNN instantiations to uncover the
actual behaviour of RNN instantiations. But is the stage set for conducting
such studies?

If we compare the study of artificial neural networks in general (ANNs, i.e.
not RNNs only) with the study of the human brain, which after all is the main
source of inspiration in connectionism (Medler 1998), there are of course some
quite obvious differences. The complexity of the brain by far surpasses even the
most ambitious neural network implementations. But there are some reasons
for why the study of ANNs still can help us in the study of the brain; first of
all, that we can create artificial models of the brain to an, in principle, arbitrary
degree of complexity. But more importantly, because the ANN allows us to do
things that are not possible or ethical to do with a human brain. ANNs are
kind enough to let us (among other things):

• reproduce results with arbitrarily high accuracy,

• repeat experiments without much additional effort after the framework
for the first experiment has been implemented, giving us the theoretical
ability to get ever more precise results,

• duplicate networks (and distribute them among research colleagues),

• study the effect of damage to the network under controlled conditions,

• study the interrelation of evolutionary and life-time learning (e.g. in-
stincts),

• do nonperturbative studies of internal properties to an arbitrary degree of
detail.

In other words, ANNs are almost perfect experimental subjects. Very few scien-
tific communities have the luxury of studying entities with properties so inviting
for conducting research on them.

The crux is, however, that the ANNs are not always easy to understand. The
framework for understanding them is certainly there, as the list above clearly
demonstrates, but the obstacle is the complexity of the models themselves. An
ANN adapted to solve a specific task is, by its domain-driven emergent be-
haviour and its holistic representation of knowledge, a complex entity to study.
This is especially true for recurrent neural networks, where the networks, due
to their recursive structure, can be complex dynamical systems with chaotic be-
haviours. Actually, the analysis problems may lead to the use of too simplistic
models, e.g. smaller networks and toy problem domains, just to be able to anal-
yse (or visualise) the results. One may wonder how many published networks
with just two or three state nodes (or hidden nodes) had their specific topology
chosen just to make the plotting of their internal activations possible.

4

So, in summary, although we know the theoretical possibilities and limita-
tions of RNNs, we still cannot be sure how these theories manifest themselves
in practice. Although we can do almost whatever we want to the networks,
we do need tools to analyse and understand them. Casey (1996) stated, about
previous (non-RE) RNN analysis approaches, that “none of these measures is
sufficient for understanding RNN behavior in general” (p. 1136) and indicated
that rule (or finite state machine) extraction may be one way to alleviate this.
So, perhaps one approach towards doing “nonperturbative studies of internal
properties to an arbitrary degree of detail” on RNNs (i.e. the last point of the
list above), is to extract finite state machines from them, hopefully providing
us with a clearer view of the internal properties of instantiations of RNNs. Rule
extraction may turn out to be an essential ingredient for conducting methodi-
cal testing of instantiations of RNN solutions, focusing on analysis on the level
between deriving abstract theoretical possibilities of RNNs as a class of com-
putational devices and on the other hand simplistic quantitative performance
estimations of RNN instantiations.

3 Background

An RNN processes sequences of data (input) and generates a responses (output)
in a discrete time manner. The RNN processes information by using its internal
continuous state space as an implicit, holistic, memory of past input patterns
(Elman 1990). In the extraction of rules from an RNN, the continuous state
space is approximated by a finite set of states and the dynamics of the RNN is
mapped to transitions among this discrete set of states.

We will now give a brief definition of what constitutes a recurrent neural
network in the scope of this paper. A brief introduction to finite state machines
(FSMs) will also be given, since the extracted rules are typically represented
as such. A more detailed description of what RNN-RE algorithms typically
constitute will then follow.

3.1 Recurrent neural networks

To give a detailed review of the achievements in RNN research and the vast
variety of different RNN architectures is far beyond the scope of this paper.
Instead, a set of identified common features of most RNN architectures will be
described at abstract enough a level to hopefully incorporate most networks
to which the existing RNN-RE algorithms could be applied and also abstract
enough to see the striking similarities of RNN computation with the computa-
tion in finite state machines (see Section 3.2). Readers with no prior experience
of RNNs can find more detailed description and well developed classifications of
RNNs in Kolen & Kremer (2001), Kremer (2001) or Barreto et al. (2003).

Only a few of the many RNN architectures have at all been used in the
context of rule extraction, e.g. simple recurrent networks (SRNs, Elman, 1990)
and more commonly second-order networks (e.g. Sequential Cascaded Networks,
SCNs, Pollack, 1987). These models differ somewhat in their functionality and
how they are trained. But the functional dependencies are, at some level of
abstraction, basically the same, which is going to be exploited in the definition
below.

5

A Recurrent Neural Network R is a 6-tuple R = 〈I, O, S, δ, γ, s0〉 where,
I ⊆ R

ni is a set of input vectors, S ⊆ R
ns is a set of state vectors, O ⊆ R

no

is a set of output vectors, δ : S × I → S is the state transition function, γ :
S × I → O is the state interpretation function, and s0 ∈ S is the initial state
vector. ni, ns, no ∈ N are the dimensionalities of the input, state and output
spaces respectively.

Often (or perhaps always) the input, state and output are restricted to
hypercubes with all elements limited to real numbers (or, of course, rational
approximations of real numbers when simulated) between zero and one or minus
one and one. When training the networks, the two functions δ and γ are typically
adjusted to produce the desired output according to some training set. For a
sequence of input vectors (i0, i1, i2, . . . , i`) the state is updated according to
st = δ(st−1, it) and the output according to ot = γ(it, st−1). The functional
dependencies are depicted in Figure 1.

−1

ts

t ti

to

s

Figure 1: The functional dependencies of the input, state and output of an
RNN.

Note that the weights, biases, activation functions and other concepts we
typically associate with neural networks are all hidden in the state transition
function δ and state interpretation function γ. The reason for this is that, as far
as RNN-RE algorithms are concerned, the fact that the networks have adaptive
weights and can be trained, is of less importance. An interesting consequence of
the abstract nature of this RNN description, and that this is all that is required
to continue describing RNN-RE algorithms, is that it tells something about
the portability of the algorithms (cf. section 4.2). There are simply not many
assumptions and requirements of the underlying RNNs, which means that they
are portable to more RNN types than they would be otherwise. There are a few
assumptions though, e.g. that states should cluster in the state space as a result
of the training (Cleeremans et al. 1989, Servan-Schreiber et al. 1989). Some,
more implicit, assumptions are also the target for some of the criticism of RE
from RNNs (Kolen 1993, Kolen 1994), which will be discussed later in Section 6
(more implicit assumptions are discussed in Section 7.5.3).

If we consider a Simple Recurrent Network (Elman 1990) as one example
of an RNN, the functional dependencies are a specific case of the ones defined
above, see figure 2. The output ot of an SRN is solely determined by the state
st which in turn depends on st−1 and it. It may seem counter-intuitive that the
SRN has the same functional dependencies as the general description of RNNs

6

above, but by rules of transitivity, it does. It can, however, be quite fruitful to
consider this more specific functional graph when extracting rules as no more
than necessary dependencies need to be considered in the extraction process.

ts

t−1 tis

to

Figure 2: The functional dependencies of the input, state and output of an
SRN. The functional dependencies are, by transitivity, equivalent to that of the
general RNN description in Figure 1.

3.2 Finite state machines

The rules extracted from RNNs are almost exclusively represented as finite
state machines (FSMs). The description here will be kept brief and for a full
discussion of what a regular language is and what other classes of languages
there are, interested readers are referred to Hopcroft & Ullman (1979).

A Deterministic Mealy Machine M is a 6-tuple M = 〈X, Y, Q, δ, γ, q0〉 where,
X is the finite input alphabet, Y is the finite output alphabet, Q is a finite set of
states, δ : Q × X → Q is the transition function, γ : Q × X → Y is the output
function, and q0 ∈ Q is the initial state (note the similarities with the definition
of RNNs in Section 3.1).

In cases where the output alphabet is binary the machine is often referred
to as a finite state automata (FSA). In an FSA, the output is interpreted as an
accept or reject decision determining whether an input sequence is accepted as
a grammatical string or not.

There are actually two different models for how an FSM can be described;
Mealy (as above) or Moore machines that, although they are quite different from
each other, are computationally equivalent (Hopcroft & Ullman 1979). Moore
machines generate outputs based only on the current state and Mealy machines
on the transitions between states, i.e. the output function, γ, is for a Moore
machine γ : Q → Y and for a Mealy machine γ : Q × X → Y .

In deterministic machines, an input symbol may only trigger a single tran-
sition from one state to exactly one state (as in the definition above). In a

7

nondeterministic machine, however, a state may have zero, one or more out-
going transitions triggered by the same input, i.e. the transition function, δ, is
δ : Q × X → 2Q (a function to the power set of Q) instead of δ : Q × X → Q.
That means that in a nondeterministic machine, a symbol may trigger one or
more transitions from a state, or even no transition at all (since ∅ ∈ 2Q). We will
denote nondeterministic machines incomplete if at least one q ∈ Q and x ∈ X

such that δ(X, Q) = ∅. Deterministic and nondeterministic machines are com-
putationally equivalent, although nondeterministic machines can typically be
much more compact (i.e. have less states) than their deterministic counterpart.
Deterministic finite state machines and deterministic finite state automata, will
be abbreviated DFM and DFA respectively.

If the outgoing transitions of the states in a nondeterministic machine, δ :
Q × X → 2Q, are also associated with probability distributions over 2Q, the
machine will be denoted as a stochastic FSM4.

In summary, there are four types of FSMs; deterministic Moore machine,
deterministic Mealy machine, nondeterministic Moore machine, and nondeter-
ministic Mealy machine, see Figure 3 for examples. Moreover, the nondeter-
ministic machines can be stochastic as well if transition probabilities are also
encoded.

For a more detailed description of deterministic and nondeterministic, Mealy
and Moore machines, proof of equivalence and a “standard” minimisation algo-
rithm, see Hopcroft & Ullman (1979).

3.3 The basic recipe for RNN rule extraction

The algorithms described in this paper have many features in common as en-
listed in Table 1.

1. Quantisation of the continuous state space of the RNN, resulting
in a discrete set of states.

2. State and output generation (and observation) by feeding the RNN
input patterns.

3. Rule construction based on the observed state transitions.

4. Rule set minimisation.

Table 1: The common “ingredients” of RNN-RE algorithms.

The continuous state space of the RNN needs to be mapped into a finite set
of discrete states corresponding to the states of the resulting machine. We will
refer to the states of the network as microstates and the finite set of quantised
states of the network as macrostates. The macrostates are basically what the
RE algorithm “sees” of the underlying RNN, whereas the actual state of the
network, the microstates, are hidden. The act of transforming the microstates
into macrostates is a critical part of RNN-RE algorithms (ingredient one in

4Denoted probabilistic automata by Rabin (1963).

8

1:c a

2:d

b a

b

 1 a:c

 2

b:c a:d

b:d

(i) (ii)

1:c a

2:d

a b a

 1 a:c

 2

b:d b:c a:d

a:d

(iii) (iv)

Figure 3: Examples of (non-equivalent) different finite state machine types with
X = {a, b}, Y = {c, d}, Q = {1, 2} and qo = 1; (i) deterministic Moore machine,
(ii) deterministic Mealy machine, (iii) nondeterministic Moore machine, and (iv)
nondeterministic Mealy machine.

9

Table 1) and is called quantisation. The deterministic actions at the microstate-
level may appear stochastic at the macrostate-level since information is lost in
the quantisation. One macrostate corresponds to an uncountable set of possible
microstates (just in theory, in practice the RNN is simulated on a computer
with finite precision) of microstates.

Another common ingredient of RNN-RE algorithms is systematic testing of
the RNN with different inputs (from the domain or generated specifically for the
extraction) and the (macro)states and outputs are stored and used to induce
the finite state machine (ingredient two). The third ingredient (of Table 1) is
the obvious machine construction, a process often concurrently executed with
the state and output generation.

Many times, the generated machine is then minimised using a standard
minimisation algorithm (Hopcroft & Ullman 1979), this is the fourth common
ingredient of RNN-RE algorithms. FSM minimisation is however not part of all
algorithms, and can also be considered as an external feature, independent of
the actual extraction.

4 Evaluation criteria and taxonomy

To simplify comparisons and to structure the descriptions of the algorithms
several evaluation criteria have been chosen. These criteria are used in the
tables containing paper summaries, in Section 5, and are of central importance
to the discussions in Section 7.

4.1 Main criteria

4.1.1 Rule type

As mentioned before (in Section 3.2) the rules generated by RNN-RE algorithms
are FSMs that are either deterministic, nondeterministic or stochastic. They
can also be in a Mealy or Moore format. In our classification of rule types we
will also distinguish whether the machine (and underlying RNN) is producing
a binary accept/reject decision at the end of a string (i.e. like an FSA) or if
the task is produce an output sequence of symbols based on the input sequence
(typically for prediction).

4.1.2 Quantisation

One of the most varying elements of existing RNN-RE algorithms is the state
space quantisation method. Examples of methods used are: hierarchical cluster-
ing, vector quantisation and self organising maps (see Section 7.2 for a detailed
discussion).

4.1.3 State generation

Another important criterion is the state generation procedure for which there
are two basic methods: searching and sampling. These will be described further
in the descriptions of the algorithms.

10

The rule type, quantisation method and state generation method can be con-
sidered to constitute the main distinguishing features of RNN-RE algorithms,
and they have therefore been used to structure this survey.

4.1.4 Network type and domain

Although not a feature of the extraction algorithm per se, the network type(s)
and in which domain(s) each RNN-RE algorithm has been used, will be explic-
itly listed for each presented technique.

4.2 Criteria from the ADT taxonomy

Andrews et al. (1995) introduced a taxonomy, the ADT5 taxonomy, for RE al-
gorithms which has since been an important framework when introducing new,
or discussing existing, RE algorithms (e.g. Schellhammer, Diederich, Towsey
& Brugman 1998, Vahed & Omlin 1999, Craven & Shavlik 1999, Blanco, Del-
gado & Pegalajar 2000). The five evaluation criteria in the ADT taxonomy
were: expressive power, translucency, portability, rule quality and algorithmic
complexity. The reason for not adopting the ADT taxonomy in this survey is
that it was based on a broader scope than we have in this paper, as this paper
focuses strictly on recurrent networks. For some of their classification aspects,
all RNN-RE algorithms would end up in the same class and such classifications
would therefore not be very informative. The ADT taxonomy does, however,
provide us with some very useful viewpoints taken in Section 7.5. Some of the
terminology from the ADT taxonomy will also appear in various places in this
survey, therefore a brief description of the ADT aspects is given below.

4.2.1 Expressive power

The expressive power is basically the type of rules generated by the RE and
hence subsumed by our rule type criteria. ADT identified (when taking also
Tickle et al. (1997) and Tickle & Andrews (1998) into account) four basic classes:

• propositional logic (i.e. if...then...else)

• nonconventional logic (e.g. fuzzy logic)

• first-order logic (i.e. rules with quantifiers and variables), and

• finite state machines.

Almost all rules from RNN-RE algorithms would fall into the last category.

4.2.2 Translucency

One of the central aspects in the ADT taxonomy, translucency, described as the
“degree to which the rule-extraction algorithm ’looks inside’ the ANN” is less rel-
evant here since it is not a distinguishing feature of RNN-RE algorithms. ADT
initially identified three types of RE algorithms, (i) decompositional algorithms
where rules are built on the level of individual neurons and then combined, (ii)
pedagogical approaches using a black-box model of the underlying network and

5“ADT” comes from the names of the authors, Andrews, Diederich and Tickle.

11

(iii) eclectic algorithms with aspects from both previous types. Tickle & An-
drews (1998) also introduced a fourth intermediate category, compositional, to
accommodate for RNN-RE algorithms that are all (except for one pedagogical
algorithm (Vahed & Omlin 1999, Vahed & Omlin 2004)) based on analysing
ensembles of neurons (i.e. the hidden state space).

4.2.3 Portability

The portability describes how well an RE technique covers the set of available
ANN architectures. As for translucency, the portability is probably much the
same for all RNN-RE algorithms. It is also a quite complex aspect of RE tech-
niques (tightly bound with translucency, and, in terms of feasibility, with algo-
rithmic complexity) and we have therefore chosen not to distinguish RNN-RE
algorithms by this criterion. The portability of the existing RNN-RE algorithms
should however be quite high compared to RE algorithms in general since the
requirements on the underlying RNN are not very restrictive. A deeper discus-
sion of the portability of existing RNN-RE techniques is found in Section 7.5.3
where implicit demands of the underlying RNN/domain are identified.

4.2.4 Quality

The quality of the extracted rules is a very important aspect of RE techniques,
and perhaps the most interesting for evaluation of the quality of the algorithms.
This aspect differs from the other aspects in that it evaluates RE algorithms at
the level of the rules rather than the level of the RE algorithms themselves.

Based on previous work, such as Towell & Shavlik (1993), four sub-aspects
of rule quality were suggested in the ADT taxonomy;

• rule accuracy, i.e. the ability of the rules to generalise to unseen examples,

• rule fidelity, i.e. how well the rules mimic the behaviour of the RNN,

• rule consistency, i.e. the extent to which equivalent rules are extracted
from different networks trained on the same task, and

• rule comprehensibility, i.e. readability of rules and/or the size of the rule
set.

4.2.5 Algorithmic complexity

The algorithmic complexity of RE algorithms is unfortunately also often an open
question as authors seldomly analyse this explicitly (cf. Andrews et al. (1995)).
Although Golea (1996) showed that RE can be an NP-hard problem, it is unclear
how existing heuristics affect the actual expected time and space requirements.
For RNN-RE, the complexity issue has not received much attention and the
issue is in itself quite complex as the execution time can be affected by many
factors, e.g. number of state nodes, number of input symbols, granularity of
the quantisation, RNN dynamics etc. Since the algorithmic complexity of most
RNN-RE algorithms is an open question, we will not go into any details on this
aspect in our taxonomy.

12

5 RNN-RE techniques

Although we have identified some common characteristics among the RE algo-
rithms, dividing them into groups has been a painstaking task as there is an
innumerable number of ways to do so. The techniques will be presented in a
primarily chronological order and when a later technique is similar to an earlier,
it will be presented in connection with its predecessor (although this relation
may be constituted by coincidental similarities rather than a direct continuation
of prior work).

First some early work that laid the ground for RE techniques to be developed
will be presented in the next subsection. Then the algorithms will be described
in more detail in subsections 5.2-5.7, but for fuller descriptions of the algorithms,
we refer to the original papers.

5.1 Pre-RE approaches

To understand the roots of FSM extraction (which is the the primary form of
RNN-RE) from recurrent networks, it is useful to recognise that in some early
attempts to analyse RNNs, clustering techniques were used on the state space
and clusters corresponding to the states of the FSM generating the language
were found (clustering is still today one of the central issues of the research on
RE from RNNs). Hierarchical Cluster Analysis (HCA) was used for analysing
RNNs in a few early papers on RNNs (Cleeremans et al. 1989, Servan-Schreiber
et al. 1989, Elman 1990, Servan-Schreiber et al. 1991). The authors found that
for a network trained on strings generated by a small finite-state machine, the
HCA may find clusters in the state space apparently corresponding to the states
of the grammar. The clusters of the HCA were labelled using the labels of the
states of the underlying state machine, making it easy to draw the connection
between the RNN and the FSM.

The fact that much of the early research on RNNs was conducted on problem
sets explicitly based on FSMs may have biased subsequent research to look for
these FSMs inside the network. It is quite reasonable to assume that if you
train a learning system to solve a problem with a known solution, you would be
lead to search for structures of the known solution within the system.

However, for some successful networks (e.g. Servan-Schreiber et al. 1991),
no clusters corresponding directly to the states of the FSM, which generated
the training set language, were found. This meant that the network had an
alternative, but apparently correct, representation of the problem, that differed
from the one anticipated. This was probably due to the fact that the network did
not necessarily need to mimic the minimal machine. That a non-minimal FSM
was found was later shown to be the case when RE was used on RNNs (Giles,
Miller, Chen, Chen & Sun 1992) where the resulting DFA was then minimised.
Therefore FSM minimisation is included in most RNN-RE algorithms.

The basic problem of using only clustering (and not recording the transitions)
for analysing RNNs is that there is no reliable way of telling how the clusters
relate to each other temporally6. If the exact same FSM is not found, the

6There are other, more general problems of an HCA-based analysis of ANNs in general,
as adjacent states (i.e. hidden unit activations) may be interpreted differently by the output
layer and remote states may have the same interpretation (Sharkey & Jackson 1995). For
RNNs this becomes even more problematic as the state is not only mapped into an output

13

clusters may not be labelled using the original FSM as a source and the temporal
ordering of the clusters is therefore lost. This problem was also observed by
Elman (1990): “the temporal relationship between states is lost. One would
like to know what the trajectories between states [...] look like.”. The solution
of this problem led to the development of FSM extraction from RNNs.

5.2 Search in equipartitioned state space

The algorithm of Giles and collegues (Giles, Chen, Miller, Chen, Sun & Lee
1991, Giles, Miller, Chen, Chen & Sun 1992, Omlin & Giles 1996b) partitioned
the state space into equally sized hypercubes (i.e. macrostates) and conducted
a breadth-first search by feeding the network input patterns until no new par-
titions were visited. The transitions among the macrostates (induced by input
patterns) were the basis for the extracted machine, see figure 4. The search
started with a predefined initial state of the network and tested all possible
input patterns on this microstate. The first encountered microstate of each
macrostate was then used to induce new states. This guaranteed the extraction
of a deterministic machine since any state drift (Das & Mozer 1994, Das &
Mozer 1998) was avoided as the search was pruned when reentering already vis-
ited partitions. The extracted automaton was then minimised using a standard
minimisation algorithm for DFAs (Hopcroft & Ullman 1979). The algorithm is
summarised in Table 2.

DFA extraction, regular partitioning, breadth first search
(Giles et al. 1991, Giles, Miller, Chen, Chen & Sun 1992, Omlin & Giles
1996b)
Rule type: Moore DFA with binary (accept/reject) output.
Quantisation: Regular partitioning by q intervals in each state di-

mension, generating qN bins of which typically only a
small subset is visited by the RNN.

State generation: Breadth-first search.
Network(s): Predominantly used on second-order RNNs
Domain(s): Predominantly regular languages with relatively few

symbols. Some applied domains, e.g. quantised fi-
nancial data (Giles, Lawrence & Tsoi 1997, Lawrence,
Giles & Tsoi 1998, Giles, Lawrence & Tsoi 2001)

Table 2: Summary of algorithm extracting DFA through searching in an equipar-
titioned state space.

The central parameter of the algorithm is the quantisation parameter q of the
equipartition. The authors suggested starting with q = 2 and increasing it until
an automata consistent with the training set is extracted, i.e. the termination
criteria is to have perfect accuracy of the rules. The choice of q is however
usually not explicitly described as part of the RE algorithm (one exception is
in the description by Omlin (2001) where the suggested incremental procedure
is also part of the algorithm).

but also mapped recursively to all succeeding outputs through the state transitions.

14

1

a

b

2

1

0
0 1 s1

s2

2

1

b

a

(i)

1

a

b

a
b

4

2 3

1

0
0 1 s1

s2

2

4

3

1

b

b

a

a

(ii)

Figure 4: Part one.

15

a

b

a
b

b

a

b

51

4

2 3

1

0
0 1 s1

s2

a

2

4

3

51

b

b a

a

a

b

a

b

(iii)

1

a

b

a
b

b

a

b

a

5

4

2 3

1

0
0 1 s1

s2

b

a

2

4

3

51

b

b a

a

a

b

aa

b

b

(iv)

Figure 4: Part two. An example of the DFA extraction algorithm of Giles et al.
(1991) used on an RNN with two state nodes trained on a binary language and
the quantisation parameter q = 3. The state space is divided into an accept and
reject region (gray and white respectively). The algorithm expands the graph
until all nodes have two outgoing arcs. Note that the macrostate corresponding
to node 3 could actually be interpreted both as an accept and reject state
depending on the microstate, but the algorithm used the interpretation of the
first encountered microstate as the interpretation of the macrostate, i.e. in this
case accept.

16

Giles, Miller, Chen, Chen & Sun (1992) found that the generalisation abil-
ity of the extracted machines sometimes exceeded that of the underlying RNNs.
Since the networks were trained on regular grammars, if the extraction result was
a DFA equivalent with the original grammar that generated the training/test
set, generalisation would also be perfect. Giles, Miller, Chen, Sun, Chen & Lee
(1992) showed that during successful training of an RNN, the extracted DFA
will eventually belong to the same equivalence class as the original DFA. Exis-
tence of equivalence classes over different degrees of quantisation (i.e. different
values of q) was used in Omlin, Giles & Miller (1992) as an indicator of the
networks’ generalisation ability, i.e. if the extracted DFAs for increasing values
of q collapsed into a single equivalence class, it was taken as a sign of good
generalisation ability without the need for explicitly testing this on a separate
test set.

The same algorithm has been used in various other contexts: as part of
rule refinement techniques (e.g. Omlin & Giles 1992, Giles & Omlin 1993, Das
et al. 1993, Omlin & Giles 1996c), as an indicator of underlying language class
(Blair & Pollack 1997), as a method for complexity evaluation (e.g. Bakker &
de Jong 2000), as part of a quantitative comparison of different RNN architec-
tures (Miller & Giles 1993), as a means for FSM acquisition7 (e.g. Giles, Horne
& Lin 1995) or simply as an analysis tool of the RNN solutions8 (e.g. Giles &
Omlin 1994, Goudreau & Giles 1995, Giles et al. 1997, Lawrence et al. 1998,
Lawrence, Giles & Fong 2000, Giles et al. 2001, Bakker 2004). The algorithm
has also been used in the context of recursive networks (Maggini 1998).

An apparent problem with this technique is that the worst-case number of
clusters grows exponentially with the number of state nodes N (qN). The time
needed for the breadth-first search will also grow exponentially with the number
of possible input symbols. In practice, however, the number of visited states is
much smaller than the number of possible states. But there is also a risk that,
since all possible input patterns are tested for all visited states, transitions not
occurring in the domain will be tested. In this way, states that the network
would never visit in its interaction with the domain would be encountered,
resulting in an unnecessarily complex FSM (Jacobsson & Ziemke 2003b).

This, the earliest of RNN-RE methods, is also the most widely spread algo-
rithm. Almost all following papers where new RNN-RE techniques have been
proposed cite Giles, Miller, Chen, Chen & Sun (1992). But often these papers
do not contain citations to each other, giving the first impression of the field as
less diverse than it actually is. Consequently there is a surprising variety of RE
approaches, some of them seemingly developed independently of each other.

5.3 Search in state space partitioned through vector quan-

tisation

An alternative to the simple equipartition quantisation was suggested already
by Zeng et al. (1993) where a k-means algorithm was used to cluster the mi-
crostates. The centres of the clusters, the model vectors, were used as the basis
for the breadth-first search, i.e. the RNN was tested with all input symbols for

7Implicitly, however, more or less all papers using RE are in some way on FSM/language
acquisition. This division into RNN-RE usage should be taken with a grain of salt since each
paper has more than one contribution.

8This is also implicitly part of many other papers as well.

17

each model vector state (cf. the equipartition algorithms where the first encoun-
tered RNN state is the basis for further search). See figure 5 for an illustrative
example of this algorithm. A similar approach, also using k-means, developed
seemingly independently from Zeng et al. (1993) is presented in Frasconi, Gori,
Maggini & Soda (1996) and Gori, Maggini, Martinelli & Soda (1998), and a
similar SOM-based approach in Blanco et al. (2000). A summary of these ap-
proaches are given in Table 3.

DFA extraction, vector quantifier, breadth first search
(Zeng et al. 1993, Frasconi et al. 1996, Gori et al. 1998)
Rule type: Moore DFA with binary (accept/reject) output.
Quantisation: k-means.
State generation: Breadth-first search.
Network(s): Second-order RNNs (Zeng et al. 1993), Recurrent ra-

dial basis function network, (Frasconi et al. 1996, Gori
et al. 1998), RNN with an external pushdown automa-
ton (Sun, Giles & Chen 1998).

Domain(s): Regular binary languages (Tomita 1982), context free
languages (Sun et al. 1998).

Table 3: Summary of algorithms extracting DFA through searching in a state
space partitioned by vector quantisation.

The main difference between a vector-quantised (VQ) and equipartitioned
state spaces, apart from partitions not being of equal sizes and shapes, is that the
clusters are not fixed prior to the extraction but are instead adapted to fit the
actually occurring state activations in the RNN. In principle, vector quantisation
should be able to scale up to more state nodes than the equipartition method
since the number of partitions can be arbitrarily selected independent from
state space dimensionalty. But the downside is that the clustering may fail,
or at least result in different clusters given different random initialisations of
clusters prior to the adaptation of the clusters. The appropriate number of
clusters, k, is also not easy to anticipate. Zeng et al. (1993) proposed a method
to determine k automatically to some degree, but this method also needed
user-defined parameters. The complexity problem associated with breadth-first
search (described in the previous section) exists also for this vector-quantised
approach, although the number of macrostates is more under control than for
the equipartitioned approach.

To support an appropriate clustering of states, Zeng et al. (1993) and Fras-
coni et al. (1996) induced a bias for the RNN to form clusters during train-
ing. Other studies have also followed this approach (Das & Das 1991, Das &
Mozer 1994, Das & Mozer 1998). In this way the RE algorithm and the RNN
will become more entangled and if the altered training conditions of the under-
lying RNN are critical for successful RE, the algorithm would be less portable
to other types of RNNs. RE techniques that can be used on already existing
networks (i.e. typically not designed to be easy to analyse) are described by
Tickle & Andrews (1998) as more attractive techniques.

In the presented search-based approaches, the reentering into partitions was

18

+

+

+

+ +

+

+

+
+

+
+
+

+
+

+
+ +

+

+++
+

+

+

+

+

+

++

+

+
+ ++

+

+

+
++

+ ++

+

2s

1s10
0

1

+

+
+

+
+

+

+
+++ ++

+

+
++

+
+

1

s2

1
1

0
s0 1 s1

s2

2

3

4

5

0

1

0
1

(i) (ii)

0
0

1

1
1

2s

1s10
0

1

s

a

a
b

a

b

a

b

b

ba

5

4

3

2

2s

1

b

ab

1

5

4

b

a

a

3
a

b

b

a

2

(iii) (iv)

Figure 5: An illustrative example of rule extraction through breadth-first search
in a state space clustered by k-means. (i) The states of the RNN are sampled
during training, (ii) these states are clustered into a predefined number of clus-
ters, (iii) a breadth-first search (cf. figure 4) is conducted based on the model
vectors and (iv) the machine is constructed.

19

the basis of pruning the search. A different pruning strategy was suggested
by Alquézar & Sanfeliu (1994a) and Sanfeliu & Alquézar (1995) who chose to
use the domain to determine search depth (the algorithm is summarised in
Table 4). A prefix tree (see figure 6) was built based on the occurrences of
positive and negative strings in the training set, i.e. the prefix tree contained
only strings present in the training set. The states of the RNN were generated
using only the strings in the prefix tree. The authors used RE as part of their
Active Grammatical Inference (AGI) learning methodology, an iterative rule
refinement technique.

 1

 2

a

 3

b

 4

a

 5

b

 6

a

 7

b

 8

a

 9

b

10

a

11

b

12

a

13

b

14

a

15

b

Figure 6: An example of a prefix tree of depth 3, created from a language that
only accepts strings containing at least two b’s.

The states generated with the prefix tree were the basis of the initial machine.
The spatially closest pair of these states was then merged iteratively until further
clustering would result in an inconsistency. This RE technique was also used
for a wide variety of regular grammars and two types of networks in (Alquézar
et al. 1997). The authors reported that the extracted machines on average
performed significantly better than the original RNNs.

5.4 Sampling-based extraction of DFA

Instead of conducting a search in the quantised state space, activity of the RNN
in interaction with the data/environment can be recorded. In this way, the
domain can be considered as heuristics confining the states of the RNN to only
relevant states.

Already before RE techniques for RNNs were developed, sampling of the
state space using the domain, was the most natural way to conduct analysis of
RNNs (Cleeremans et al. 1989, Servan-Schreiber et al. 1989, Elman 1990). The
first RE technique based on sampling the RNN was proposed by Watrous &
Kuhn (1992) (see Table 5). The quantisation of the state space was based on
splitting individual state units’ activations into intervals. They described that

20

DFA extraction, hierchical clustering, sampling on domain
(Alquézar & Sanfeliu 1994a), and (Sanfeliu & Alquézar 1995)
Rule type: Unbiased Moore DFA. Unbiased means the output is

trinary (accept, reject and unknown).
Quantisation: Hierarchical clustering.
State generation: A prefix-tree is built based on the examples of the

training set.
Network(s): First-order RNN (not specified in Alquézar & Sanfeliu

(1994a) but in Sanfeliu & Alquézar (1995)).
Domain(s): At least 15 different regular binary languages

(Alquézar et al. 1997).

Table 4: A summary of the search-based DFA extracting algorithm proposed
by Alquezar and Sanfeliu for unbiased grammars.

these intervals could be merged and split to help the extraction of minimal and
deterministic rules. The procedure of state splitting, however, is a bit unclear
in their description and may require intervention from the user.

DFA extraction, dynamic interval clustering, sampling on domain
(Watrous & Kuhn 1992)
Rule type: Moore DFA with binary (accept/reject) decision.
Quantisation: Dynamically updated intervals for each state unit.

States are collapsed and split through updating the
intervals.

State generation: Sampling the RNN while processing the domain.
Network(s): Second-order RNNs.
Domain(s): Regular binary languages (Tomita 1982).

Table 5: A summary of the sampling-based DFA extraction algorithm proposed
by Watrous and Kuhn (1992).

Manolios & Fanelli (1994) chose to use a simple vector quantifier instead of
dynamically updated intervals. Randomly initiated model vectors were repeat-
edly tested until a deterministic machine was found. The termination of this
procedure is however not guaranteed. The algorithm is summarised in Table 6.

A similar approach was suggested in Tiňo & Šajda (1995) where an algorithm
for removing inconsistent transitions was introduced. This algorithm could,
however, fail under certain circumstances so that the extraction of a DFA could
not be guaranteed. A star topology self-organising map (SOM, (Kohonen 1995))
was used to quantise the state space. Tiňo & Šajda (1995) were the first to
extract Mealy instead of Moore machines and also the first who did not confine
the output to binary accept/reject decisions (not counting the unbiased DFA of
Alquézar & Sanfeliu (1994a)). This algorithm is summarised in Table 7.

The breadth-first search will reliably find consistent DFMs since the search
is pruned before inconsistencies leading to indeterminism are introduced. The

21

DFA extraction, vector quantifier, sampling on domain
(Manolios & Fanelli 1994), originally in tech. rep. (Fanelli 1993)
Rule type: Moore DFA with binary (accept/reject) decision.
Quantisation: A simple vector quantifier, details unclear.
State generation: Sampling on a test set.
Network(s): First-order RNNs.
Domain(s): Regular binary languages (Tomita 1982).

Table 6: The sampling-based DFA extractor proposed originally in Fanelli
(1993).

DFM extraction, SOM, sampling on domain
(Tiňo & Šajda 1995)
Rule type: Mealy DFM with multiple output symbols.
Quantisation: Star topology SOM.
State generation: Sampling on training set.
Network(s): Second-order RNNs.
Domain(s): Regular formal language domains with either two or

three input symbols (not counting the end-of-string
symbol) and two or three output symbols.

Table 7: Summary of the sampling-based DFM extractor of Tiňo and Šajda
(1995)

22

DFM will also be complete since all symbols are tested on all states. In sampling
the state space, determinism is no longer guaranteed since two microstates of the
same macrostate may result in transitions, to different macrostates, triggered
by the same symbol. Two state vectors in the same partition may also be
mapped to different classes in the output. The extracted machines may also
be incomplete since not all symbols may be tested on all states. Therefore the
DFM extraction through sampling may fail as in the above cases of Watrous &
Kuhn (1992), Manolios & Fanelli (1994) and Tiňo & Šajda (1995). It is unclear
how incomplete machines were handled in the above described approaches and
perhaps the extracted machines were small enough and domains simple enough
to not result in any such problems.

An approach to solve the problem of indeterminism is to use transition fre-
quencies to discard the least frequent of inconsistent transitions. This heuristic
should in most cases solve the inconsistency without deviating much from the
operation of the underlying RNN in the majority of the transitions. This simple
procedure was proposed by Schellhammer et al. (1998) (summarised in Table 8).
They also handled the problem of incomplete machines by creating transitions
to a predefined “rescue state” to make the machine complete. These simplifica-
tions did not significantly reduce the performance of the DFM and the rescue
state made it possible for the machines to make “guesses” about inputs that
otherwise would not be possible to parse.

DFM extraction, vector quantizer, sampling on domain
(Schellhammer et al. 1998)
Rule type: Mealy DFM with a “rescue state” used to make ma-

chine complete.
Quantisation: k-means.
State generation: Sampling on training set. Inconsistencies solved by

discarding the least frequent of inconsistent transi-
tions.

Network(s): SRN.
Domain(s): Natural language prediction task.

Table 8: Summary of the only sampling-based DFM extractor where inconsis-
tencies and incompleteness are handled.

5.5 Stochastic machine extraction

As described in the previous section, the extraction of deterministic FSMs
(DFMs) from RNNs through sampling is hampered by the fact that the quan-
tisation of the state space may lead to inconsistencies in the macrostate tran-
sitions. These inconsistent transitions (and potentially state interpretations)
will however follow some patterns and if all such transitions are counted they
can be transcribed into a stochastic machine, i.e. a nondeterministic machine
with probabilities associated with the transitions. The inconsistencies that ruin
a DFM extraction may in other words contain informative probabilities that
more accurately describe the RNN.

23

An algorithm for extraction of stochastic machines from RNNs was proposed
by Tiňo & Vojtek (1998). The algorithm quantised the state space using a SOM
(as also Tiňo & Šajda (1995) did). The generation of states and state transitions
was divided into two phases; the “pre-test” phase, where the RNN was domain-
driven, and a “self-driven” phase, where the output of the RNN was used as
input in the next time-step (this RNN was trained to predict a long sequence
of symbols). In Tiňo & Köteles (1999) (further described in Tiňo, Dorffner &
Schittenkopf (2000)) the SOM was replaced with a dynamic cell structure (DCS,
Bruske & Sommer (1995)), but otherwise the algorithm was the same (see the
summary in Table 9).

The stochastic machines are possible to analyse in new interesting ways.
The authors (Tiňo & Vojtek 1998, Tiňo & Köteles 1999), for example, used
entropy spectra (Young & Crutchfield 1993) to compare the probabilities of
strings generated by the RNNs with the probabilities of the strings in the original
source. The results were interesting but there were no indications, in that
paper, of how well the extracted machines corresponded to the network (i.e. rule
fidelity) or how well they generalised on any test set9 (i.e. rule accuracy). The
comprehensibility of the extracted rules can also not be determined from these
papers. Compared to deterministic machines, simplification and minimisation
are likely to be significantly more complex for stochastic machines.

Stochastic machine extraction, SOM, sampling on domain
(Tiňo & Vojtek 1998, Tiňo & Köteles 1999)
Rule type: Stochastic Mealy finite state machine.
Quantisation: SOM (unspecified topology) in Tiňo & Vojtek (1998)

and DCS in Tiňo & Köteles (1999)
State generation: Two phases: Sampling on training set and “self-

driven” RNN.
Network(s): Primarily second-order RNNs.
Domain(s): Prediction of (four) symbols generated from contin-

uous chaotic laser data and a chaotic series of binary
symbols generated with iterated logistic map function.

Table 9: Summary of approaches of RNN-RE for extraction of stochastic ma-
chines.

Another related approach is perhaps not rule extraction per se but can per-
haps at least be termed a partial rule extraction algorithm. A “neural prediction
machine” (NPM) is constructed in (Tiňo, Čerňanský & Beňušková 2004). The
NPM predicts the next symbol given the state of the network, i.e. the state
dynamics are handled by the RNN and not extracted at all (see a summary of
this approach in Table 10).

5.6 A pedagogical approach

All previously described algorithms fall into the category compositional in ADT’s
translucency classification (see Section 4.2). There is to our knowledge only one

9Unless the entropy spectra analysis is considered a form of accuracy measurement.

24

Neural prediction machine, vector quantizer, sampling on domain
(Tiňo et al. 2004)
Rule type: A “Neural Prediction Machine” (NPM) predicting the

next output based on current state of the RNN. State
transitions not modelled.

Quantisation: k-means
State generation: Sampling.
Network(s): First-order RNN.
Domain(s): Continuous chaotic laser data domain transformed to

four symbols and recursive natural language domains.

Table 10: Neural Prediction Machines (NPMs) differ from the FSM ordinarily
extracted from RNNs in that state transitions are not incorporated into the
model.

algorithm that uses a pedagogical approach instead. Vahed and Omlin (Vahed
& Omlin 1999, Vahed & Omlin 2004) used a machine learning method requiring
only the input and the output to extract the machine, i.e. the internal state is
ignored (see the summary in Table 11). The data used for extraction was based
on all strings up to a given length. The input and output of the network was
recorded and was fed to the polynomial-time “Trakhtenbrot-Barzdin” algorithm
(Trakhtenbrot & Barzdin 1973).

It was also reported that this algorithm was more successful in returning
correct DFAs than clustering-based algorithms (Giles, Miller, Chen, Sun, Chen
& Lee 1992). Actually this seems to be the only paper that at all describes an
experimental comparison of different RE techniques.

The machine learning algorithm they used is indeed of polynomial time com-
plexity, given that a prefix tree (see figure 6) is available. But the size of the
prefix tree up to a string length L is of complexity O(nL), where n is the number
of symbols. As a consequence, this approach is likely to have some problems
scaling up to more complex problems with more symbols.

DFA extraction, black-box model
(Vahed & Omlin 1999, Vahed & Omlin 2004)
Rule type: Moore DFA with binary (accept/reject) output.
Quantisation: N/A.
State generation: All strings up to a certain length.
Network(s): Second-order RNN.
Domain(s): One randomly generated 10-state DFA.

Table 11: The only RNN-RE algorithm where the internal state of the RNN is
not regarded during the extraction process.

25

5.7 RE-supporting RNN architectures

As mentioned before, clusters can be induced during training to support RE
in later stages (Zeng et al. 1993, Frasconi et al. 1996). This was originally
suggested in Das & Das (1991) and further developed in Das & Mozer (1994)
and Das & Mozer (1998). Training to induce clusters results, if successfully
performed, in RNNs that are trivially transformed to finite machines. Since the
focus of this paper is on the details of the extraction procedure, more details of
these approaches will not be included here.

6 RNN-RE, Fool’s gold?

Kolen (1993) showed with some simple examples that some dynamic systems
with real-valued state space (e.g. an RNN) cannot be described discretely with-
out introducing peculiar results (cf. Kolen & Pollack (1995)). If you want to
approximate the behaviour of a physical system with a real-valued state space
as a discrete machine you will not only risk that the approximation might not be
exact. A more profound effect of the approximation is that induced machines,
from the same physical system, may belong to completely different classes of
computational models, depending only on how the transformation from the
real-valued space to a discrete approximation is conducted.

This critique strikes at the very heart of RNN-RE since the quantisation
of the state space is a crucial element of these algorithms and RNN-RE was
actually termed “Fool’s gold” by the author (Kolen 1993). He pointed out that
RNNs should be analysed as dynamical systems or more specifically iterated
function systems (IFSs) rather than state machines.

There are some replies to this critique, though. One simple approach is
to avoid the problem by not modelling transitions at all (Tiňo et al. 2004),
or even not to quantise the state space at all (Vahed & Omlin 1999, Vahed
& Omlin 2004). Another response to Kolen’s critique is that extraction of a
state machine from an RNN has been proven to work if the underlying RNN
robustly model given a finite state machine (Casey 1996). However, this does not
alleviate the fact that the language class (isomorphic to classes of computational
models) for unknown RNNs cannot reliably be recognised. But at least there is
a theoretical “guarantee” that if there is an FSM at “the bottom” of an RNN,
it can always be extracted in principle.

The failure of rule extraction from an RNN could therefore be an indicator
that the underlying RNN is not regular. One first step in this direction has
been proposed by Blair & Pollack (1997). They used unbounded growth of
the macrostate set under increased resolution of the equipartition quantisation
method as an indicator of a nonregular underlying RNN.

If we limit ourselves to real world domains, RE will be operating on finite do-
mains, making FSM interpretations theoretically possible at all times (although
they may not be the minimal description of a domain). In fact, since the focus
of RNN-RE research is on FSM extraction, the question should not be whether
a language class is misjudged by an RE algorithm or not (since extraction on
the level of the class of regular languages is one of the premises), but rather
how well the extracted finite machine approximates the network, as proposed
by Blair & Pollack (1997). How to evaluate the fidelity of an FSM and whether

26

this evaluation may distinguish between errors stemming from a poorly quan-
tised state space or from a higher language class in the RNN/domain remains
an open issue.

In summary, although Kolen’s critique is justified, there are still reasons why
further research on RE from RNNs is interesting. There is a lack of sophisti-
cated analysis tools that can handle the complexity of RNNs, and RNN research
is hampered by this fact. Although there are theoretical possibilities that am-
biguous answers may be given about an RNN through RE, this holds also for
many other analysis techniques. Kolen also did not provide any indications
under which conditions RE would fail. There is a possibility that inconsisten-
cies become less frequent for higher degrees of fidelity in the extraction process
since Kolen described such inconsistencies only for the most coarse-grained of
fidelities (two and three macrostates).

In other words, the theoretical disadvantages may turn out to be uncommon
in real applications where any sophisticated analysis of the RNN is better than
none. Of course, as for any analysis tool, the disadvantages must be kept in
mind when examining the results.

7 Discussion

In this section, the described techniques will be summarised and evaluated from
the perspectives of the evaluation criteria, rule type, quantisation method, state
generation, network type and domain. The criteria in the well known ADT
taxonomy (described in Section 4.2) will also be presented in more detail and
RNN-RE discussed based on these criteria.

7.1 Rule types

It is quite clear that most of the research described in section 5 has been focused
on extracting “traditional” DFA for classification of binary strings as grammat-
ical/ungrammatical (Giles et al. 1991, Giles, Miller, Chen, Chen & Sun 1992,
Watrous & Kuhn 1992, Zeng et al. 1993, Alquézar & Sanfeliu 1994a, Mano-
lios & Fanelli 1994, Sanfeliu & Alquézar 1995, Omlin & Giles 1996b, Frasconi
et al. 1996, Gori et al. 1998, Vahed & Omlin 1999, Vahed & Omlin 2004).
Only a few DFA extraction algorithms are used on domains with more than
two output symbols (Tiňo & Šajda 1995, Schellhammer et al. 1998). It is also
interesting to notice that only three papers (Schellhammer et al. 1998, Tiňo
& Vojtek 1998, Tiňo & Köteles 1999) have studied DFA RNN-RE in a pre-
diction domain while prediction of sequences is a quite common approach in
RNN research in general. (Elman 1990, Alquézar & Sanfeliu 1994b, Gers &
Schmidhuber 2001, Jacobsson & Ziemke 2003a).

The crisp DFA do not model probabilistic properties of macrostate transi-
tions and macrostate interpretations; that kind of information is lost in the rules,
independently of whether search or sampling is used to generate states. Hence,
a more expressive set of rules may be represented in stochastic FSM (Tiňo &
Vojtek 1998, Tiňo & Köteles 1999) and the fidelity, i.e. the coherence of the
rules with the RNN, of stochastic rules should in principle be higher (given the
same premises, e.g. quantisation) than for their deterministic counterparts. The

27

fidelity can, however, be measured in various ways, as the term is not clearly
defined, leading to possibly ambiguous results.

The choice between stochastic and deterministic rules is not obvious. Deter-
ministic rules are easily analysed but may oversimplify and hide essential details
of the underlying RNN and hide errors stemming from the chosen quantisation
method. Given a certain state space quantisation, stochastic rules should on
the other hand be a more accurate description of the underlying RNN than
deterministic rules. This is because a deterministic RNN viewed through the
“state space quantisation window” may appear indeterministic.

An approach to solve this may be to push further on the way chosen by
Schellhammer et al. (1998) where probabilities were calculated and then used
as heuristics for transforming the incomplete and nondeterministic machine into
a deterministic and complete machine. That way the information loss from going
from the RNN to a deterministic machine could possibly be tracked.

A last, “exotic”, form of rules is the Neural Prediction Machine. The NPM
is only predicting the output of the network given the state, but is not concerned
with the internal mappings of states in the RNN (Tiňo et al. 2004).

7.2 State space quantisation

Clearly, there is no consensus about how to quantise the state space. Meth-
ods that have been used are (see Section 5 for more complete reference lists):
regular (grid) partition (Giles et al. 1991), k-means (Zeng et al. 1993, Frasconi
et al. 1996, Schellhammer et al. 1998, Tiňo et al. 2004, Cechin, Pechmann Si-
mon & Stertz 2003), SOM (Tiňo & Šajda 1995, Tiňo & Vojtek 1998, Blanco
et al. 2000), dynamical cell structures (Tiňo & Köteles 1999), “other” vec-
tor quantifiers (Manolios & Fanelli 1994), hierarchical clustering (Alquézar &
Sanfeliu 1994a), dynamically updated intervals (Watrous & Kuhn 1992) and
fuzzy clustering (Cechin et al. 2003). That makes eight different techniques,
not counting small variations in implementations. Although just a fraction of
existing clustering techniques have at all been tested (Mirkin 1996, Jain, Murty
& Flynn 1999) it is clear that a multitude of existing clustering techniques has
been used to solve the quantisation problem.

But what is most striking about this multitude of various techniques used
is not that they are so many, but that there are no studies comparing different
quantisation techniques to each other in the context of RNN-RE. How should
they be evaluated then? What characterises a good quantisation in the context
of RNN-RE? It is not necessarily spatial requirements (Sharkey & Jackson 1995),
as is usually the case for evaluation of clustering techniques (Jain et al. 1999),
but rather requirements based on properties of the extracted rule set. To have
clusters that are spatially coherent and well separated is of less importance
than the fidelity of the resulting rules. If an evaluation method for quantisation
techniques could be defined in the context of RNN-RE it could help the research
on RNN-RE to find better techniques with clustering techniques tailor-made for
the purposes of extracting good rules (where the definition of “good” of course
depends on the goal of the RE).

28

7.3 State generation

There are two basic strategies for generating the states in the RNN (see Section 5
for more complete reference lists): searching (Giles et al. 1991, Zeng et al.
1993, Frasconi et al. 1996) and sampling (Watrous & Kuhn 1992, Manolios &
Fanelli 1994, Alquézar & Sanfeliu 1994a, Tiňo & Šajda 1995, Schellhammer
et al. 1998, Tiňo & Vojtek 1998, Tiňo et al. 2004).

As for the clustering techniques, there are no studies comparing searching-
and sampling-based RNN-RE experimentally, apart from one preliminary study
(Jacobsson & Ziemke 2003b). Unlike for clustering techniques, however, it is
quite easy to see at least a few of the consequences of the choice of state gener-
ation method.

First of all, breadth-first search will obviously have problems of scaling up
to larger problems. The search-based techniques should be especially sensitive
to the number of input symbols. There are also reasons to believe that for
prediction networks in domains that are not completely random, many of the
transitions and states generated with breadth-first search would not be relevant
or ever occur in the domain (Jacobsson & Ziemke 2003b). Machines extracted
with search are however guaranteed to be deterministic which may very well be
desired (see discussion in the previous section). The extraction is also guaran-
teed to end up with a complete machine where all possible inputs are tested on
all encountered states.

RE through sampling on the domain is not guaranteed to result in determin-
istic machines. If a deterministic machine is required, there is no guarantee that
a certain state space quantisation will result in a solution since inconsistencies
might occur. The other problem, as mentioned before, is the possibility that not
all states will have recordings of all possible outgoing transitions, i.e. the ma-
chine will be incomplete. Suggestions to solutions to both these problem have
only been proposed in one paper (Schellhammer et al. 1998). Sampling-based
RE techniques may therefore be a better strategy for extraction of stochastic
rather than deterministic machines.

RE through sampling is, however, RE not only from the RNN, but also from
the domain. No rules other than those that apply to the domain will be extracted
as may be the case for breadth-first search, e.g. if two inputs never occur in
succession in a certain prediction task, there is no point in extracting rules
from the network about such events. The domain sample provides heuristics
about which rules are interesting to explore. The machine will then possibly
give a good insight into the domain as well as the RNN, since the presence
and absence of transitions in the machines are a result of the domain. If an
incomplete prediction machine is extracted it could in principle also be used
to detect anomalies in a test sequence, since unexpected inputs (i.e. inputs at
states where the outgoing transition is not in the model) could be used to trigger
warnings. If, however, the domain sample, used for rule induction, is lacking
some crucial element, the extracted rules will also be incomplete with respect
to this element.

7.4 Network types and domains

The networks that have been studied using RNN-RE are in most cases relatively
small networks with few hidden nodes. This may be due to the fact that most

29

domains used were simple enough to allow small networks to be trained.
There are also significantly more second-order than first-order networks.

Probably, this is an effect of the focus on formal language domains where second-
order RNNs are more commonly used than first-order networks (Goudreau,
Giles, Chakradhar & Chen 1994).

The proportion of RNN architectures that have not been tested using RE is
very high, perhaps due to scalability problems in current RE techniques, or that
analysis of the internal behaviour is less an issue than the actual performance
of the RNNs.

As mentioned in Section 7.1, the investigated domains are mostly requiring
only binary string classification. More complex domains with many symbols or
deep syntactical structures, etc., have as yet not been tested using RNN-RE.
Therefore, the applicability of these techniques is to a large degree an open
issue. The importance of rule extraction as described by Andrews et al. (1995),
e.g. explanation capability, verification of ANN components, etc., is therefore
lesser than it would have been if the techniques had been demonstrated to work
on the state-of-the-art RNNs operating on the most challenging domains.

7.5 Relation to the ADT taxonomy

Although the ADT taxonomy (Andrews et al. 1995, Tickle et al. 1997, Tickle
& Andrews 1998) has not been used explicitly to classify the techniques in the
taxonomy of this paper, it can be highly useful as a basis for discussion of the
techniques. Some important points will be evident when viewing RNN-RE in
terms of these criteria (see Section 4.2 for descriptions of the criteria).

7.5.1 Expressive power

In the ADT taxonomy, basically all rules from RNN-RE algorithms fall under the
same category (“finite state machine”). Therefore, more RNN-RE characteristic
features were chosen to discriminate between the rule types (cf. Section 7.1).

7.5.2 Translucency

Although translucency may have been the most central aspect in the ADT tax-
onomy it has been of less importance to discriminate RNN-RE techniques since
(almost) all techniques fall under the same category (compositional). Therefore
translucency may not be very informative for comparing RNN-RE techniques,
but it can be interesting to study what RNN-RE algorithms actually require of
the underlying network. This is, however, also highly related to the portability
of RNN-RE techniques which will be discussed next.

7.5.3 Portability

Even though most RNN-RE algorithms are compositional and have the, in prin-
ciple, same requirements on the underlying RNN there are some implicit require-
ments that could be interesting to bring up, especially if the existing RNN-RE
algorithms are to be applied on other RNN architectures and other domains
than so far. Current RE techniques are preferably used on RNNs that:

30

1. operate in discrete time, i.e. continuous-time RNN will not work. There is
however no known work on continuous time RNNs in the domain of FSM
generated languages (Forcada & Carrasco 2001),

2. have a clearly defined input, state and output, i.e. less or randomly struc-
tured RNNs may be problematic (e.g. echo state networks (Jaeger 2003)),

3. have a fully observable state, otherwise unobserved state nodes or noise
in the observation process would disturb the extraction process since the
state space would not be reliably quantised,

4. have state nodes that can be set explicitly (for search-based techniques),

5. are deterministic, otherwise the same problem as if the state is not fully
observable would occur,

6. have certain dynamical characteristics, e.g. sampling-based extraction of
a deterministic machines operates preferably on non-fractal structures of
the state space to be feasible,

7. are fixed during RE, i.e. no training can be allowed during the RE process.

Due to algorithmic complexity, the underlying RNN must also not have
too many state nodes (especially when using regular partitioning, which does
not scale up well). The domain should also not contain too many possible
input patterns (symbols), especially if breadth-first search is used. The domain
should preferably also be discrete (or be transformed to a discrete representation
prior to RE (e.g. Giles et al. 1997)) since there are no means for representing
continuous input data in the current types of extracted rules. Therefore the
problem of good quantisation of input (and perhaps output) space may also
be interesting to study in relation to RE. A continuous but quantised input
stream may also give the illusion of an underlying indeterministic RNN, since
one input symbol then may be the result of several input patterns, just as several
microstates may lead to the observation of the same macrostate.

Of course, a list such as the one above needs to be taken with a grain
of salt. The problem of making a list of implicit requirements is just that
they are implicit (i.e. not readily apparent). There may therefore be other
essential requirements that we have not managed to figure out at this stage.
Also, the strengths of these requirements are not clear either, some of them may
actually be quite easily alleviated with some enhancements of current RNN-RE
techniques.

7.5.4 Quality

As mentioned before (cf. Section 4.2.4), the quality of RNN-RE techniques is
(or should be) evaluated at the level of the actual rules, rather than at the
level of the algorithms. Extracted rules depend not only on the algorithm but
also on the underlying domain and network. Evaluation of the rule quality
therefore requires extensive studies comparing different RE techniques under
similar conditions. Unfortunately, such studies have not yet been conducted for
most RNN-RE algorithms.

A discussion of rule quality is further complicated by two things: firstly, as
already mentioned, rule quality can only be reliably evaluated on the extracted

31

rules themselves; and secondly, but perhaps more importantly, the goal of the
extraction needs to be clearly specified before the quality can be evaluated. In
some papers it is clear that the accuracy is the most important aspect of rule
quality. Accuracy is a good means for evaluating rule quality as long as the
goal for rule extraction is to find rules that are “as good as possible” on the
domain (see Figure 7 for a visual illustration of the relation between accuracy
and fidelity). But if the goal is to examine the network’s ability to generalise (e.g.
for software verification), accuracy should not be used. After all, if the network
is tested with an accuracy-maximising RE method, the result may be rules with
a performance better than the network (a result confirmed by many studies).
Therefore, for purposes of RNN analysis, fidelity should be the preferred quality
evaluation criteria.

accuracy

catastrophic network0%

100%

0% fidelity 100%

average network

perfect network

Figure 7: An illustration of the relation between the two quality criteria accuracy
and fidelity for networks with different performances. The higher the fidelity,
the more the accuracy of the rules matches the performance of the network. For
lower fidelity, the accuracy of the rules may divert more from the performance
of the network (indicated by the solid lines). Typically, however, lower fidelity
would mean lower accuracy (typical example indicated by dashed lines), since
there are more erroneous rules than correct ones. This would however not be
true if the extraction mechanism included measures to, apart from extracting
the rules from the RNN, tweak them to fit the data more accurately.

There are, in the existing corpus of papers on RNN-RE, some indirect re-
sults that provide some indications for some of the rule quality sub-categories,
accuracy, fidelity, consistency and comprehensibility.

Some studies indicate that the extracted machines indeed have high accuracy
since they may even be generalising better than the underlying RNN (Giles,
Miller, Chen, Chen & Sun 1992, Giles, Miller, Chen, Chen & Sun 1992, Giles
& Omlin 1993, Omlin & Giles 1996b). There are, however, unfortunately no
studies where the fidelity of the extracted rules has been tested separately from
the accuracy. The studies tend to focus on networks that are quite successful on
their domain and under such circumstances the difference between fidelity and

32

accuracy is very small. For networks performing badly on their domain, high
fidelity would, however, imply low accuracy since the errors of the network then
would be replicated by the machine (cf. Figure 7).

Rule consistency has not been studied extensively although some papers
touch the subject. Rules extracted from a network during training were found
to fall under a sequence of equivalence classes during training (Giles, Miller,
Chen, Sun, Chen & Lee 1992). This can be seen as an example of consistency
since the extracted rules after a certain time of training eventually stabilised
in the same equivalence class, i.e. the set of quite similar networks at the later
part of the training resulted in equivalent rules. The consistency over differ-
ent parameter settings (of the quantisation parameter q in the equipartitioned
RNN-RE algorithm) has also been proposed as an indicator of regularity in the
underlying network (Blair & Pollack 1997). These results on consistency are,
however, more or less indirect.

Rule comprehensibility has not been experimentally compared in any way,
but it is clear that it is an important issue to ensure further progress for RNN-RE
research. After all, if the goal of extracting rules is to understand the under-
lying incomprehensible network, the rules should preferably be comprehensible
themselves. The extracted rules have been informative in some qualitative way
in the reviewed papers but in some cases it is clear that a higher degree of
fidelity/accuracy reduces the possibility to find easily understandable results
(Lawrence et al. 2000). Standard DFA minimisation techniques have already
been used to reduce the DFAs to their minimal representation. But further
heuristics (such as suggested by Schellhammer et al. (1998)) for how rules can
be made more comprehensible are needed. Algorithms with a user-defined pref-
erence in the “comprehensibility/fidelity tradeoff” (Craven & Shavlik 1999) have
also been pointed out as a direction for future research.

7.5.5 Algorithmic complexity

The algorithmic complexity of RNN-RE algorithms is one of the most unex-
plored and least documented aspects. To seek further answers about the algo-
rithmic complexity of RNN-RE algorithms could, however, be very fruitful. A
deeper understanding of the role of dynamics in the underlying RNN would for
example be needed to determine the complexity of individual RNNs. Important
answers and even more important new questions would definitely be the result
of breaking down these algorithms until the complexity becomes clear.

The algorithmic complexity of the extraction may however be inherently
linked to the complexity of the domain and the intrinsic computational complex-
ity of the RNN as an instance of a physical computing device (Crutchfield 1993).
The latter form of complexity is also inherently dependent on the observation
process itself (Kolen & Pollack 1995). In other words, the complexity issue
is inherently complicated and may turn out to be too difficult to evaluate by
other means than trial and error. It is however clear that, since RNN-RE is
inherently a computationally demanding process, heuristics for more efficient
RNN-RE algorithms will remain one of the central issues in future RNN-RE
development.

33

8 Open issues

Throughout this paper, open issues have been hinted at, especially in Section 7.
In this section these open issues are summarised and extrapolated. First some
general questions will be posed concerning how our current state of knowl-
edge about existing techniques may be enhanced, then future directions will
be outlined for how the usability and strengths of RNN-RE algorithms can be
improved.

8.1 Development of scientific tools and measures

First of all, it is quite clear that some basic questions have not yet been asked.
One such basic question is: What are the possible goals of RNN-RE? Possible
answers could be (taken partly from Andrews et al. (1995) in the context of RE
in general):

1. to acquire a generic model of the domain, i.e. the RNN is used merely as
a tool in the acquisition process (data mining),

2. to provide an explanation of the RNN,

3. to allow verification/validation of the RNN with respect to some require-
ments (cf. software testing) and thus make new, potentially safety critical,
domains possible for RNNs,

4. to improve on current RNN architectures by pinpointing errors,

5. to integrate the rules (or at least state space quantisation) with the RNN
(Zeng et al. 1993, Frasconi et al. 1996).

The appropriate measure to evaluate the success of a specific instance of
an RNN-RE algorithm being applied on an RNN (and domain) depends highly
on which of these (or other) goals are desired. For the first goal, for exam-
ple, the maximisation of accuracy is the prime target. For the other goals the
maximisation of fidelity is likely to be more important. In some cases, how-
ever, comprehensibility may be crucial. In other cases, it is imaginable that the
efficiency of the algorithm (in terms of execution time or required memory stor-
age) is the primary objective. There may also be other, more domain specific
measures to evaluate the degree of goal achievement.

Some of these terms; fidelity, accuracy, comprehensibility, are in turn not
completely defined more than at an intuitive level. If two techniques are to be
quantitatively compared in terms of any of these criteria, they need to be more
clearly defined (perhaps such definition may be domain dependent and there
may also be room for more than one definition of, e.g., fidelity).

When it comes to fidelity, for example, one can divide the term into domain
specific fidelity and domain independent fidelity, the former of which is only
concerned with the rule-RNN agreement under the interaction with the domain
and the latter defined more generally, over all possible input interactions. The
definition of consistency may also be refined further by differentiating between
consistency over different RNNs, sample sets (used during RE), different initial
states in the same RNN, or RNN-RE parameter settings etc.

34

After these terms of rule quality have been more clearly defined, there is still
a need for a methodical cross-comparison of RNN-RE algorithms. For example,
benchmark RNN models could be developed for this purpose. This would make
comparisons more feasible since different researchers can make sure that the
underlying system (the RNN-domain combination) is held constant and only
the studied aspect, e.g. clustering methods, is varied. Such benchmarks could
be made available in a publicly available database10 which would help not only
research on RNN-RE algorithms but also RNN/ANN research in general11.

8.2 Deeper investigations of existing algorithms

The existing algorithms have not been tested against each other, except that
the only pedagogical approach (Vahed & Omlin 1999, Vahed & Omlin 2004) has
been experimentally compared with the equipartitioned, search-based approach
(Giles, Miller, Chen, Sun, Chen & Lee 1992). Although one may argue that in
order to make progress, new techniques must be developed rather than sticking
to the old solutions, we argue that in order to take the right decisions about
how to find better algorithms, we need to better understand the old solutions
before creating new and exotic ones.

For example, at this point we do not have any information about what quan-
tisation method seems most promising, or whether stochastic or deterministic
machines should be preferred. This may be largely due to the lack of a clear goal
or well defined measures to compare the algorithms with. Another central issue
that has not been tested is how these algorithms scale up. The scalability issue
is addressed in Craven & Shavlik (1999) where a broader definition, not only
referring to algorithmic complexity, was suggested: scalability in terms of algo-
rithmic complexity and comprehensibility. Whatever the definition, however,
the scalability of current techniques has not been evaluated to any significant
extent.

The list of implicit requirements discussed in Section 7.5.3 is a starting point
in mapping out what current techniques can and cannot do. But the list is very
limited and not at all supported by any deeper experimental or theoretical ver-
ification. A suggestion is to map the “limits” of current techniques by applying
them to architectures and domains on the borderline of what the techniques
should be able to master.

8.3 Utilisation of RNN-RE algorithms

Something that would drive the development of any analysis tool are new ap-
plications. The algorithms described in this survey have been primarily used on
quite small domains and networks. By using existing RNN-RE algorithms on
more demanding domains, two effects could be expected; 1. it would open up re-
search on domains that are more “interesting” in themselves, and 2. weaknesses
of existing algorithms would become apparent, which would generate interesting
directions for how to improve them. For example, some algorithms are focused

10The idea behind this database was born in discussions with André Grüning as a solution to
the difficulty and effort of reproducing RNNs. An analysis of the possible design and required
infrastructure of such a database has been initiated by the author.

11A similar database approach is proposed by Kolen & Pollack (1991), who suggested a
database where the initial weights, prior to training, would be saved.

35

primarily on string classification tasks and are perhaps not portable to other
tasks (such as symbol prediction tasks), since the assumption of the existence
of a fully defined binary classification may not hold in other tasks.

We have also noted that most RNN types have not yet been considered in
RNN-RE research, e.g. Long Short-Term Memory (Hochreiter & Schmidhuber
1997) and Echo State Networks (Jaeger 2003). These networks may not be
more complex for RE per se but still have properties putting different sorts of
requirements on the RNN-RE algorithms.

Apart from just a straight progression towards more complex domains and
networks, other possible uses for RNN-RE can be prospected:

• A striking thing in the previous employment of RNN-RE algorithms is
that almost all papers dealt exclusively with perfect or almost perfect
networks, i.e. networks very well adapted to their domains. In some cases,
perfect generalisation capability of the extracted rules was part of the
termination criteria (Giles, Miller, Chen, Chen & Sun 1992). For RNN-
RE to be an interesting tool for RNN researchers, however, the successful
analysis of “failing” RNNs is important to be able to improve upon these
failures. Such RE-based failure analysis may be far more powerful than
just pointing out the existence of errors and may be integrated as part of
the training of the network.

• Incomplete machines extracted through domain interaction could be used
to trigger warnings for new “exotic” input patterns that have not been
encountered during the extraction (cf. discussion in end of Section 7.3).

• A distance metric between RNNs could be defined by comparing rules
extracted by RNN-RE. RNNs are otherwise difficult to compare directly
since completely different weights can give equivalent behaviour and small
differences in weights may result also in very different behaviours. This
sort of distance metric would be favourable when using RNN ensembles
(Sharkey 1996) to ensure a heterogeneous set of RNNs in the ensemble.

• The idea that RNN-RE can be used as an indication of the complexity
of the underlying RNN and domain could be further developed. Previous
studies seem to show promising results (Crutchfield & Young 1990, Blair
& Pollack 1997, Bakker & de Jong 2000) with regards to complexity esti-
mations that go beyond Shannon entropy and Kolmogorov complexity.

8.4 RNN-RE enhancement and development

There are certainly an innumerable number of ways the existing techniques
can be enhanced. The goals for enhancement can be found among some of
the criteria of the ADT-taxonomy: portability, rule quality and algorithmic
complexity. Portability can be enhanced in the sense that in the algorithms after
some additional progress can be applied to more domains and network types.
The rule quality can be improved (after first defining exactly what is meant
by rule quality) by focusing development on rule accuracy, fidelity, consistency
and/or comprehensibility. The algorithmic complexity and scalability can be
addressed by developing more refined heuristics.

36

8.4.1 Future goals/demands of RNN-RE algorithms

What should we expect from future algorithms? Some ideas are given by Craven
& Shavlik (1999) where methods for controlling the “comprehensibility/fidelity
tradeoff” are identified as an important line of research. This “tradeoff” issue
may be expanded to techniques where the user may, through the setting of a
few parameters, not only have the ability to choose between fidelity and com-
prehensibility, but also fidelity and accuracy, fidelity and computation time etc.
(Figure 8). The multiple choice of goals could result in a wide variety of RNN-
RE algorithms, each adapted for their specific purpose. But, as suggested by
Craven & Shavlik (1999), a single algorithm where the user may choose between,
e.g. fidelity and comprehensibility should be the most preferable.

Efficiency

Fidelity Comprehensibility

Goal?

Accuracy

Figure 8: Four, possibly opposite, goals of RNN-RE that in an ideal algorithm
would be simply be chosen by the setting of a few user-defined parameters.

In an ideal RNN-RE algorithm the relation between execution time, fidelity
and comprehensibility may be as illustrated in Figure 9. Rules should be refined
gradually over time and the more time available, the higher the possibility of
acquiring rules of high fidelity and/or comprehensibility (“anytime rule extrac-
tion” (Craven & Shavlik 1999)).

To ensure comprehensibility, rules could be presented in more than one for-
mat. Therefore transformation to other rule formats, e.g. regular expressions,
can be interesting to study. These transformations need not to be loss-free,
perhaps thereby enhancing readability by creating smaller rule sets. The rule
transformations may also be goal-oriented to express certain sub-rules that may
be of special interest to the user.

In general, RNN-RE algorithms should have the possibility of being used in
a goal-oriented manner, e.g. to let the RE focus on rules for an isolated event
or output symbol or sequence of symbols. For example, find the sequence of
inputs that will cause prediction of a critical event in an RNN. The algorithm

37

fidelity

comprehensibility

execution time

Figure 9: The relation between execution time, fidelity and comprehensibility
for ideal RNN-RE algorithms with possible gradual refinement of the rules. The
more time available, the more the degree of freedom in choosing between high
fidelity and comprehensibility.

should then strive for maximisation of rule quality with respect to this specific
goal, while omitting others.

8.4.2 Other possible enhancements

The goals described above are important general goals. But other more detailed
enhancements of RNN-RE algorithms can also be suggested:

• Clustering techniques where the quality of the rules is the primary goal,
rather than the grouping of spatially related data points, should be devel-
oped. The current clustering techniques used are not specifically designed
for RNN-RE.

• The above can perhaps be achieved through the following line of reasoning:
At the microstate level, the underlying network is completely deterministic
and the quantisation should be defined such that this property is satisfied
also at the macrostate level (for sampling-based extraction of stochastic
machines). One way to achieve this is to have determinism-maximisation
through gradual refinement of the quantisation function. Gradual refine-
ment in this case means merging and splitting macrostates according to
their context in the extracted machine12.

• Such merging and splitting of macrostates may be achieved through the
integration of quantisation and rule minimisation algorithm which may

12This idea was also born in discussions with André Grüning and preliminary results show
that information-theoretic tools, such as conditional entropy, can be appropriate to use for
this purpose.

38

give efficient means of refining the quantisation since macrostates can be
merged through the equivalence of their corresponding states in the final
machine and split if a state has nondeterministic outgoing transitions.

• Another method for achieving deterministic rules was proposed by Schell-
hammer et al. (1998) where stochastic rules were simply transformed into
deterministic using simple heuristics. This method could be further de-
veloped to minimise the fidelity loss in the transformation. Thereby we
would get the best out of the sampling (i.e. the efficiency) and the search
techniques (i.e. deterministic rules).

• To extract discrete rules from RNNs operating in continuous domains the
RNN-RE-technique should be integrated with input- and output-space
quantisation (preferably with readable rules for these spaces, e.g. in if-
then-else format).

• Rule extraction using slightly randomly distorted datasets as heuristics
could help solving the problem of extracting rules (when using sampling)
that only applies strictly to the domain sample that was used during
extraction.

• A more controlled version of the above is to do “re-extraction” of un-
certain/infrequent but possibly important rules by querying the network
(Craven & Shavlik 1994). This can, for example, be done by directly set-
ting states in the network to be in the vicinity of the model vector (or
something equivalent) of the macrostate of interest and then testing the
effect of feeding the RNN various possible inputs.

• The underlying task of the RNN (e.g. prediction) can be integrated into the
rules in order to identify more exactly when and how erroneous behaviour
occur in the network. This can be done simply by marking which states in
the extracted machines are involved in the errors. This error can perhaps
then be further traced back, in the rules, to the actual erroneous behaviour.

• The above can be further integrated with the training of the network by
letting the trainer update the weights only in situations (microstates) iden-
tified by the rules as being part of an erroneous behaviour (or macrostate).

• The RNN distance metric (suggested in Section 8.3) could be implemented
by first aligning the states of two machines extracted from two RNNs ac-
cording to their equivalence. The unaligned states can then be used to
evaluate the difference between the models (using for example relative en-
tropy of possible future output patterns to measure the difference between
states).

8.5 Some more suggestions

Since this paper is, in part, aimed at attracting more researchers to the field it
is perhaps a good idea to not just identify open issues, but also to give some
practical hints about what should be done. These hints are actually basically
a repetition of Craven & Shavlik (1999), but they are important enough to be
repeated.

39

First of all, if you are developing a new RNN-RE algorithm, make sure to
strive for generality (i.e. high portability). The usefulness of the algorithm you
develop will directly correlate with how easily it can be used on RNNs already
developed, implemented and tested, originally without intentions of making
them suitable for RE. In fact, Craven & Shavlik (1999) even suggested that the
RE algorithms should be made so general that not even the assumption that the
underlying system is a neural network at all is necessary. In fact, some things
indicate that this is already a fact for most RNN-RE algorithms, considering
the very limited assumptions of the underlying RNN (cf. Section 3.1).

Another good piece of advice is to seek out collaborators who already have
RNNs they want to analyse (Craven & Shavlik 1999). It is highly unlikely that
you will have time to develop both state-of-the-art RNNs and state-of-the-art
RNN-RE algorithms at the same time. Finding willing collaborators should not
be too difficult since researchers applying novel RNNs on new domains will most
likely benefit from the knowledge acquired through rule extraction.

Another important ingredient for making a technique attractive is to make
implementations of the techniques publicly available (Craven & Shavlik 1999).
After all, the techniques are aimed at being used by researchers that are quite
busy in developing their own line of work.

9 Conclusions

Ideally, if the research RNN-RE community had been really successful, these
techniques would be among the first analysis techniques to be used when new
RNN architectures had been developed or a new domain had been concurred.
But we are not there yet.

Nowadays, despite numerous achievements, there seems to be no apparent
common direction in the RNN-RE research community. In most cases, devel-
oped algorithms do not seem to be built based on previous results and there
seems to be a very slow (if any) progress towards handling more complex RNNs
and domains that RNN-RE algorithms can handle. In fact, only one algorithm
has been used in any wide extent in the follow-up work, and moreover, it is the
first RNN-RE algorithm developed (Giles, Miller, Chen, Chen & Sun 1992). It
is surprising that it has not been replaced by anything significantly better in
the years that have passed since then. Actually, later algorithms may very well
be better, but they are still not used as frequently as the first one, and there
are almost no comparative studies.

So, in summary, the RNN-RE research (and on other RNN analysis tools)
seems to be an active, but slowly progressing, field. It seems as if more focus
is still on developing more efficient training algorithms and more complex or
efficient RNN architectures than on analysis of the end-results of these more
sophisticated approaches.

In this paper we hope to have identified important research issues that need
to be addressed to help give this field a push forward. As discussed in Section 2,
RNNs, and neural networks in general, are, as they are simulated entities, very
“studyable” once we have tools to study them. And the algorithms reviewed in
this paper may hold the seed for a deeper and more general notion of analysis
than seen before. Better analysis tools may in turn help RNN research to
progress more rapidly once we get a deeper understanding of what the networks

40

are actually doing.
After all, in many other disciplines of science, the quantum leaps in progress

often stem from more sophisticated analysis tools and measuring devices pro-
ducing qualitatively new data conflicting with existing models (anomalies) that
eventually may result in scientific revolutions (Kuhn 1962). Today we have
deep, but partially conflicting theories, of what the RNNs will be able to do
in practice (i.e. the Turing machine equivalence vs. the difficulty to acquire
correct behaviour through learning), but we have no means for evaluating what
instances of RNNs are actually doing in an efficient manner. This situation
can, for example, be compared with the situation prior to the discovery of the
background radiation; some theories were predicting that the universe may be
expanding from a very dense state (the Big Bang theory), but it was not until
the microwave antenna could measure this radiation that this theory could be
verified and selected among many others as a good description of the actual
events.

Similar situations are found in the development of the telescope, the micro-
scope, the particle accelerator (that actually discovered particles no one had
predicted) and space flight etc. Tools without which we would have a much
more limited understanding of our physical world.

With critical eyes, rule extraction from recurrent neural networks may seem
an infinitesimal subfield within another infinitesimal subfield and thereby with
a very limited potential to deliver interesting scientific results. But if there is
a future microscope for zooming in on RNNs, we would hold that there are
good reasons to believe that rule extraction mechanisms will be the operational
parts, or “lenses”, of that microscope. And as any real-world microscope, this
RNN-microscope will, if general enough, be able to zoom in on other types of
dynamical systems and physical computing devices and thus contribute to the
scientific community in a considerably broader sense.

Acknowledgements

First of all I would like to thank my librarian Karin Lundberg for her efficient and
tireless efforts of providing me with all papers, without her, this survey would
not have been possible. I would also like to thank André Grüning, Amanda
Sharkey, Ron Sun and Tom Ziemke for commenting on early versions of this
paper and also Gunnar Buason, Anders Jacobsson and Claudina Riguetti for
proofreading a later version. I must also thank several of the cited authors for
helping me make the list of references more complete and for engaging in some
very interesting email discussions.

References

Alquézar, R. & Sanfeliu, A. (1994a), A hybrid connectionist symbolic approach
to regular grammar inference based on neural learning and hierarchical
clustering, in ‘Proceedings of ICGI’94’, pp. 203–211.

Alquézar, R. & Sanfeliu, A. (1994b), Inference and recognition of regular gram-
mars by training recurrent neural networks to learn the next-symbol pre-

41

diction task, in ‘Advances in Pattern Recognition and Applications’, World
Scientific Pub., pp. 48–59.

Alquézar, R., Sanfeliu, A. & Sainz, M. (1997), Experimental assessment of
connectionist regular inference from positive and negative examples, in
‘VII Simposium Nacional de Reconocimiento de Formas y Análisis de
Imágenes’, Vol. 1, pp. 49–54.

Andrews, R., Diederich, J. & Tickle, A. (1995), ‘Survey and critique of tech-
niques for extracting rules from trained artificial neural networks’, Knowl-
edge Based Systems 8(6), 373–389.

Bakker, B. (2004), The State of Mind: Reinforcement Learning with Recur-
rent Neural Networks, Phd thesis, Unit of Cognitive Psychology, Leiden
University.

Bakker, B. & de Jong, M. (2000), The epsilon state count, in J. A. Meyer,
A. Berthoz, D. Floreano, H. Roitblat & S. Wilson, eds, ‘From Animals to
Animats 6: Proceedings of The Sixth International Conference on Simula-
tion of Adaptive Behavior’, MIT Press, Cambridge, MA, pp. 51–60.

Barreto, G. A., Araújo, A. F. R. & Kremer, S. C. (2003), ‘A taxonomy for
spatiotemporal connectionist networks revisited: The unsupervised case’,
Neural Computation 15, 1255–1320.

Bengio, Y., Simard, P. & Frasconi, P. (1994), ‘Learning long-term dependencies
with gradient descent is difficult’, IEEE Transactions on Neural Networks
5(2), 157–166.

Blair, A. & Pollack, J. (1997), ‘Analysis of dynamical recognizers’, Neural Com-
putation 9(5), 1127–1142.

Blanco, A., Delgado, M. & Pegalajar, M. C. (2000), ‘Extracting rules from a
(fuzzy/crisp) recurrent neural network using a self-organizing map’, Inter-
national Journal of Intelligent Systems 15, 595–621.

Blank, D. & 24 co-authors (1999), ‘Connectionist symbol processing: Dead or
alive?’, Neural Computing Surveys 2, 1–40.

Boden, M., Jacobsson, H. & Ziemke, T. (2000), Evolving context-free language
predictors, in ‘Proceedings of the Genetic and Evolutionary Computation
Conference’, Morgan Kaufmann, pp. 1033–1040.

Bodén, M., Wiles, J., Tonkes, B. & Blair, A. (1999), Learning to predict a
context-free language: Analysis of dynamics in recurrent hidden units, in
‘Proceedings of ICANN 99’, IEEE, Edinburgh, pp. 359–364.

Bruske, J. & Sommer, G. (1995), ‘Dynamic cell structure learns perfectly topol-
ogy preserving map’, Neural Computation 7, 845–865.

Bullinaria, J. A. (1997), Analyzing the internal representations of trained arti-
ficial neural networks, in A. Browne, ed., ‘Neural Network Analysis, Archi-
tectures and Applications’, IOP Publishing, pp. 3–26.

42

Carrasco, R. C. & Forcada, M. L. (2001), ‘Simple strategies to encode tree
automata in sigmoid recursive neural networks’, IEEE Transactions on
Knowledge and Data Engineering 13(2), 148–156.

Carrasco, R. C., Forcada, M. L., Muñoz, M. A. V. & Ñeco, R. P. (2000), ‘Stable
encoding of finite-state machines in discrete-time recurrent neural nets with
sigmoid units’, Neural Computation 12(9), 2129–2174.

Casey, M. (1996), ‘The dynamics of discrete-time computation, with application
to recurrent neural networks and finite state machine extraction’, Neural
Computation 8(6), 1135–1178.

Cechin, A. L., Pechmann Simon, D. R. & Stertz, K. (2003), State automata
extraction from recurrent neural nets using k-means and fuzzy clustering, in
‘XXIII International Conference of the Chilean Computer Science Society’,
IEEE Computer Society, pp. 73–78.

Cicchello, O. & Kremer, S. C. (2003), ‘Inducing grammars from sparse data sets:
A survey of algorithms and results’, Journal of Machine Learning Research
4.

Cleeremans, A., McClelland, J. L. & Servan-Schreiber, D. (1989), ‘Finite state
automata and simple recurrent networks’, Neural Computation 1, 372–381.

Craven, M. C. & Shavlik, J. W. (1994), Using sampling and queries to extract
rules from trained neural networks, in W. W. Cohen & H. Hirsh, eds,
‘Machine Learning: Proceedings of the Eleventh International Conference’,
Morgan Kaufmann, San Fransisco, CA.

Craven, M. W. & Shavlik, J. W. (1996), ‘Extracting tree-structured represen-
tations of trained networks’, Advances in Neural Information Processing
Systems 8, 24–30.

Craven, M. W. & Shavlik, J. W. (1999), Rule extraction: Where do we go from
here?, Technical Report Machine Learning Research Group Working Paper
99-1, Department of Computer Sciences, University of Wisconsin.

Crutchfield, J. P. (1993), Observing complexity and the complexity of observa-
tion, in H. Atmanspacher, ed., ‘Inside versus Outside’, Series in Synergetics,
Springer, Berlin, pp. 235–272.

Crutchfield, J. P. (1994), ‘The calculi of emergence: Computation, dynamics,
and induction’, Physica D 75, 11–54.

Crutchfield, J. & Young, K. (1990), Computation at the onset of chaos, in
W. Zurek, ed., ‘Complexity, Entropy and the Physics of Information’,
Addison-Wesley, Reading, MA.

Das, S. & Das, R. (1991), ‘Induction of discrete-state machine by stabilizing a
simple recurrent network using clustering’, Computer Science and Infor-
matics 21(2), 35–40.

43

Das, S., Giles, C. L. & Sun, G. Z. (1993), Using prior knowledge in a NNPDA to
learn context-free languages, in S. J. Hanson, J. D. Cowan & C. L. Giles,
eds, ‘Advances in Neural Information Processing Systems’, Vol. 5, Morgan
Kaufmann, San Mateo, CA, pp. 65–72.

Das, S. & Mozer, M. (1998), ‘Dynamic on-line clustering and state extraction:
an approach to symbolic learning’, Neural Networks 11(1), 53–64.

Das, S. & Mozer, M. C. (1994), A unified gradient-descent/clustering archi-
tecture for finite state machine induction, in J. D. Cowan, G. Tesauro &
J. Alspector, eds, ‘Advances in Neural Information Processing Systems’,
Vol. 6, Morgan Kaufmann Publishers, Inc., pp. 19–26.

Elman, J. L. (1990), ‘Finding structure in time’, Cognitive Science 14, 179–211.

Fanelli, R. (1993), Grammatical inference and approximation of finite automata
by elman type recurrent neural networks trained with full forward error
propagation, Technical Report NNRG930628A, Dept. of Physics, Brooklyn
College of the City University of New York.

Forcada, M. L. (2002), Neural networks: Automata and formal models of com-
putation. An unfinished survey.
URL: http://www.dlsi.ua.es/˜ mlf/nnafmc/

Forcada, M. L. & Carrasco, R. C. (2001), Finite-state computation in ana-
log neural networks: steps towards biologically plausible models?, in
S. Wermter, J. Austin & D. Willshaw, eds, ‘Emergent Computational Mod-
els Based on Neuroscience’, Lecture Notes in Computer Science, Springer-
Verlag, pp. 482–486.

Frasconi, P., Gori, M., Maggini, M. & Soda, G. (1996), ‘Representation of
finite state automata in recurrent radial basis function networks’, Machine
Learning 23(1), 5–32.

Gers, F. A. & Schmidhuber, J. (2001), ‘Lstm recurrent networks learn simple
context free and context sensitive languages’, IEEE Transactions on Neural
Networks .

Giles, C. L., Chen, D., Miller, C., Chen, H., Sun, G. & Lee, Y. (1991), Second-
order recurrent neural networks for grammatical inference, in ‘Proceedings
of International Joint Conference on Neural Networks’, Vol. 2, IEEE Pub-
lication, Seattle, Washington, pp. 273–281.

Giles, C. L., Horne, B. G. & Lin, T. (1995), ‘Learning a class of large finite state
machines with a recurrent neural network’, Neural Networks 8(9), 1359–
1365.

Giles, C. L., Lawrence, S. & Tsoi, A. (1997), Rule inference for financial predic-
tion using recurrent neural networks, in ‘Proceedings of IEEE/IAFE Con-
ference on Computational Intelligence for Financial Engineering (CIFEr)’,
IEEE, Piscataway, NJ, pp. 253–259.

Giles, C. L., Lawrence, S. & Tsoi, A. C. (2001), ‘Noisy time series predic-
tion using a recurrent neural network and grammatical inference’, Machine
Learning 44(1/2), 161–183.

44

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H. & Sun, G. Z. (1992), ‘Learning
and extracting finite state automata with second-order recurrent neural
networks’, Neural Computation 4(3), 393–405.

Giles, C. L., Miller, C. B., Chen, D., Sun, G. Z., Chen, H. H. & Lee, Y. C. (1992),
Extracting and learning an unknown grammar with recurrent neural net-
works, in J. E. Moody, S. J. Hanson & R. P. Lippmann, eds, ‘Advances in
Neural Information Processing Systems’, Vol. 4, Morgan Kaufmann Pub-
lishers, Inc., pp. 317–324.

Giles, C. L. & Omlin, C. W. (1993), ‘Extraction, insertion and refinement of
symbolic rules in dynamically driven recurrent neural networks’, Connec-
tion Science 5(3 – 4), 307–337.

Giles, C. L. & Omlin, C. W. (1994), ‘Pruning recurrent neural networks for
improved generalization performance’, IEEE Transactions on Neural Net-
works 5(5), 848–851.

Golea, M. (1996), On the complexity of rule extraction from neural networks
and network-querying, Technical report, Australian National University,
Canberra, Australia.

Gori, M., Maggini, M., Martinelli, E. & Soda, G. (1998), ‘Inductive inference
from noisy examples using the hybrid finite state filter’, IEEE Transactions
on Neural Networks 9(3), 571–575.

Gori, M., Maggini, M. & Soda, G. (1994), Scheduling of modular architec-
tures for inductive inference of regular grammars, in ‘ECAI’94 Workshop
on Combining Symbolic and Connectionist Processing, Amsterdam’, Wiley,
pp. 78–87.

Goudreau, M. W. & Giles, C. L. (1995), ‘Using recurrent neural networks
to learn the structure of interconnection networks’, Neural Networks
8(5), 793–804.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T. & Chen, D. (1994), ‘First-
order vs. second-order single layer recurrent neural networks’, IEEE Trans.
on Neural Networks 5(3), 511–518.

Hammer, B. & Tiňo, P. (2003), ‘Recurrent neural networks with small weights
implement definite memory machines’, Neural Computation 15(8), 1897–
1929.

Hinton, G. E. (1990), ‘Mapping part-whole hierarchies into connectionist net-
works’, Artificial Intelligence 46(1–2), 47–75.

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural
Computation 9(8), 1735–1780.

Hopcroft, J. & Ullman, J. D. (1979), Introduction to Automata Theory, Lan-
guages, and Compilation, Addison-Wesley Publishing Company.

Horne, B. G. & Giles, C. L. (1995), An experimental comparison of recurrent
neural networks, in G. Tesauro, D. Touretzky & T. Leen, eds, ‘Advances
in Neural Information Processing Systems 7’, MIT Press, pp. 697–704.

45

Horne, B. G. & Hush, D. R. (1994), Bounds on the complexity of recurrent
neural network implementations of finite state machines, in J. D. Cowan,
G. Tesauro & J. Alspector, eds, ‘Advances in Neural Information Processing
Systems’, Vol. 6, Morgan Kaufmann Publishers, Inc., pp. 359–366.

Husbands, P., Harvey, I. & Cliff, D. T. (1995), ‘Circle in the round: State space
attractors for evolved sighted robots’, Robotics and Autonomous Systems
15(1-2), 83–106.

Jacobsson, H. & Ziemke, T. (2003a), ‘Improving procedures for evaluation
of connectionist context-free language predictors’, IEEE Transactions on
Neural Networks 14(4), 963–966.

Jacobsson, H. & Ziemke, T. (2003b), Reducing complexity of rule extraction
from prediction RNNs through domain interaction, Technical Report HS-
IDA-TR-03-007, Department of Computer Science, University of Skövde,
Sweden.

Jaeger, H. (2003), Adaptive nonlinear system identification with echo state net-
works, in S. T. S. Becker & K. Obermayer, eds, ‘Advances in Neural Infor-
mation Processing Systems 15’, MIT Press, Cambridge, MA, pp. 593–600.

Jain, A. K., Murty, M. N. & Flynn, P. J. (1999), ‘Data clustering: A review’,
ACM Computing Surveys 31(3), 264–323.

Kohonen, T. (1995), Self-Organizing Maps, Springer, Berlin, Heidelberg.

Kolen, J. F. (1993), Fool’s gold: Extracting finite state machines from recurrent
network dynamics, in J. Cowan, G. Tesauro & J. Alspector, eds, ‘Neural
Information Processing Systems 6’, Morgan Kaufmann, San Francisco, CA,
pp. 501–508.

Kolen, J. F. (1994), Exploring the Computational Capabilities of recurrent neural
networks, PhD thesis, The Ohio State University, Department of Computer
and Information Sciences.

Kolen, J. F. & Kremer, S. C., eds (2001), A Field Guide to Dynamical Recurrent
Networks, IEEE Press.

Kolen, J. F. & Pollack, J. B. (1991), Back propagation is sensitive to initial con-
ditions, in R. P. Lippmann, J. E. Moody & D. S. Touretzky, eds, ‘Advances
in Neural Information Processing Systems’, Vol. 3, Morgan Kaufmann Pub-
lishers, Inc., pp. 860–867.

Kolen, J. & Pollack, J. (1995), ‘The observers’ paradox: Apparent computa-
tional complexity in physical systems’, Journal of Exp. and Theoret. Arti-
ficial Intelligence 7(3).

Kremer, S. C. (2001), ‘Spatiotemporal connectionist networks: A taxonomy and
review’, Neural Computation 13(2), 248–306.

Kuhn, T. S. (1962), The structure of scientific revolutions, University of Chicago
Press, Chicago.

46

Lawrence, S., Giles, C. L. & Fong, S. (2000), ‘Natural language grammatical in-
ference with recurrent neural networks’, IEEE Transactions on Knowledge
and Data Engineering 12(1), 126–140.

Lawrence, S., Giles, C. L. & Tsoi, A. C. (1998), Symbolic conversion, grammat-
ical inference and rule extraction for foreign exchange rate prediction, in
A. P. N. R. Y. Abu-Mostafa, A. S. Weigend, ed., ‘Neural Networks in the
Capital Markets NNCM96’, World Scientific Press, Singapore, pp. 333–345.

Lin̊aker, F. & Jacobsson, H. (2001), Mobile robot learning of delayed response
tasks through event extraction: A solution to the road sign problem and
beyond, in B. Nebel, ed., ‘Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI-2001’, Morgan Kauf-
mann, pp. 777–782.

Maggini, M. (1998), Recursive neural networks and automata, in C. L. Giles
& M. Gori, eds, ‘Adaptive Processing of Sequences and Data Structures’,
Springer-Verlag, pp. 248–295.

Manolios, P. & Fanelli, R. (1994), ‘First order recurrent neural networks and
deterministic finite state automata’, Neural Computation 6(6), 1155–1173.

McCulloch, W. S. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent
in nervous activity’, Bulletin of Mathematical Biophysics 5, 115–133.

Medler, D. (1998), ‘A brief history of connectionism’, Neural Computing Surveys
1(1), 61–101.

Meeden, L. A. (1996), ‘An incremental approach to developing intelligent neural
network controllers for robots’, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 26(3), 474–85.

Miller, C. B. & Giles, C. L. (1993), ‘Experimental comparison of the effect
of order in recurrent neural networks’, International Journal of Pattern
Recognition and Artificial Intelligence 7(4), 849–872.

Minsky, M. (1967), Computation: Finite and Infinite Machines, Prentice-Hall,
Englewood Cliffs, NJ, chapter Neural Networks. Automata Made up of
Parts.

Mirkin, B. (1996), Mathematical Classification and Clustering, Vol. 11 of Non-
convex Optimization and Its Applications, Kluwer.

Niklasson, L. & Bodén, M. (1997), Representing structure and structured rep-
resentations in connectionist networks, in A. Browne, ed., ‘Neural Network
Perspectives on Cognition and Adaptive Robotics’, IOP Press, pp. 20–50.

Omlin, C. W. (2001), Understanding and explaining DRN behaviour, in J. F.
Kolen & S. C. Kremer, eds, ‘A Field Guide to Dynamical Recurrent Net-
works’, IEEE Press, pp. 207–228.

Omlin, C. W. & Giles, C. L. (1992), Training second-order recurrent neural
networks using hints, in D. Sleeman & P. Edwards, eds, ‘Proceedings of the
Ninth International Conference on Machine Learning’, Morgan Kaufmann
Publishers, San Mateo, CA, pp. 363–368.

47

Omlin, C. W. & Giles, C. L. (1996a), ‘Constructing deterministic finite-state
automata in recurrent neural networks’, Journal of the ACM 43, 937–972.

Omlin, C. W. & Giles, C. L. (1996b), ‘Extraction of rules from discrete-time
recurrent neural networks’, Neural Networks 9(1), 41–51.

Omlin, C. W. & Giles, C. L. (1996c), ‘Rule revision with recurrent neural net-
works’, Knowledge and Data Engineering 8(1), 183–188.

Omlin, C. W. & Giles, C. L. (2000), Symbolic knowledge representation in re-
current neural networks: Insights from theoretical models of computation,
in I. Cloete & J. M. Zurada, eds, ‘Knowledge-Based Neurocomputing’, MIT
Press.

Omlin, C. W., Giles, C. & Miller, C. (1992), Heuristics for the extraction of
rules from discrete-time recurrent neural networks, in ‘Proceedings of the
International Joint Conference on Neural Networks’, Vol. I, pp. 33–38.

Omlin, C. W., Thornber, K. K. & Giles, C. L. (1998), ‘Deterministic fuzzy
finite state automata can be deterministically encoded into recurrent neural
networks’, IEEE Transactions on Fuzzy Systems 6(1), 76–89.

Pollack, J. B. (1987), Cascaded back-propagation on dynamic connectionist
networks, in ‘Proceedings of the 9th Annual Conference of the Cognitive
Science Society’, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 391–404.

Rabin, M. O. (1963), ‘Probabilistic automata’, Information and Control 6, 230–
245.

Rodriguez, P. F. (1999), Mathematical Foundations of Simple Recurrent Neural
Networks in Language Processing, PhD thesis, Univerity of California, San
Diego.

Rodriguez, P., Wiles, J. & Elman, J. L. (1999), ‘A recurrent network that learns
to count’, Connection Science 11, 5–40.

Sanfeliu, A. & Alquézar, R. (1995), Active grammatical inference: a new learn-
ing methodology, in ‘Shape, Structure and Pattern Recognition’, 5th IAPR
International Workshop on Structural and Syntactic Pattern Recognition,
World Scientific Pub., pp. 191–200.

Schellhammer, I., Diederich, J., Towsey, M. & Brugman, C. (1998), Knowledge
extraction and recurrent neural networks: An analysis of an Elman net-
work trained on a natural language learning task, in D. M. W. Powers, ed.,
‘Proceedings of the Joint Conference on New Methods in Language Process-
ing and Computational Natural Language Learning: NeMLaP3/CoNLL98’,
Association for Computational Linguistics, Somerset, New Jersey, pp. 73–
78.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. (1989), Learning
sequential structure in simple recurrent networks, in D. S. Touretzky, ed.,
‘Advances in Neural Information Processing Systems’, Vol. 1, Morgan Kauf-
mann, San Mateo, CA, pp. 643–652.

48

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. (1991), ‘Graded state
machines: The representation of temporal contingencies in simple recurrent
networks’, Machine Learning 7, 161–193.

Sharkey, A. J. C., ed. (1996), Special Issue - Combining Artificial Neural Nets:
Ensemble Approaches, Vol. 8(3/4) of Connection Science.

Sharkey, N. E. & Jackson, S. A. (1995), An internal report for connectionists,
in R. Sun & L. A. Bookman, eds, ‘Computational Architectures integrating
Neural and Symbolic Processes’, Kluwer, Boston, pp. 223–244.

Siegelmann, H. T. & Sontag, E. D. (1995), ‘On the computational power of
neural nets’, Journal of Computer and System Sciences 50(1), 132–150.

Sima, J. & Orponen, P. (2003), ‘General purpose computation with neural
networks: a survey of complexity theoretic results’, Neural Computation
15, 2727–2778.

Sun, G. Z., Giles, C. L. & Chen, H. H. (1998), The neural network pushdown
automation: Architecture, dynamics and learning, in C. Giles & M. Gori,
eds, ‘Adaptive Processing of Sequences and Data Structures’, number 1387
in ‘Lecture Notes in Artificial Intelligence’, Springer, pp. 296–345.

Sun, R. & Giles, C. L., eds (2001), Sequence Learning: Paradigms, Algorithms,
and Applications, Vol. 1828 of Lecture Notes in Artificial Intelligence,
Springer.

Sun, R., Peterson, T. & Sessions, C. (2001), The extraction of planning
knowledge from reinforcement learning neural networks, in ‘Proceedings
of WIRN’2001’, Springer-Verlag, Heidelberg, Germany.

Tabor, W. & Tanenhaus, M. (1999), ‘Dynamical models of sentence processing’,
Cognitive Science 24(4), 491–515.

Tickle, A., Andrews, R., Golea, M. & Diederich, J. (1997), Rule extraction from
artificial neural networks, in A. Browne, ed., ‘Neural Network Analysis,
Architectures and Applications’, IOP Publishing, pp. 61–99.

Tickle, A. B. & Andrews, R. (1998), ‘The truth will come to light: directions and
challenges in extracting the knowledge embedded within mined artificial
neural networks’, IEEE Transactions on Neural Networks 9(6), 1057–1068.

Tiňo, P., Dorffner, G. & Schittenkopf, C. (2000), Understanding state space
organization in recurrent neural networks with iterative function systems
dynamics, in S. Wermter & R. Sun, eds, ‘Hybrid Neural Symbolic Integra-
tion’, Springer Verlag, pp. 256–270.

Tiňo, P. & Hammer, B. (2003), ‘Architectural bias in recurrent neural networks
- fractal analysis’, Neural Computation 15(8), 1931–1957.

Tiňo, P., Horne, B. G., Giles, C. L. & Collingwood, P. C. (1998), Finite state
machines and recurrent neural networks – automata and dynamical systems
approaches, in J. E. Dayhoff & O. Omidvar, eds, ‘Neural Networks and
Pattern Recognition’, Academic Press, pp. 171–220.

49

Tiňo, P. & Köteles, M. (1999), ‘Extracting finite-state representations from
recurrent neural networks trained on chaotic symbolic sequences’, IEEE
Trans. Neural Networks 10(2), 284–302.

Tiňo, P., Čerňanský, M. & Beňušková, L. (2004), ‘Markovian architectural
bias of recurrent neural networks’, IEEE Transactions on Neural Networks
pp. 6–15.

Tiňo, P. & Vojtek, V. (1998), ‘Extracting stochastic machines from recurrent
neural networks trained on complex symbolic sequences’, Neural Network
World 8(5), 517–530.

Tiňo, P. & Šajda, J. (1995), ‘Learning and extracting initial mealy automata
with a modular neural network model’, Neural Computation 7(4), 822–844.

Tomita, M. (1982), Dynamic construction of finite-state automata from exam-
ples using hillclimbing, in ‘Proceedings of Fourth Annual Cognitive Science
Conference’, Ann Arbor, MI, pp. 105–108.

Tonkes, B., Blair, A. & Wiles, J. (1998), Inductive bias in context-free language
learning, in ‘Proceedings of the Ninth Australian Conference on Neural Net-
works’.

Tonkes, B. & Wiles, J. (1999), Learning a context-free task with a recurrent
neural network: An analysis of stability, in R. Heath, B. Hayes, A. Heath-
cote & C. Hooker, eds, ‘Dynamical Cognitive Science: Proceedings of the
Fourth Biennial Conference of the Australasian Cognitive Science Society’.

Towell, G. G. & Shavlik, J. W. (1993), ‘The extraction of refined rules from
knowledge-based neural networks’, Machine Learning 13(1), 17–101.

Trakhtenbrot, B. A. & Barzdin, J. M. (1973), Finite automata: behavior and
synthesis, Fundamental studies in computer science, North-Holland, Ams-
terdam.

Vahed, A. & Omlin, C. W. (1999), Rule extraction from recurrent neural net-
works using a symbolic machine learning algorithm, in ‘6th International
Conference on Neural Information Processing’.

Vahed, A. & Omlin, C. W. (2004), ‘A machine learning method for extracting
symbolic knowledge from recurrent neural networks’, Neural Computation
16, 59–71.

von Neumann, J. (1956), Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components, in ‘Automata Studies’, Princeton Univer-
sity Press, Princeton, pp. 43–98.

Watrous, R. L. & Kuhn, G. M. (1992), Induction of finite-state automata using
second-order recurrent networks, in J. E. Moody, S. J. Hanson & R. P. Lipp-
mann, eds, ‘Advances in Neural Information Processing Systems’, Vol. 4,
Morgan Kaufmann Publishers, Inc., pp. 309–317.

50

Wiles, J. & Elman, J. L. (1995), Learning to count without a counter: A case
study of dynamics and activation landscapes in recurrent neural networks,
in ‘Proceedings of the Seventeenth Annual Conference of the Cognitive Sci-
ence Society’, Cambridge MA: MIT Press, pp. 482–487.

Young, K. & Crutchfield, J. P. (1993), ‘Fluctuation spectroscopy’, Chaos, Solu-
tions, and Fractals 4, 5–39.

Zeng, Z., Goodman, R. M. & Smyth, P. (1993), ‘Learning finite state machines
with self-clustering recurrent networks’, Neural Computation 5(6), 976–990.

Ziemke, T. & Thieme, M. (2002), ‘Neuromodulation of reactive sensorimotor
mappings as a short-term memory mechanism in delayed response tasks’,
Adaptive Behavior 10(3/4), 185–199.

51

