Rule Formats for Determinism and Idempotence™

Luca Aceto?®, Arnar Birgisson®, Anna Ingolfsdottir®, MohammadReza
Mousavi®, Michel A. Reniers®

*ICE-TCS, School of Computer Science, Reykjavik University,
Menntavegur 1, 1S-101 Reykjavik, Iceland
b Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden
¢ Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB FEindhoven, The Netherlands

Abstract

Determinism is a semantic property of (a fragment of) a language that spec-
ifies that a program cannot evolve operationally in several different ways.
Idempotence is a property of binary composition operators requiring that
the composition of two identical specifications or programs will result in a
piece of specification or program that is equivalent to the original compo-
nents. In this paper, we propose (related) meta-theorems for guaranteeing
determinism and idempotence of binary operators. These meta-theorems are
formulated in terms of syntactic templates for operational semantics, called
rule formats. In order to obtain a powerful rule format for idempotence, we
make use of the determinism of certain transition relations in the definition
of the format for idempotence. We show the applicability of our formats by
applying them to various operational semantics from the literature.

Key words: Structural operational semantics, rule formats, determinism,
idempotence

*The work of Aceto, Birgisson and Ingolfsdottir has been partially supported by the
projects “The Equational Logic of Parallel Processes” (nr. 060013021), “New Develop-
ments in Operational Semantics” (nr. 080039021) and “Meta-theory of Algebraic Process
Theories” (nr. 100014021) of the Icelandic Research Fund. Birgisson has been further
supported by research-student grant nr. 080890008 of the Icelandic Research Fund.

Preprint submitted to Science of Computer Programming March 4, 2010

1. Introduction

Structural Operational Semantics (SOS) [26] is a popular method for as-
signing a rigorous meaning to specification and programming languages. In
this approach to semantics, the behaviour of (terms in) programming and
specification languages is clearly given in terms of states and transitions,
where the collection of transitions is specified by means of a collection of
syntax-driven inference rules. Such a rule-based specification of the opera-
tional semantics of languages has proven itself to be very flexible, and natu-
rally lends itself to proofs of properties of languages using structural or rule
induction.

The meta-theory of SOS provides powerful tools for proving semantic
properties for programming and specification languages without investing
too much time on the actual proofs; it offers syntactic templates for SOS
rules, called rule formats, which guarantee semantic properties once the SOS
rules conform to the templates (see, e.g., the references [3, 23] for surveys
on the meta-theory of SOS). There are various rule formats in the literature
for many different semantic properties, ranging from basic properties such as
commutativity [21] and associativity [10] of operators, the existence of unit
elements [4] and congruence of behavioral equivalences (see, e.g., [15, 31]) to
more technical and involved ones such as (semi-)stochasticity [18] and non-
interference [27]. In this paper, we propose rule formats for two (related)
properties, namely determinism and idempotence.

Determinism is a semantic property of (a fragment of) a language that
specifies that a program cannot evolve operationally in several different ways.
It holds for sub-languages of many process calculi and programming lan-
guages, and it is also a crucial property for many formalisms for the descrip-
tion of timed systems, where time transitions are required to be deterministic
because the passage of time should not resolve any choice.

Idempotence is a property of binary composition operators requiring that
the composition of two identical specifications or programs will result in a
piece of specification or program that is equivalent to the original compo-
nents. Idempotence of a binary operator f is concisely expressed by the
following algebraic equation.

flz,x) =2

Determinism and idempotence may seem unrelated at first sight. However,
perhaps suprisingly, it turns out that, in order to obtain a powerful rule

format for idempotence, we need to have the determinism of certain transition
relations in place. Therefore, having a syntactic condition for determinism,
apart from its intrinsic value, results in a powerful, yet syntactic framework
for idempotence.

To our knowledge, our rule format for idempotence has no precursor in
the literature. As for determinism, in [13], a rule format for bounded nonde-
terminism is presented but the case for determinism is not studied. Also, in
28] a rule format is proposed to guarantee several time-related properties,
including time determinism, in the settings of Ordered SOS. In the case of
time determinism, the format considered in [28] corresponds to a subset of
our rule format when translated to the setting of ordinary SOS, by means of
the recipe given in [20].

We made a survey of existing deterministic process calculi and of idem-
potent binary operators in the literature and we have applied our formats to
them. Our formats could cover all practical cases that we have discovered so
far, which is an indication of their expressiveness and relevance. However,
in Section 4.4 of the paper, we present a generalized format for idempotence
that may have future applications. Even though we are not aware of ap-
plications of this more general format in the current literature, we find it
worthwhile to include it in this paper since one of the goals of research on
the meta-theory of SOS is to present rule formats that might be applicable
not only to extant languages, but also to those that might be developed in
the future.

This paper is part of our ongoing line of research on capturing basic prop-
erties of composition operators in terms of syntactic rule formats, exemplified
by rule formats for commutativity [21], associativity [10], and left and right
unit elements [4].

This line of research can serve multiple purposes. Firstly, it can pave
the way for a toolset that can mechanically prove such properties without
involving user interaction. Secondly, it provides us with an insight as to
the semantic nature of such properties and its link to the syntax of SOS
deduction rules. In other words, our rule formats can serve as a guideline for
language designers who want to ensure, a priori, that the constructs under
design enjoy certain basic properties.

The rest of this paper is organized as follows. In Section 2, we recall some
basic definitions from the meta-theory of SOS. In Section 3, we present our
rule format for determinism and prove that it does guarantee determinism
for certain transition relations. Section 4 introduces a rule format for idem-

potence and proves it correct. In Sections 3 and 4, we also provide several
examples to motivate the constraints of our rule formats and to demon-
strate their practical applications. Finally, Section 5 concludes the paper
and presents some directions for future research.

This article is an expanded version of the conference paper [1]. Apart from
including the proofs of the technical results that were announced without
proof in the conference publication, the following scientific contributions are
new in this version of the paper:

e Theorem 9, to the effect that determining whether a closed term in a
finite transition system specification is deterministic for a given label
is undecidable, and its proof in Appendix A;

e Theorem 20, to the effect that determining whether a finite transition
system specification is in the syntactic determinism format with respect
to a set of labels L is decidable;

e Section 3.4, which offers rule formats for other forms of determinism
not considered in [1];

e Example 49, which introduces a generalization of the format for idem-
potence presented in [1].

The presentation of the paper has also undergone some changes in reaction
to the comments of the expert reviewers.

2. Preliminaries

In this section we present, for the sake of completeness, some standard
definitions from the meta-theory of SOS that will be used in the remainder
of the paper.

Definition 1 (Signature and Terms). We let V represent a countably in-
finite set of variables and use x, ', x;,y, 9/, yi, . . . to range over elements of V.
A signature ¥ is a set of function symbols, each with a fixed arity. We call
these symbols operators and usually denote them by f,g,.... An operator
with arity zero is called a constant. We define the set T(X) of terms over X
as the smallest set satisfying the following constraints.

e A variable x € V is a term.

o If f € ¥ has arity n and t,...,t, are terms, then f(t1,...,%,) is a
term.

We use t,t',t;,... to range over terms. We write t; = ¢, if t; and ty are
syntactically equal. The function vars : T(X) — 2V gives the set of vari-
ables appearing in a term. The set C(X) C T(X) is the set of closed terms,
i.e., terms that contain no variables. We use p, p’, p;, ... to range over closed
terms. A substitution o is a function of type V. — T(X). We extend the
domain of substitutions to terms homomorphically. If the range of a substi-
tution lies in C(X), we say that it is a closed substitution.

Definition 2 (Transition System Specifications). A transition system
specification (TSS) is a triple (X, L, D) where
e) is a signature.

o [is aset of labels. If [€ L, and t,t' € T(X) we say that tLtisa

positive formula and t— is a negative formula. A formula, typically
denoted by ¢, ¥, ¢, ¢;, ... is either a negative formula or a positive

one. We often refer to a formula t ¢’ as a transition with ¢ being its
source, [its label, and t' its target.

e D is a set of deduction rules, i.e., pairs of the form (P, ¢) where ® is
a set of formulae and ¢ is a positive formula. We call the formulae
contained in ® the premises of the rule and ¢ the conclusion.
A TSS is finite if X, L and D are all finite, and the set of premises in each
deduction rule in D is finite.

We write vars(r) to denote the set of variables appearing in a deduction
rule r. We say that a formula is closed if all of its terms are closed. Sub-
stitutions are also extended to formulae, sets of formulae and rules in the
natural way. If is a rule and o is a (closed) substitution, then o(r) is called
a (closed) substitution instance of r.

A set of positive closed formulae is called a transition relation. For T

a transition relation and [€ L, we write L for the collection of I-labelled
transitions in 7—that is,

iR ={p>p|la=landpSp €T} .

A deduction rule (®, ¢) is typically written as %. An aziom is a deduction
rule without premises. In what follows, an axiom will be usually written as
2 or just ¢. For a deduction rule r, we write conc(r) to denote its conclusion

5

and prem(r) to denote its premises. We call a deduction rule f-defining when
the outermost function symbol appearing in the source of its conclusion is f.
The meaning of a TSS is defined by the following notion of least three-
valued stable model. To define this notion, we need two auxiliary definitions,
namely provable transition rules and consistency, which are given below.

Definition 3 (Provable Transition Rules). A deduction rule is called a
transition rule when it is of the form % with N a set of negative formulae. A
TSS 7 proves the closed transition rule %, denoted by 7 F %, when there is

a well-founded upwardly branching tree with formulae as nodes and of which
e the root is labelled by ¢;

e if a node is labelled by 1 and the nodes directly above it form the set
K then:
— 1) is a negative formula and ¢ € N, or

— 1) is a positive formula and % is a closed substitution instance of
a deduction rule in 7.

Example 4. As a running example, we consider in this section the TSS with
constant a, labels [; and [y, and the deduction rules given below.

Both the above rules are a-defining and are provable transition rules. Indeed,
they are the only transition rules that are provable in this TSS.

Definition 5 (Contradiction and Consistency). Formula t-5 1 is said

to contradict t—'l'», and vice versa. For two sets ® and ¥ of formulae, ®
contradicts ¥ when there is a ¢ € ® that contradicts a ¢ € W. ® is consistent
with W, denoted by ® F ¥, when ® does not contradict W.

It immediately follows from the above definition that contradiction and
consistency are symmetric relations on (sets of) formulae. We now have all
the necessary ingredients to define the semantics of T'SSs in terms of three-
valued stable models.

Definition 6 (The Least Three-Valued Stable Model). A pair (C,U)
of disjoint sets of positive closed transition formulae is called a three-valued
stable model for a TSS 7 when

e for each ¢ € C, there is a set N of closed negative transition formulae
such that 7 F % and CUU F N, and

e for each ¢ € U, there is a set IV of closed negative transition formulae
such that 7 + % and C'E N.

C stands for Certainly and U for Unknown; the third value is determined by
the formulae not in C'U U. The least three-valued stable model is a three-
valued stable model that is the least with respect to the ordering on pairs of
sets of formulae defined as (C,U) < (C',U’") iff C C C" and U’ C U. When
for the least three-valued stable model it holds that U = (), we say that 7 is
complete.

Example 7. The TSS in Example 4 has
o ({aa}.0),
e ({a*a},0) and

o (0,{a5a,a>a))

as its three-valued stable models. Its least three-valued stable model is
(0, {ag a0 a}). Therefore that T'SS is not complete.

Complete T'SSs unequivocally define a transition relation, i.e., the C' com-
ponent of their least three-valued stable model. Completeness is central to
almost all meta-results in the SOS meta-theory and, as it turns out, it also
plays an essential role in our meta-results concerning determinism and idem-
potence. All practical instances of TSSs are complete and there are sufficient
syntactic conditions guaranteeing completeness; see, for example, [14].

3. Determinism

The agenda of this section is to define a rule format for determinism.
We start with a general format for determinism in Section 3.1; that format
captures the “essence” of determinism as a semantic property. Although the

7

general format presented in Section 3.1 is natural and elegant, it lacks the
practicality of a syntactic format. This is why in Section 3.2, we provide a
syntactic variation on our general rule format that is sufficient to guarantee
determinism of certain transition relations. In Section 3.3, we apply our rule
formats to several examples from the literature. In Section 3.4, we present
some alternative definitions for determinism and show how our formats can
easily be adapted to these definitions.

3.1. The General Determinism Format

For the sake of precision, we begin by defining the notion of determinism
that is typically considered in the literature on process calculi and related
languages.

Definition 8 (Determinism). A transition relation 7" is called determin-
istic for label [, when ifp—l>p’ € T and p—l>p” € T, then p' = p".

Given a complete transition system specification 7 = (3, L, D), a term
p € C(X) is deterministic for label [if the transition relation associated with
T is deterministic for label [when restricted to the set of closed terms that
are reachable from p.

As most semantic properties of languages, determinism of a transition
relation is undecidable.

Theorem 9. Given a finite transition system specification (X, L, D), a term
p € C(X) and a label I, the problem of determining whether p € C(X) is
deterministic for label | is undecidable.

Proof. See Appendix A. O

In light of undecidability results like the one above, it is interesting to
isolate some conditions on the deduction rules in a transition system specifi-
cation that are sufficient to guarantee the determinism of certain transition
relations.

Before defining a format for determinism, we need two auxiliary defini-
tions. The first one is the definition of source dependent variables, which we
borrow from [22] with minor additions.

Definition 10 (Source Dependency). For a deduction rule, we define the
set of source dependent variables as the smallest set that contains

1. all variables appearing in the source of the conclusion, and
2. all variables that appear in the target of a premise where all variables
in the source of that premise are source dependent.

For a source dependent variable v, let R be the collection of transition re-
lations appearing in a set of premises needed to show source dependency
through condition 2. We say that v is source dependent via the relations in
R.

We define the source distance of a source-dependent variable as the least
number of applications of item 2 in Definition 10 needed to show its source
dependency. A variable in the source of the conclusion is thus of source
distance 0.

Note that, for a source dependent variable, the set R is not necessarily
unique. For example, in the rule

the variable 3/ is source dependent both via the set { 4, } as well as { B By

The second auxiliary definition needed for our determinism format is the
definition of determinism-respecting substitutions.

Definition 11 (Determinism-Respecting Substitutions). A pair (¢, 0")
of substitutions is determinism respecting with respect to a pair of sets of
formulae (®,®’) and a set of labels L when, for all two positive formulae
sL s € ®andt-5¢ € ® such that | € L, it holds that o(s) = o'(t) only if
o(s) =d'(t).

Definition 12 (Determinism Format). A TSS 7 is in the determinism
format with respect to a set of labels L when, for each [€ L, the following
conditions hold.

1. In each deduction rule —*—, each variable v € vars(t') is source depen-

/

P
l
t—1

dent via a subset of {L |l e L}.

2. For each pair of distinct deduction rules —2¢— and —2— and for
to -t} t bt

each determinism-respecting pair of substitutions (o, ¢’) with respect
to (Pg, P1) and L such that o(ty) = o’(1), it holds that either o(t[) =
o'(t]) or o(®g) contradicts o’ (Pq).

As the proof of Theorem 14 to follow will make clear, the first condition
in the definition above ensures that each rule in a TSS in the determinism
format, with some [€ L as the label of its conclusion, can be used to prove at
most one outgoing transition for each closed term. The second requirement
guarantees that no pair of different rules can be used to prove two distinct
[-labelled transitions for any closed term.

Remark 13. Usually, the term “format” refers to a template for deduction
rules that is defined using purely syntactic conditions. The latter requirement
in Definition 12 is not syntactic since it refers to a condition that needs to
be checked for each determinism-respecting pair of substitutions. However,
rather than coining a new word for the requirements in Definition 12, we
decided to stretch the use of the term “format” and to refer to the notion
defined there as “determinism format”.

Theorem 14. Consider a TSS with (C,U) as its least three-valued stable
model and a subset L of its labels. If the TSS is in the determinism format
with respect to L, then C' is deterministic for each | € L.

Proof. Let T be a TSS with (C,U) as its least three-valued stable model.
Instead of proving that C' is deterministic for each [€ L, we establish the

following more general result. We prove that, for each [€ L, if p iR p e CuU
and p—l>p” € C, then p' = p".
Since p—l>p/ € C'U U, there exists a provable transition rule such that

T = - for some set N of negative formulae with C' E N. We show
p—p
the claim by an induction on the proof structure for the transition rule ZL/

Consider the last deduction rule r and closed substitution ¢ used in the proof

structure for —¥—.
p—=p

Since p ER p" € C, there also exists a proof structure such that 7 +

N/
pLp
for some set N/ of negative formulae with C' UU E N’. Again, consider the

last deduction rule " and closed substitution ¢’ used in the proof structure

for 7+ .
p;}p//
We first consider the case when r and 7’ are the same rule, say ;L/.
— t

Obviously o(t) = ¢'(t) since both must be equal to p. Since o(t') and o'(t')
are equal to p’ and p” respectively, we need to show that o(t') = o'(¢').

10

For each variable v that is source dependent via a subset of { 4 |l e L},
we proceed with another induction on the source distance of v to prove that
o(v) = o' (v). If we show this claim, then it follows that o(t') = o'(¢') since all
variables in ¢’ are source dependent by the first condition of our rule format.

We consider the two possible reasons for v being source dependent.

1. Assume that v appears in ¢. In this case, o(v) = o'(v) since o(t) =
o’'(t).
2. Assume that v appears in the target of some premise t; L t. € & where

l; € L and all variables in ¢; are source dependent via a subset of { 4 |
[€ L}. Each variable w € vars(t;) has a source distance smaller than
that of v. Therefore, the induction hypothesis (on the source distance
of variables) applies and we have that o(w) = ¢’(w). This means that
o(t;) = o'(t;). This allows us to apply the induction hypothesis on the

proof structure, since —2—— has a proof structure that is smaller than
oty —1t))

, to conclude that o(t}) = o’(t}). Since v appears in t},

N
I

it follows that o(v) = o'(v).

the one for

In either case, o0 and ¢’ agree on the value of v. Since this holds for all
variables of ', we reach the conclusion we seek, namely that o(t') = o'(t').
We now consider the case where the rules r and r’ are distinct. Let ®
and @’ be the sets of premises of r and 7/, respectively. We first show that
(0,0") is determinism-respecting with respect to (®, ®’) and L.
Assume, towards a contradiction, that our claim concerning determinism-
respecting substitutions does not hold. Then, for some [€ L, there exist

two positive formulae s; LR s, and t; LR t, among the premises of r and 7/,
respectively, such that o(s;) = o/(¢;), but it does not hold that o(s}) = o'(t}).
Since s; 5 s; is a premise of 7, the transition o(s; 4 st) is contained in CUU
and has a smaller proof structure than the one justifying that p iR p e CUU.

Following a similar reasoning, o’(t; 4 t:) € C. But the induction hypothesis
(on the proof structure) applies and hence, we have o(s;) = o'(t;), which

(A
contradicts our earlier assumption that o(s}) = o’(t,) does not hold. Hence,
we conclude that (o, 0’) is determinism respecting with respect to (®, ') and
L.
Since we have shown that (o, ¢) is determinism respecting, it then follows

from the second condition of the determinism format that either o(conc(r)) =

: : : L.
o’ (conc(r")), which was to be shown, or there exist premises ¢; = s; — s, in

11

one deduction rule and ¢} = ¢; % in the other deduction rule such that o(p;)
contradicts o'(¢;). We show that the latter possibility leads to a contradic-
tion, thus completing the proof. Since o(¢;) contradicts o’(¢}), we have that
o(s;) = o’(t;). We distinguish the following two cases based on the status of
the positive and negative contradicting premises with respect to r and r’.

1. Assume that the positive formula is a premise of . Then, o(s; 4, sh) €
CUU, but from CUU E N’ and o'(¢) € N’, it follows that for no p”,

we have that o(s;) = o'(t;) L, p" € CUU, thus reaching a contradiction.

2. Assume that the positive formula is a premise of /. Then o'(s; L, s;) €
C, but from C' E N and o(¢}) € N, it follows that for no p;, we have

that o(t;) = o'(s;) &, p1 € C, again reaching a contradiction.
O

For a T'SS in the determinism format with (C,U) as its least three-valued
stable model, U and thus C' U U need not be deterministic. The following
counter-example illustrates this phenomenon.

Example 15. Consider the TSS given by the following deduction rules.

l l
a—a a—+*

1 1
a—b a—a

The above-given TSS is in the determinism format since a-ba and a-»
contradict each other (under any substitution). Its least three-valued stable

model is, however, (0, {a Laab b}) and {a Laab b} is not deterministic.

Example 16. The conditions in Definition 12 are not necessary to ensure
determinism. For example, consider the T'SS with constant a and rule ——.

r—y

The transition relation — is obviously deterministic, but the variable y is not

source dependent in the rule ——. However, as the following two examples
T—y

show, relaxing the conditions in Definition 12 may jeopardize determinism.
To see the need for condition 1, consider the TSS with constant 0 and
unary function symbol f with rule ; This TSS satisfies condition 2 in

() >y’
Definition 12 vacuously, but the transition relation — it determines is not

12

deterministic since, for instance, f(0) = p holds for each closed term p. Note
that the variable y is not source dependent in ———

xr) —

The need for condition 2 is exemplified by the classic non-deterministic
choice operator, given by the following deduction rules.

a a
To — Ty T — 2

a a
To+ X1 — T, To+T1— T

The rules for this operator satisfy condition 1, but not condition 2. The
transition relations defined by those rules are non-deterministic except for
“trivial T'SSs” including this operator.

Corollary 17. Consider a complete TSS with L as a subset of its labels.
If the TSS is in the determinism format with respect to L, then its defined
transition relation is deterministic for each | € L.

Condition 2 in Definition 12 may seem difficult to verify, since it requires
checks for all possible (determinism-respecting) substitutions. However, in
practical cases, to be quoted in the remainder of this paper, variable names
are chosen in such a way that condition 2 can be checked syntactically. For
example, consider the following two deduction rules.

5 ys ozl
fla,y) > fly,z) =’

If in both deduction rules f(z,y) (or symmetrically f(y, z)) was used, it could
have been easily seen from the syntax of the rules that the premises of one
deduction rule always (under all pairs of substitutions agreeing on the value of
x) contradict the premises of the other deduction rule and, hence, condition
2 is trivially satisfied. Based on this observation, we next present a rule
format whose conditions have a purely syntactic form and that is sufficiently
powerful to handle all the examples we discuss in Section 3.3. (Note that,
for the examples in Section 3.3, checking the conditions of Definition 12 is
not too hard either.)

3.2. The Syntactic Determinism Format

In order to derive a syntactic rule format for determinism, we limit the
syntactic structure of the rules to the following, very common, subset of
normalized T'SSs.

13

Definition 18 (Normalized TSSs). A TSS is normalized with respect to
L if

1. each deduction rule is f-defining for some function symbol f,

2. for each deduction rule of the form

each variable v € vars(s’) is source dependent in r via some subset of
{5 |1 el and

3. for each label [€ L, each function symbol f and each pair of deduction
rules of the form

.)~
o My ——
f(3)+ s J{ORS%
the following conditions are satisfied:
(a) the sources of the conclusions coincide, i.e., f(5) = f(t),
(b) for each variable v € vars(r) N vars(r’) there is a set of formulae
in ®. N ®,, proving its source dependency (both in r and 7’) via

some subset of { 4 |l e L}.

(r)

The second and third condition in Definition 19 guarantee that the syntac-
tic equivalence of relevant terms (the target of the conclusion or the premises
negating each other) will lead to syntactically equivalent closed terms under
all determinism-respecting pairs of substitutions.

The reader can check that all the examples quoted from the literature in
Section 3.3 are indeed normalized TSSs.

Definition 19 (Syntactic Determinism Format). A normalized TSS is
in the (syntactic) determinism format with respect to L when, for each two

deduction rules —22— and —2— with [€ L, it holds that s’ = s” or &,
f(5) =5 f(8) ="

contradicts P;.

Unlike the semantic condition of determinism, it is decidable whether a
finite TSS is in the syntactic determinism format with respect to a set of
labels L.

14

Theorem 20. The problem of deciding whether a finite T'SS is in the syn-
tactic determinism format with respect to a set of labels is decidable.

Proof. Assume that we are given a finite TSS 7 and a finite subset of its
labels L. Observe that, given two finite sets of transition formulae ®, and
®,, it is decidable whether ®, contradicts ®;. The condition in Definition 19
can therefore be effectively checked because the set of deduction rules in 7 is
finite, and the set of premises of each rule in 7 is also finite. The conditions
in Definition 18 can also be checked effectively because the number of rules
is finite and so is the set of premises of each rule in 7. O

The following theorem states that, for normalized TSSs, Definition 19
implies Definition 12.

Theorem 21. Fach normalized TSS in the syntactic determinism format
with respect to L is also in the determinism format with respect to L.

Proof. Let 7 be a normalized TSS in the syntactic determinism format with
respect to L. Condition 1 of Definition 12 is satisfied since 7 is normalized.
(To see this, consider the first two conditions in Definition 18.)

To prove condition 2 of Definition 12, let r = toqi(:t’ and 1’ = th)Tlt’ be
distinct rules of 7 and (o, 0’) be a determinism—respectoing pair of substitu-
tions with respect to (®g, ®;) and L such that o(ty) = o'(t1). Since 7 is
normalized, both r and 7’ are f-defining for some function symbol f, i.e.,
to = f(5) and t; = f(f). Furthermore, since f(5) = f(f) we have that o and
o’ agree on all variables appearing in f(5) = f (f)

In order to prove the theorem, it suffices to show only the following claim.
Claim: o(v) = o/(v) for each v € vars(r) N vars(r').

Indeed, using the above claim, we can prove the theorem as follows. Def-
inition 19 yields that either ¢ = | or @, contradicts ®;. If [, = ¢, then
variables in vars(ty) = wvars(t}) are all source dependent via transitions in
L that are common to both ®; and ®; (by condition 3 of Definition 18).
By the above-mentioned claim, o(t;) = ¢'(t}) and condition 2 of Definition
12 follows, which was to be shown. If &, contradicts ®;, then assume that

the premises negating each other are ¢; = s; l—]>s; and ¢; = tj 4, and
it holds that s; = t;. All variables in t; = s; are source dependent via
transitions in L (by condition 3 of Definition 18). It follows from the claim
that o(s;) = 0'(t;) and thus o(¢;) contradicts o'(¢;), which again implies
condition 2 of Definition 12.

15

We now proceed to prove the claim. For each variable v € wvars(r) N
vars(r'), we define its common source distance to be the source distance of
v when only taking the formulae in ®, N ®; into account. Note that such
a common source distance exists since, by condition 3 of Definition 18, all

v € wvars(r) N wvars(r') are source dependent via a subset of {—l> |l e L}
included in the collection of transition relations used in ®¢ N ;.

We prove the claim by an induction on the common source distance of
v € wvars(r) Nvars(r'). If v € vars(f(s)) then we know that o(v) = o'(v)
(since tg = t; and o(tg) = o'(t1)). Otherwise, since v is source dependent

in r via transitions with labels in L, there is a positive premise u L in D,
with [€ L such that v € vars(u’) and all variables in u are source dependent
with a shorter common source distance than that for v. Furthermore, since v
appears in both rules, i.e., v € vars(r) Nwvars(r’), this premise also appears
in @, according to condition 3 of Definition 18 and thus vars(u) C vars(r) N
vars(r’). By the induction hypothesis we have that o(u) = o’(u) and since
(0,0") is determinism-respecting with respect to (®g, ®;) and L, we know
that o(u') = o'(u’). Specifically, the substitutions must agree on the value
of v, i.e. o(v) =o' (v) as desired. O

The following statement is thus a corollary of Theorems 21 and 14.

Corollary 22. Consider a normalized TSS with (C,U) as its least three-
valued stable model and a subset L of its labels. If the TSS is in the (syntactic)
determinism format with respect to L (according to Definition 19), then C' is
determanistic with respect to any l € L.

It is natural to ask oneself whether the syntactic determinism format
can be easily generalized. The following examples show that relaxing the
restrictions of that format may jeopardize Theorem 21. (Examples showing
the need for the first two conditions in Definition 18 were already discussed
in Example 16.)

In order to see that condition 3a in Definition 18 is necessary, consider
a TSS with constants a and b, and a binary function symbol f with the
following rules.

f(900,$1)i>900 f($0ay1)i>y1

Each of these rules is f-defining and each variable occurring in them is source
dependent via the empty set of transition relations. Moreover, the condition

16

in Definition 19 is vacuously met since the sources of the two deduction rules
are different. It is easy to see that f(a,b) % a and f(a,b) = b. Therefore the
transition relation — is not deterministic.

In order to see that condition 3b in Definition 18 is necessary, consider
a TSS with constants 0, a and a?, and a binary function symbol f with the
following rules.

a a
To—Y Iy —Yy

a0 a*=a fzo, 1) Sy fwo,21) =y

This TSS meets all the conditions in Definitions 18 and 19, apart from con-
dition 3b. It is easy to see that f(a,a?) %0 and f(a,a?) % a. Therefore the
transition relation — is not deterministic.

The need for the condition in Definition 19 is exemplified by the classic
non-deterministic choice operator discussed in Example 43 to follow. The
rules for this operator satisty the conditions in Definition 18, but not the one
in Definitions 19. As remarked already in Example 16, the transition rela-
tions defined by those rules are non-deterministic except for “trivial T'SSs”
including this operator.

Remark 23. The reader might wonder whether for each TSS there is a
normalized one that defines the same transition relation. This is false. As
an example, consider the TSS with constants a and b, and a unary function
symbol with rules:

fla)=a fb)=a
One can convince oneself that any normalized T'SS over this signature defin-

ing the transition relation {f(a) % a, f(b) % a} would have to contain a rule

of the form
N

fla)=t”
for some collection of negative formulae N. We may assume, without loss
of generality, that the above rule proves a transition rule with conclusion
f(a) % a. From this fact, it is not too hard to see that such a rule could also
be instantiated to prove either f(b) - b (if ¢ is a variable) or f(f(a)) = a (if
t = a), contradicting the assumption that the normalized TSS defines the
transition relation {f(a) = a, f(b) % a}.

17

Although the syntactic determinism format presented in Definition 19 is
more straightforward to check than the format presented in Definition 12,
the format in Definition 12 is interesting for the following reasons:

1. it is indeed more general than the syntactic determinism format,

2. it demonstrates and justifies the way we arrived at the syntactic format,
and hence is interesting for pedagogical reasons, and

3. the correctness proof for the syntactic format relies conveniently on the
one for the more semantic format from Definition 12 (although a direct
proof is certainly possible).

3.3. FExamples

In this section, we present some examples of various TSSs from the lit-
erature and apply our (syntactic) determinism format to them. Some of the
examples we discuss below are based on TSSs with predicates. The exten-
sion of our formats with predicates is straightforward and we discuss it briefly
below.

Definition 24 (Predicates). Given a set P of predicate symbols, Pt is
a positive predicate formula and —P t is a negative predicate formula, for
each P € P and t € T(X). We call ¢ the source of both predicate formulae
and P their label. In the extended setting, a (positive, negative) formula is
either a (positive, negative) transition formula or (positive, negative) predi-
cate formula. The notions of deduction rule, TSS, provable transition rules,
contradiction, consistency and three-valued stable models are then naturally
extended by adopting the more general notion of formulae. In particular, the
formulae Pt and —P t contradict each other. The label of a deduction rule
is either the label of the transition formula or of the predicate formula in its
conclusion.

Definitions 12 and 19 apply unchanged to a setting with predicates, as
do Theorems 14 and 21.

Example 25 (Conjunctive Nondeterministic Processes). In their pa-
per [16], Hennessy and Plotkin define a language, called conjunctive non-
deterministic processes, for studying logical characterizations of processes.
The signature of the language consists of a constant 0, a unary action prefix-
ing operator ‘a._’ for each a € A, and a binary conjunctive nondeterminism

18

operator ‘V’. The operational semantics of this language is defined by the
following deduction rules.

x can, Y can,
0 can, a.r call, TV 1y can, z V y can,
a#b
0 after, 0 a.x after, x a.x after, 0
x after, ' 1y after, v

xVy after, ' Vy/

The above TSS is in the (syntactic) determinism format with respect to A.
Hence, we can conclude that the transition relations after, are deterministic.

Example 26 (Delayed Choice). The second example we discuss is a sub-
set of the process algebra BPAs. + DC [5], i.e., Basic Process Algebra with
deadlock and empty process extended with delayed choice. First we restrict
attention to the fragment of this process algebra without non-deterministic
choice ‘4’ and with action prefix ‘a._” instead of general sequential composi-
tion ‘-’. This altered process algebra has the following deduction rules, where
a ranges over the set of actions A:

T yl
€l a.r->z TFyl rFyl
rFyor Fy TFy-Sa TFy>y

In the above specification, predicate p | denotes the possibility of termination
for process p. The intuition behind the delayed choice operator, denoted by
‘_F , is that the choice between two components is only resolved when one
performs an action that the other cannot perform. When both components
can perform an action, the delayed choice between them remains unresolved
and the two components synchronize on the common action. This transition
system specification is in the (syntactic) determinism format with respect to
A.

Addition of non-deterministic choice ‘4’ or sequential composition ‘-’ re-
sults in deduction rules that do not satisfy the determinism format. For

19

example, addition of sequential composition comes with the following deduc-

tion rules:
a a
T—T rl y—ouy

a a
r-y—=a -y Ty—=y
The sets of premises of these rules do not contradict each other. The extended

TSS is indeed non-deterministic since, for example, (¢ F (a.€)) - (a.€) > € and
(e F (a.€)) - (a.€) Ze- (a.e).

Example 27 (Time Transitions I). This example deals with the Algebra
of Timed Processes, ATP, of Nicollin and Sifakis [24]. In the TSS given below,
we specify the time transitions (denoted by label x) of delayable deadlock
‘6’, non-deterministic choice ‘- @ ', unit-delay operator ‘|_|_’ and parallel
composition ‘_ || .

X X X 0 X 7

PN roy S @y lz)(y) Sy zllySa |y

These deduction rules all trivially satisfy the determinism format for time
transitions since the sources of conclusions of different deduction rules cannot
be unified. Also the additional operators involving time, namely, the delay
operator ‘|_|9 execution delay operator ‘[_]¢_” and unbounded start delay
operator ‘|_|“’, satisfy the determinism format for time transitions. The

deduction rules are given below, for d > 1:

X X
r— X T —
X

—

2] () >y 2] (y) = [2']4(y) 2] () = =] (y)

Example 28 (Time Transitions IT). Most of the timed process algebras
that originate from the Algebra of Communicating Processes (ACP) from
8, 7], such as those reported in [6], have a deterministic time transition
relation as well.

20

In the TSS given below, the unary time unit delay operator is denoted by
‘orel’, nondeterministic choice is denoted by ‘+’, and sequential composition
is denoted by ‘-’. The deduction rules for the time transition relation for this
process algebra are the following:

1, 1, 1, 1 1 1,
rT—r y—y r—r y-» T Yy—y
1
Oral(T) = m—l—y—1>x’+g/ $—{—y—1>x’ x+yi>y’
x5 x) 5 y—}»
x-yix’-y x-yix’-y
v x| yoy T x| yoy
Ty Sa oyt y ToySy

Note that here we have an example of deduction rules, the first two de-
duction rules for time transitions of a sequential composition, for which the
premises do not contradict each other. Still these deduction rules satisfy the
determinism format since the targets of the conclusions are identical. In the
syntactically richer framework of [30], where arbitrary first-order logic for-
mulae over transitions are allowed, those two deduction rules are presented
by a single rule with premise x LA (x)Vy =N).

Sometimes such timed process algebras have an operator for specifying

an arbitrary delay, denoted by ‘c’,’, with the following deduction rules.

rel »

1 1,
T+ r—x

* * *

T T
Ory(7) = 0y () Or () = 2’ + o7y (z)

The premises of these rules contradict each other and so the TSS also satisfies
the conditions of our (syntactic) determinism format.

3.4. Other forms of determinism

One may also wish to consider stronger forms of determinism than the one
considered so far in this section, which is the standard one in the concurrency-
theory literature and underlies results such as those presented in [12, 29]. In
what follows we consider two variations on Definition 8 and show how the
rule format we presented in this section can be easily modified to guarantee
them.

21

Definition 29 (Strong determinism). A transition relation 7 is called

strongly deterministic, when if p—l>p’ € T and pl—/>p” €T, then p' = p".

So, in a strongly deterministic transition relation, all the outgoing tran-
sitions from a closed term have the same target. One can easily modify the
formats in Definitions 12 and 19 to guarantee strong determinism as follows.
We first present a modification of the format offered in Definition 12. In
defining a format for strong determinism, the following variation on Defini-
tion 11 will be useful.

Definition 30. A pair of substitutions (o, ¢’) is strong-determinism respect-
ing with respect to a pair of sets of formulae (®,®’) when, for all two pos-
itive formulae s s € ® and t--¢ € &', it holds that o(s) = o'(t) only if
o(s) =o' (t).

Definition 31 (Strong-Determinism Format). We say that a TSS is in
the strong-determinism format if the following conditions hold.

1. In each deduction rule %, each variable v € vars(t') is source depen-
dent.
i o,

2. For each pair of distinct deduction rules —— and —;
to— 1 e

strong-determinism-respecting pair of substitutions (o, 0’) with respect
to (®g, P1) such that o(ty) = o'(t1), it holds that either o(t;) = o'(t})
or o(®g) contradicts o’(Pq).

and for each

By essentially replaying the proof of Theorem 14, we can show the fol-
lowing result to the effect that the conditions in the definition of the strong-
determinism format are sufficient to guarantee strong determinism of the
induced transition relation.

Theorem 32. Consider a TSS with (C,U) as its least three-valued stable
model. If the TSS is in the strong-determinism format, then C is strongly
deterministic.

Following the earlier developments in this section, we next present a rule
format, whose conditions have a purely syntactic form and are based on a
variation on those in Definitions 18 and 19, that guarantees strong determin-
ism of the induced transition relation.

22

Definition 33 (Syntactic Strong-Determinism Format). We say that
a TSS is strongly normalized when

1. each deduction rule is f-defining for some function symbol f,
2. for each deduction rule of the form

MG ESG

each variable v € vars(s’) is source dependent in r, and
3. for each function symbol f and each pair of deduction rules of the form

D, D,

(r) ; W)fﬂgj;j

(5) =
the following conditions are satisfied:
(a) the sources of the conclusions coincide, i.e., f(5) = f(t),
(b) for each variable v € vars(r) N vars(r’) there is a set of formulae
in @, N ®,, proving its source dependency (both in r and r’).

A strongly normalized TSS is in the (syntactic) strong-determinism format

when, for each two deduction rules —22— and ‘bj, , it holds that s’ = §”

&5 F3) 58

or ®, contradicts P;.

By mimicking the proof of Theorem 21, we can now show the following
analogue of that result, which implies, together with Theorem 32, that the
syntactic strong determinism format guarantees strong determinism of the
induced transition relation.

Theorem 34. Each TSS in the syntactic strong-determinism format is also
in the strong-determinism format.

It follows immediately from Definition 29 that each strongly deterministic
transition relation is also deterministic with respect to the set of labels of
a TSS. We now introduce a further strengthening of the notion of (strong)
determinism.

Definition 35 (Functional transition relation). A transition relation 7'
is called functional, when if p—l>p' € T and pl—/>p” € T, then [= I’ and
p/ = p//‘

23

In a functional transition relation each closed term affords at most one
transition. Below, we limit ourselves to presenting a modification of the
format offered in Definition 12 that guarantees that the induced transition
relation is functional.

Definition 36 (Functional Determinism Format). A TSS 7 is in the
functional determinism format if the following conditions hold.

1. In each deduction rule —2— each variable v € vars(t') is source depen-

l 9
t—t
dent.
B)

2. For each pair of distinct deduction rules —*— and —;
to —t) t1 =t

pair of substitutions (o, ¢’) such that o(ty) = o’(t1), it holds that
(a) either [=" and o(t) = o'(t})
(b) or o(®g) contradicts o’ (Py).

and for each

The proof of Theorem 14 can be re-used to show the following result.
Namely, the conditions in the definition of the functional determinism format
indeed guarantee that the induced transition relation is functional.

Theorem 37. Consider a TSS with (C,U) as its least three-valued stable
model. If the TSS is in the functional determinism format, then C is func-
tional.

We have not made any attempt to maximize the level of generality of the
above rule formats. Our aim was rather to show how to obtain rule formats
for other forms of determinism one might be interested in guaranteeing as
variations of the ones we considered in this section.

4. Idempotence

Our agenda in this section is to present a rule format that guarantees the
idempotence of certain binary operators. In the definition of our rule format,
we rely implicitly on the work presented in the previous section. Indeed, as
Definition 40 and the examples to follow will make clear, a widely applicable
rule format for idempotence makes an essential use of the determinism of
certain transition relations.

24

4.1. Format

For the sake of clarity, we begin by defining formally the notion of idem-
potence for a binary operator.

Definition 38 (Idempotence). A binary operator f € ¥ is idempotent
with respect to an equivalence ~ on closed terms if and only if for each

p € C(X), it holds that f(p,p) ~ p.

Idempotence is defined with respect to a notion of behavioral equivalence.
There are various notions of behavioral equivalence defined in the literature,
which are, by and large, weaker than bisimilarity defined below. Thus, to be
as general as possible, we prove our idempotence result for all notions that
include, i.e., are weaker than, bisimilarity.

Definition 39 (Bisimulation). Let 7 be a T'SS with signature X. A rela-
tion R C C(X) x C(X) is a bisimulation relation if and only if R is symmetric
and for all pg, p1,py € C(X) and [€ L

l l
(PoRp1 AT = po—pp) = Fpecs)(T F pr— Py A pg Rph).

Two terms pg, p1 € C(X) are called bisimilar, denoted by py <> p1, when there
exists a bisimulation relation R such that pyRp;.

It is well-known that bisimilarity is indeed an equivalence. (See, for in-
stance, [19] for a textbook proof of this fact.) Bisimilarity can be extended
to open terms by requiring that ¢ty < t; when o(ty) < o(t1) for all closing
substitutions o : V' — C(X). In the remainder of this paper, we restrict our
attention to the notions of equivalence on closed terms that include strong
bisimilarity. However, all our results carry over (without any change) to the
notions on open terms that include strong bisimilarity on open terms in the
above sense. Indeed, if f(x,z) <z and < is included in ~, then f(z,z) ~ x
also holds.

Definition 40 (The Idempotence Rule Format). Let v: Lx L — L be
a partial function such that v(lo, 1) € {lo, {1} if it is defined. We define the
following two rule forms.

1;. Choice rules. A choice rule is a rule of the following form.
{2, LU

—, 1€{0,1}
f(x07$1)—>t

25

2100, - Communication rules. A communication rule is a rule of the following
form, where y(lg, ;) is defined.
{l’o l—o>t0, T 2>751} Uud
flo,a) " f(tg, 1)

In each case, ® can be an arbitrary, possibly empty, set of (positive or nega-
tive) formulae.
In addition, we define the starred version of each form, 1; and 2

, to=tyor(lp=1 and b s deterministic)

*
lo,l1-

17. Choice rules.
LI
i) SN
f(@o, 1) =

2} 1,- Communication rules.

{a:ogx{), xlgx’l}
(lo,l1)
Flxo, 1) 5" f(ah,)

As above, in a communication rule of the form 2j ; , we assume that
v(lo,11) is defined.

A TSS is in idempotence format with respect to a binary operator f if each
deduction rule is g-defining for some operator g, and each f-defining rule is
of the forms 1; or 2;,,,, for some [, ly,l; € L, and for each label | € L there
exists at least one rule of the forms 17 or 27;.

lo . o
, wy=a)or (lp =1 and > is deterministic)

We should note that the starred versions of the forms are special cases of
their unstarred counterparts; for example a rule which has form 1} also has
form 1;.

Intuitively, the presence of rules of the form 1 or 2}, for each label [
guarantees that, for each closed term p, the term f(p,p) can mimic the
behaviour of p. Conversely, the constraint that each rule for f is of the forms
1; or 2, for some [,ly,l; € L, ensures that transitions from f(p,p) can be
simulated by transitions from p.

Theorem 41. Assume that a TSS is complete and is in the idempotence
format with respect to a binary operator f. Then, [is idempotent with
respect to any equivalence ~ such that < C ~.

26

Proof. First define the relation ~;C C(X) x C(X) as follows.

~r={(p,p), (p, f(p,;p)), (f(p;p);p) [P € C(X)}

To prove the theorem it suffices to show that ~ is a bisimulation relation.
If it is, then f(p,p) <= p for any closed term p and, since <> C~, we obtain
the theorem.

Let (C,U) be the least three-valued stable model for the T'SS under con-

sideration. First consider a closed term p such that pi>p’ € (' for some [
and p’. (Note that U = () since the TSS is complete.) Next, we argue that

f(p,p) —l>p” for some p” such that p’ ~; p”. Since pi>p’ € C, there exists a
provable transition rule of the form —¥— for some set of negative formulae N
p—p
such that C'E N. (In particular, that means that p R ¢ N.) In this case we
make use of the requirement that there exists at least one rule of a starred

form for label . If there exists a rule of the form 1}, i.e.

Lo
T;i— T
f(x()?xl) 41;/7

i€ {0,1}

then we can instantiate it, using the transition pi>p’ as premise, to prove

that f(p,p) —l>p’ € C. In particular, it does not matter whether i = 0 or
i = 1. Since =~ is reflexive, p’ ~; p’ holds. If there exists a rule of the form
27;, we observe that y(l,1) = [so the transition rule becomes

Lo Lo
Top— Ty Ty —IT)

flwo,x1) 5 flah,ah)

where z(= x) or L, is deterministic. Now we can use the existence of P ER o
to satisfy both premises and obtain that f(p, p) KR f(@',p"). By the definition
of >~ we also have that p’ ~; f(p/,p’). In either case, if p—l>p' € C, then
there exists a p” such that f(p,p) —l>p” € C and p' ~; .

Now assume that f(p, p) LA p' € C. Then there exists a provable transition

rule N for some set of negative formulae N such that C'F N. Since

f(p,p) =p'
each rule is g-defining for some ¢ and all rules for f are either of the form 1,

or 2;,,, this provable transition rule must be based on a rule of those forms.

27

We analyze each possibility separately, showing that in each case p LA p" for
some p” such that p' ~; p”.
If the rule is based on a rule of form 1;, its positive premises must also

be provable. In particular it must hold that p LA p’ € C since both zy and x;
in the rule are instantiated to p. The other premises are of no consequence
to this conclusion and, again, we observe that p' ~; p'.

Now consider the case where the transition is a consequence of a rule of
the form 2;,;,. If to = t1, say both are instantiated to p”, we must consider
two cases, namely k = [y and k = [;. If kK = [y then the first premise of the

rule actually states that pﬂ p". If k =1 then the second premise similarly

states that pﬁ p”. In either case, we note that p’ = f(p”, p”) must hold and,
again by the definition of ~, we have that f(p”,p") ~; p".
If however ty # t; the side condition requires that Iy = [; = k, which also

implies v (lo, l1) = ly = k, and that the transition relation b, is deterministic.
In this case it is easy to see that the right-hand sides of the first two premises,
namely ¢ty and ¢, evaluate to the same closed term in the proof structure,
say p”. The conclusion then states that k = [y and p’ = f(p”,p”). It must

thus hold that pgp” e C and f(p",p") ~; p" as before.
From this we obtain that if f(p,p) LA p' € C then there exists a p” such
that pgp” € C and p' ~; p”. Thus, ~/ is a bisimulation as required.]

4.2. Relaxing the Restrictions

In this section we consider the constraints of the idempotence rule for-
mat and show that they cannot be dropped without jeopardizing the meta-
theorem. We remark at the outset, however, that the requirement that all
deduction rules be g-defining for some ¢ is not strictly necessary in order to
prove Theorem 41. Its presence simplifies our technical developments and
does not reduce the applicability of our results. Indeed, all of the examples
of use of our rule format for idempotence we are aware of use only g-defining
rules.

First of all we note that, in rule form 1;, it is necessary that the label of
the premise matches the label of the conclusion. If it does not, in general,
we cannot prove that f(p, p) simulates p or vice versa. This requirement can
be stated more generally for both rule forms in Definition 40; the label of the
conclusion must be among the labels of the premises. The requirement that
v(1,1") € {l,I'} exists to ensure this constraint for form 2;,. A simple syn-

28

chronization rule provides a counter-example that shows why this restriction
is needed. Consider the following T'SS with constants 0, 7, @ and a and two
binary operators + and ||:

a oy a a .y
r—x y—y r—1r y—y

a0 Ty Ty rlly>a |y

where « is 7, a or a. Here it is easy to see that although (a + a) || (a + a)
has an outgoing 7-transition, a + a does not afford such a transition.

The condition that for each [at least one rule of the forms 17 or 2;; must
exist comprises a few constraints on the rule format. First of all, it says there
must be at least one f-defining rule. If not, it is easy to see that there could
exist a process p where f(p, p) deadlocks (since there are no f-defining rules)
but p does not. It also states that there must be at least one rule in the
starred form, where the targets are restricted to variables. To motivate these
constraints, consider the following TSS.

a
Tr—a

a0 fz,y)>a

The processes a and f(a,a) are not bisimilar as the former can perform an
a-transition but the latter is stuck. The starred forms also require that &
is empty, i.e., there is no testing. This is necessary in the proof because in
the presence of extra premises, we cannot in general instantiate such a rule
to show that f(p,p) simulates p. Finally, the condition requires that if we
rely on a rule of the form 2y and to = t1, then the labels [and !’ in the
premises of the rule must coincide. To see why, consider a T'SS containing a
left synchronize operator ||—that is, one that synchronizes a step from each
operand but uses the label of the left one. Here we let o € {a,a}.

@ / a oy a / a /
r—T Yy—y r—T Y—y

a0 x4y a+ySy afly Sy
In this T'SS the processes (a + a) and (a+a)|| (a + @) are not bisimilar since
the latter does not afford an a-transition whereas the former does.
For rules of form 2;;; we require that either ¢y = ¢;, or that the mentioned
labels are the same and the associated transition relation is deterministic.
This requirement is necessary in the proof to ensure that the target of the

29

conclusion fits our definition of ~¢, i.e. the operator is applied to two identical
terms. Consider the following TSS where a € {a, b}.

Qo SN
r—x Yy—y

ata a>b bDb z|ySa |y

For the operator |, this violates the condition ty = #; (note that % is not
deterministic). We observe that a | a % a | b. The only possibilities for a to
simulate this a-transition is either with a — a or with a - b. However, neither
a nor b can be bisimilar to a|b because both a and b have outgoing transitions
while a | b is stuck. Therefore a and a | a cannot be bisimilar. If ¢y £¢; we

must require that the labels match, l, = [;, and that b, is deterministic. We

require the labels to match because if they do not, then given only p—l> p it
is, in general, impossible to prove that f(p,p) can simulate it using only a
27y rule. For example, consider the following TSS.

a b

a=a fz,y) S y)

Then f(a,a) does not afford an a-labelled transition, unlike a. Therefore f
is not idempotent.

The determinacy of the transition with label [y = [; is necessary when
proving that transitions from f(p,p) can, in general, be simulated by p; if

we assume that f(p,p) —l>p’ then we must be able to conclude that p’ has
the shape f(p”,p”) for some p”, in order to meet the bisimulation condition
for ~;. As another example of the use of determinism in rule 27, consider
the standard choice operator + and prefixing operator . of CCS with the |
operator from the last example, with o € {a, b, c}.

Qo o Qo Qo
(0% (0% « « o
a—=0 azr—z zty—2 wty—y w|ly—2 |y

If we let p = a.b+ a.c, then p|p-5b|cand b|c is stuck. However, p
cannot simulate this transition with respect to ~;. Indeed, p and p | p are
not bisimilar.

30

4.3. Predicates

There are many examples of TSSs where predicates are used. The def-
initions presented in Section 2 and 4 can be easily adapted to deal with
predicates as well. For example, the notion of bisimulation (Definition 39),
and thus the notion of idempotence (Definition 38), is extended naturally to
the setting with predicates, by requiring that for each two closed terms and
each predicate, one term satisfies the predicate if and only if the other one
satisfies the predicate. To extend the idempotence rule format to a setting
with predicates, the following types of rules for predicates are introduced:

3p. Choice rules for predicates.
Pf(l’o, xl) ’

4p. Synchronization rules for predicates.

i €{0,1}

{Pl’o, le} Uud
Pf(IOPTl)

As before, we define the starred version of these forms, 35 and 45.
35. Choice rules for predicates.
Pf(l'o, .Tl) ’

43, Synchronization rules for predicates.

ie{0,1}

{P.ﬁlﬁo, P.Z'l}
Pf(x07x1)

With these additional definitions, the idempotence format is defined as
follows.

A TSS with predicates is in idempotence format with respect to a binary
operator f if

e cach rule is g-defining for some operator g and

31

e cach f-defining rule, i.e., a deduction rule with f appearing in the
source of the conclusion, is of one the forms 1;, 2;,,, 3p or 4p, for some
l,lp,l1 € L or for some predicate symbol P. Moreover, for each | € L,
there exists at least one f-defining rule of the forms 1; or 2;;, and for
each predicate symbol P there is an f-defining rule of the form 3% or
4%,

A simple modification of the proof of Theorem 41 yields the following

result stating the correctness of the idempotence format in a setting with
predicates.

Theorem 42. Assume that a TSS with predicates is complete and is in
the idempotence format with respect to a binary operator f. Then, f is
tdempotent with respect to any equivalence ~ such that < C ~.

4.4. FExamples
In this section, we present a number of examples from the literature that
witness the applicability of the idempotence format.

Example 43. A most prominent example of an idempotent operator is non-
deterministic choice, denoted by ‘+’. It typically has the following deduction
rules, where a ranges over the collection of labels.

a a

.I'0+l'1i>$6 Z'0+£L'1i>33/1
Clearly, these are in the idempotence format with respect to +.

Example 44 (External Choice). The well-known external choice opera-
tor ‘00" from CSP [17] has the following deduction rules.

a a
a a
xo Dy — x xo Oz —
T T
Ty — T Ty —)
T T
xoOay —ay Oy xo Oz — xo O)

Note that the third and fourth deduction rule are not instances of any of the
allowed types of deduction rules. Therefore, no conclusion about the validity
of idempotence can be drawn from our format. In this case this does not
point to a limitation of our format, because this operator is not idempotent
in strong bisimulation semantics as observed in, e.g., [11].

32

Example 45 (Strong Time-Deterministic Choice). The choice opera-
tor that is used in the timed process algebra ATP [24] has the following
deduction rules.

a a X 0 X 0
To— X T, — T To—xy T1— T

To D 11 > T, T D 11—) To B 11 >) B T}
The idempotence of this operator follows from our format since the last

rule for ‘@’ fits the form 2} | because, as we remarked in Example 27, the

transition relation = is deterministic.

Example 46 (Weak Time-Deterministic Choice). The version of the
choice operator ‘+’ that is used in most ACP-style timed process algebras
has the following deduction rules.

a a

Ty — Xy r1— 1)

a a

xo + 21 — X)) xo + 1 —)
1, 1, 1, 1 1 1,
o —Ty IT1— Ty Top—Ty I1—7 o —* xT1— T
T T T

xo + 11 — x) + T Ty + 1 —) Ty + 1 — T

The third deduction rule is of the form 27, (since the transition relation 5
is deterministic, as remarked in Example 28). The others are of forms 17 and
1;. This operator is idempotent and this follows from our Theorem 41.

Example 47 (Conjunctive Nondeterminism). The operator ‘V’ as de-
fined in Example 25 by means of the deduction rules

/ /

x can, Y can, x after, ' y after, y

x V y can, x V y can, xVy after, ' Vi

satisfies the idempotence format (extended to a setting with predicates). The
first two deduction rules are of the form 3¢y, and the last one is of the form
27 .- (Here we have used the fact that the transition relations after, are
deterministic as concluded in Example 25.)

Example 48 (Delayed Choice). Delayed choice can be concluded to be
idempotent in the restricted setting without ‘+’ and ‘-’ by using the idem-
potence format and the fact that in this restricted setting the transition

33

relations = are deterministic. (See Example 26.)

T yl
rFyl rFyl
-2 y&y’ -2 y—ffb—) T y&y’
rFySa Fy TFy-ou TFy-Sy

The first two deduction rules are of form 37, the third one is a 2 , rule, and
the others are 1, rules. Note that for any label a and for the predicate | a
starred rule is present.

For the extensions discussed in Example 26 idempotence cannot be es-
tablished using our rule format since the transition relations are no longer
deterministic. In fact, delayed choice is not idempotent in those cases.

As witnessed by the examples discussed in this section, our format for
idempotence is widely applicable. Indeed, it covers all the practical cases
from the literature that we have discovered so far, which is an indication of
its expressiveness and relevance. However, the constraints of this format can
be slightly generalized to cater for more possible applications in the future,
such as the (artificial) example presented below.

Example 49. Consider a T'SS with constant a*, and with binary operations
f and g with the following rules.

a a a a

f(@o, 21) = g(xp, 7)) 9(wo, 21) = f(p, 1)

a

Ld_>a/

a w
It is not hard to see that both f and g are idempotent. Indeed, the transition
relation % is deterministic and the symmetric closure of the relation

{(f(p,p),p), (9(p,p),p) | p a closed term}

is a bisimulation. However, the TSS is neither in the idempotence format
with respect to f nor in the idempotence format with respect to g, in the
sense of Definition 40. Indeed, neither the rule for f nor the rule for g are of
the form 2, , because the targets of their conclusions do not have the required
form.

Note that f is idempotent because so is g, and vice versa.

34

The above example points to a (mostly theoretical) limitation of the for-
mat we proposed in Definition 40. Indeed, in order for an operation f to
be idempotent, it is not necessary that the targets of conclusions of rules of
the form 2, ;, have f as head operator. As in the above example, in rules of
that type, it would be enough to have a target of the conclusion of the form
g(to, t1), where g is itself an operator whose idempotence can be shown using

the format. In other words, an operation f is guaranteed to be idempotent
if

e its rules satisfy the constraints in Definition 40, but

e the targets of conclusions of rules of the form 2;,; have the form
g(to, t1), where g is itself guaranteed to be idempotent.

By considering the largest set of binary operators that satisfy the (general-
ized) constraints quoted above, one obtains a more general format that can
easily deal with Example 49. The proof of correctness for the generalized
format is almost identical to the proof of Theorem 41. Namely, assume that
I is the largest set of binary operators satisfying the generalized constraints,
given above. We claim that each operator f € [is idempotent with respect
to any relation ~ that includes bisimilarity. To prove our claim, it suffices
to show that the relation ~; C C(X) x C(X) defined below is a bisimulation
relation.

~r = {(p,p), (0, 9(p.p)), (9(p,p),p) |p € C(¥),g9 € I}

Indeed, if it is, then f(p,p) < p for any closed term p and f € I. Therefore,
f(p,p) ~ p for any closed term p and each relation ~ such that <> C~, which
establishes our claim.

Proving that ~; is a bisimulation relation is done following the lines of
the proof of Theorem 41.

As we mentioned earlier, we are not aware of any operation from the
literature whose idempotence cannot be established using the format in Def-
inition 40, which is easier to apply and to check than its generalization. This
is the reason why we have presented first the simpler, but widely applicable,
format. We cannot rule out, however, that practical examples that can only
be handled using the generalized format we just offered may appear in the
future.

35

5. Conclusions

In this paper, we presented rule formats guaranteeing determinism of
certain transitions and idempotence of binary operators. Our rule formats
cover all practical cases of determinism and idempotence that we have thus
far encountered in the literature.

We plan to extend our rule formats with the addition of data/store. Such
an extension would, for instance, allow us to account for the determinism of
the time transition relations in the hybrid process algebra presented in [9]
and to deal with process calculi with data and (fragments of) programming
languages.

Also, it is interesting to study the addition of structural congruences
pertaining to idempotence to the T'SSs in our idempotence format.

Last, but not least, we think that it would be worthwhile to investigate
the robustness of the properties established using our syntactic rule formats
with respect to taking disjoint extensions of languages in the sense of [2].

Acknowledgements. We thank the anonymous reviewers for their very careful
reading of the paper and for their constructive suggestions, which led to
several improvements. Any remaining infelicity is solely our responsibility.

References

[1] Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M., Reniers, M. A.,
2010. Rule formats for determinism and idempotence. In: Proceedings
of the Third IPM International Conference on Fundamentals of Software
Engineering (FSEN 2009). Vol. 5961 of Lecture Notes in Computer Sci-
ence. Springer, pp. 146-161.

[2] Aceto, L., Bloom, B., Vaandrager, F. W., 1994. Turning SOS rules into
equations. Information and Computation (I&C) 111, 1-52.

[3] Aceto, L., Fokkink, W. J., Verhoef, C., 2001. Structural operational
semantics. In: Bergstra, J. A., Ponse, A., Smolka, S. A. (Eds.), Hand-
book of Process Algebra, Chapter 3. Elsevier Science, Dordrecht, The
Netherlands, pp. 197-292.

[4] Aceto, L., Ingolfsdottir, A., Mousavi, M., Reniers, M. A., 2010. A rule
format for unit elements. In: Proceedings of the 36th International Con-
ference on Current Trends in Theory and Practice of Computing (SOF-

36

SEM 2010). Vol. 5901 of Lecture Notes in Computer Science. Springer,
pp- 141-152.

Baeten, J., Mauw, S., 1995. Delayed choice: An operator for joining
Message Sequence Charts. In: Proceedings of Formal Description Tech-
niques. Vol. 6 of IFIP Conference Proceedings. Chapman & Hall, pp.
340-354.

Baeten, J., Middelburg, C. A., 2002. Process Algebra with Tim-
ing. Monographs in Theoretical Computer Series: An EATCS Series.
Springer.

Baeten, J., Weijland, W. P., 1990. Process Algebra. Vol. 18 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press.

Bergstra, J. A., Klop, J. W., 1984. Process algebra for synchronous
communication. Information and Control 60 (1-3), 109-137.

Bergstra, J. A., Middelburg, C. A., 2005. Process algebra for hybrid
systems. Theoretical Computer Science (TCS) 335 (2-3), 215-280.

Cranen, S., Mousavi, M., Reniers, M. A., 2008. A rule format for as-
sociativity. In: van Breugel, F., Chechik, M. (Eds.), Proceedings of the
19th International Conference on Concurrency Theory (CONCUR’08).
Vol. 5201 of Lecture Notes in Computer Science. Springer, pp. 447-461.

D’Argenio, P., 1995. T-angelic choice for process algebras (revised ver-
sion). Tech. rep., LIFIA, Depto. de Informética, Fac. de Cs. Exactas,
Universidad Nacional de La Plata.

Engelfriet, J., 1985. Determinacy — (observation equivalence = trace
equivalence). Theoretical Computer Science (TCS) 36, 21-25.

Fokkink, W. J.; Vu, T. D., 2003. Structural operational semantics and
bounded nondeterminism. Acta Informatica 39 (6-7), 501-516.

Groote, J. F.; 1993. Transition system specifications with negative
premises. Theoretical Computer Science (TCS) 118 (2), 263-299.

Groote, J. F., Vaandrager, F. W., Oct. 1992. Structured operational
semantics and bisimulation as a congruence. Information and Compu-
tation (I&C) 100 (2), 202-260.

37

[16]

[17]

[18]

[23]

[24]

[25]

Hennessy, M., Plotkin, G., 1987. Finite conjunctive nondeterminism. In:
Voss, K., Genrich, H.J., Rozenberg, G. (Eds.), Concurrency and Nets,
Advances in Petri Nets. Springer, pp. 233-244.

Hoare, C. A. R., 1985. Communicating Sequential Processes. Prentice
Hall.

Lanotte, R., Tini, S., 2005. Probabilistic congruence for semistochastic
generative processes. In: Sassone, V. (Ed.), Proceedings of the 8th In-
ternational Conference on Foundations of Software Science and Compu-
tational Structures (FOSSACS’05). Vol. 3441 of Lecture Notes in Com-
puter Science. Springer, pp. 63-78.

Milner, A. R., 1989. Communication and Concurrency. Prentice Hall.

Mousavi, M., Phillips, I. C.,; Reniers, M., Ulidowski, I., 2009. Semantics
and expressiveness of ordered SOS. Information and Computation (I1&C)
207 (2), 85-119.

Mousavi, M., Reniers, M., Groote, J. F., Mar. 2005. A syntactic com-
mutativity format for SOS. Information Processing Letters (IPL) 93,
217-223.

Mousavi, M., Reniers, M. A., 2005. Orthogonal extensions in structural
operational semantics. In: Proceedings of the 32nd International Col-
loquium on Automata, Languages and Programming (ICALP’05). Vol.
3580 of Lecture Notes in Computer Science. Springer, pp. 1214-1225.

Mousavi, M., Reniers, M. A., Groote, J. F., 2007. SOS formats and meta-
theory: 20 years after. Theoretical Computer Science 373 (3), 238-272.

Nicollin, X., Sifakis, J., Oct. 1994. The algebra of timed processes ATP:
theory and application. Information and Computation (I1&C) 114 (1),
131-178.

Plotkin, G. D., Sep. 1981. A structural approach to operational seman-
tics. Tech. Rep. DAIMI FN-19, Computer Science Department, Aarhus
University, Aarhus, Denmark.

Plotkin, G. D., 2004. A structural approach to operational semantics.
Journal of Logic and Algebraic Progamming (JLAP) 6061, 17-139, this
article first appeared as [25].

38

[27] Tini, S., 2004. Rule formats for compositional non-interference proper-
ties. Journal of Logic and Algebraic Progamming (JLAP) 60-61, 353~
400.

(28] Ulidowski, I., Yuen, S., 2004. Process languages with discrete relative
time based on the ordered SOS format and rooted eager bisimulation.
Journal of Logic and Algebraic Progamming (JLAP) 60-61, 401-460.

[29] Vaandrager, F. W., 1991. Determinism — (event structure isomorphism
= step sequence equivalence). Theoretical Computer Science (TCS)
79 (2), 275-294.

[30] van Weerdenburg, M., Reniers, M., 2009. Structural operational seman-
tics with first-order logic. Electronic Notes in Theoretical Computer Sci-
ence 229 (4), 85-106.

[31] Verhoef, C., 1995. A congruence theorem for structured operational se-
mantics with predicates and negative premises. Nordic Journal of Com-
puting 2 (2), 274-302.

A. Proof of Theorem 9

We show that the problem of deciding whether a universal two-counter
machine diverges on input n reduces to the problem of determining whether
some closed term U, is deterministic for label a with respect to the transition
relation associated with a complete, finite transition system specification. To
this end, we exhibit a finite transition system specification with, for each n,
a term U, that behaves like a universal two-counter machine on input n
and performs a-labelled transitions as it computes. The a-labelled transition
relation will be deterministic, when restricted to the set of terms that are
reachable from U,, iff the universal two-counter machine diverges on input
n.

Recall that a universal two-counter machine operates on two counters [
and J. The machine has a sequence of labelled instructions ¢4, ..., {;, which
can take one of the following forms:

e halt,

e inc X, where X is either I or J,

39

e dec X, where X is either I or J,
e goto /;, where 1 <7 < k, and
e if X =0 then goto ¢;, where X is either [or J, and 1 <i < k.

The meaning of those instructions is the expected one. On input n, the
machine starts computing from instruction ¢; with [= n and J = 0. The
computation terminates if at any point the distinguished instruction halt is
reached. We can assume, without loss of generality, that the instruction
labelled ¢, is the distinguished halt instruction.

We now construct a finite transition system specification ¢/ that can “sim-
ulate” the above-mentioned universal two-counter machine. The signature
of U contains a constant z (representing the number zero), a unary prefix
operation ‘s’ (which will be used to implement the successor operation on
the natural numbers) and binary operation symbols /4, . .., .

The behaviour of the constant z and of the prefixing operation s is de-
scribed by the rules

z s
Z—Z S.T—XT

If the 7th instruction is the increment of a counter, say inc I, then ¢; has rule

fi(xa fl/) - €i+1(5-$7 y)

If the ith instruction is the decrement of a counter, say dec I, then ¢; has

rules
o0 S
rT— X r— T

li(z,y) = liv1(2',y) li(z,y) = liva(2',y)
If the ith instruction is an unconditional jump goto ¢;, where 1 < j < k,
then /¢; has rule

bi(z,y) = t(z,y)
If the ith instruction is a conditional jump, say if I = 0 then goto ¢;, where
1 < j <k, then ¢; has rules

o0 S
r— X r— T

Ui(m,y) = () y) 0i(2,y) 5 i (5.2, y)

40

Finally, if the ith instruction is halt, then ¢; has rules

€z<$7y)iz fi(l',y)i>8.2
Define
Up="0li(s.5..... 5.2,2) .
— -

n times
Then it is easy to see that the transition relation -, when restricted to the
set of terms that are reachable from U, is deterministic if, and only if, the

universal two-counter machine does not terminate its computation on input
I = n. This completes the proof.

41

