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The CN2 algorithm induces an ordered list of classification rules from examples using entropy as its 

search heuristic. In this short paper, we describe two improvements to this algorithm. Firstly, we 

present the use of the Laplacian error estimate as an alternative evaluation function and secondly, 

we show how unordered as well as ordered rules can be generated. We experimentally demonstrate 

significantly improved performances resulting from these changes, thus enhancing the usefulness 

of CN2 as an inductive tool. Comparisons with Quinlan's C4.5 are also made. 
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1 I n t r o d u c t i o n  

Rule induction from examples has established itself as a basic component of many machine learning 

systems, and has been the first ML technology to deliver commercially successful applications (eg. 

the systems GASOIL [Sloeombe et al., 1986], BMT [Hayes-Michie, 1990], and in process control 

[Leech, 1986]). The continuing development of inductive techniques is thus valuable to pursue. 

CN2 is an algorithm designed to induce 'if...then...' rules in domains where there might be 

noise. The algorithm is described in [Clark and Niblett, 1989] and [Clark and Niblett, 1987], and 

is summarised in this paper. The original algorithm used entropy as its search heuristic, and 

was only able to generate an ordered list of rules. In this paper, we demonstrate how using the 

Laplacian error estimate as a heuristic significantly improves the algorithm's performance, and 

describe how the algorithm can also be used to generate unordered rules. These improvements 

are important as they enhance the accuracy and scope of applicability of the algorithm. 
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2 A n  I m p r o v e d  E v a l u a t i o n  F u n c t i o n  

2 . 1  The Original E n t r o p y  F u n c t i o n  

The CN2 algorithm consists of two main procedures: a search algorithm performing a beam search 

for a good rule (shown in Appendix 2) and a control algorithm for repeatedly executing the search 

(shown later in Figure 1). 

During the search procedure, CN2 must evaluate the rules it finds to decide which is best. 

One possible metric of rule quality is its accuracy on training data (eg. an option for AQ15 

[Michalski et al., 1986]). An alternative is entropy, used by ID3 and the original CN2, which 

behaves very similarly to apparent accuracy. Entropy also prefers rules which cover examples of 

only one class. 

The problem with these metrics is that they tend to select very specific rules covering only a 

few examples, as the likelihood of finding rules with high accuracy on the training data increases 

as the rules become more specific. In the extreme case, a maximally specific rule will just cover 

one example and hence have an unbeatable score using the metrics of accuracy (scores 100% 

accuracy) or entropy (scores 0.00, a perfect score). This is undesirable as rules covering few 

examples are unreliable, especially with noise in the domain. Their accuracy on the training data 

does not adequately reflect their true predictive accuracy (ie. accuracy on new test data) which 

may appear. 

2.2 Significance Testing: A Partial Solution 

To avoid selecting highly specific rules, CN2 uses a significance test (see [Clark and Niblett, 1989]) 

which ensures that the distribution of examples among classes covered by the rule is significantly 
different from that which would occur by chance. In this way, many rules covering only a few 

examples axe eliminated, as the significance test deems their apparent high accuracy likely to be 

simply due to chance. 

However, while a significance test eliminates rules which are below a certain threshold of 

significance, there is still the problem that rules which just pass the significance test will tend to 

be preferred over more general and reliable but less apparently accurate rules. Consider a domain 

with two equally likely classes C1 and C2, and consider three rules R1, R2 and R3, where: 

R1 covers 1000 examples of class C1 and 1 of C2 (we denote this by [1000, 1]) 

R2 covers 5 examples of C1 and 0 of C2 (ie. [5, 0]) 

R3 covers [1, 0]) 

Here, the algorithm should ideMly prefer Ri as its accuracy on new test data is likely to be the best 

- rules R2 and R3 only cover a few examples and their apparent accuracies of 100% are not fully 

reflective of performance on new test data. However, although a 99% significance test eliminates 

R3, R2 will just pass and be selected in preference to R1. Raising the significance level further does 

not solve the problem as a rule R1.5 (say) may exist which again just passes the raised significance 

threshold. 
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We can describe the metrics of apparent accuracy/entropy as having an undesirable 'downward 

bias', ie. preference for rules low down in the general (top) to specific (bottom) search space. 

Raising the significance threshold causes the level of specificity at which the search terminates to 

raise, but does not eliminate the downward bias itself. 

2 . 3  T h e  U s e  o f  L a p l a c e  

In fact, as reported by other authors (eg. [Niblett, 1987]) an approximate measure does exist to 

measure the expected accuracy directly, namely 1 - the Laplace expected error estimate. This 

expected accuracy is given by the formula: 

where 

LaplaceAccuracy = (n¢ + 1)I(~,o, + k) (1) 

k is the number of classes in the domain 

nc is the number of examples in the predicted class c covered by the rule 

ntot is the total number of examples covered by rule 

When generating a rule list, the predicted class c for a rule is simply the class with the most 

covered examples in it. 
This formula is a special case of the m-probability-estimate developed by Cestnik [Cestnik, 1990]: 

mPAccuracy = (no q- po(c) ,-,,)1(,~,o, + m) 

where uniform prior probabilities po for classes are assumed (ie. po(c) = 1/k) and the tunable pa- 

rameter m is set to k. The m-probability-estimate is analysed further in [Cestnik and Bratko, 1991]. 

For our example above the Laplace accuracy estimates for predicting the class with the most 

covered examples in are 99.8% for R1, 85.7% for R2 and 66.6% for R3. Thus Laplace avoids the 

undesirable 'downward bias' of entropy, and which significance testing only partly overcame. 

A final check must be included to ensure the expected accuracy is at least better than that  of 

a default rule predicting the class for all examples. 

2 . 4  T h e  N e w  R o l e  o f  S i g n i f i c a n c e  T e s t i n g  

Significance testing can still be included to prune out the most specialised (and hence less fre- 

quently applicable) rules in the rule list. This reduces the complexity of the rule list, but at a 

slight cost in predictive accuracy. Interestingly, the behaviour of significance testing with Laplace 

is qualitatively different to that  with entropy. With entropy, raising the significance threshold 

causes CN2 to select slightly more general rules during induction. With Laplace, general rules 

tend to be favoured anyway, and significance testing instead alters the point at which CN2 stops 

searching for further rules. In other words, with entropy the test affects which rules are chosen as 
'best ' ,  but with Laplace acts solely as a termination criterion for the algorithm. 
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Table 1: Details of Experimental Domains 

Domaint 

lymphography 
pole-and-cart 

soybean 
heart-diseaseC 
heart-diseaseH 

glass 
primary- tumour 
voting-records 

thyroid 
breast- cancer 

hepatitis 
echocardio 

Description Number of 
Exs Atts Classes 

disease diagnosis 148 18 4 
predict human balancing action from exs 1044 4 2 

disease diagnosis 307 35 19 
disease diagnosis (data from Cleveland) 303 13 2 
disease diagnosis (data from Hungary) 294 13 2 
predict glass type from chem. content 194 7 9 

predict tumour type 330 17 15 
predict democrat/republican from votes 435 16 2 

disease diagnosis I960 29 3 
predict if recurrence is likely 286 9 2 

predict if survival likely 157 19 2 
predict if survival from heart problem likely 131 7 2 

t (Sources: Lymph, prim-tumour, brenst-cancer from Ljubljana, 1985. Pole-&-cart from 2hiring Inst., 
1990. Remainder from UCI, 1989. See end of paper for details of any data conversions made.) 

2.5 Experimental Comparison 

2.5.1 E x p e r i m e n t a l  M e t h o d  

Experiments were performed to measure the improvement in predictive accuracy using the Laplace 

heuristic. As demonstrated by previous authors (eg. [Buntine and Niblett, 1990]), tests on a single 
domain are not sufficient to draw reliable conclusions about the relative performance of Mgorithms. 
Thus experiments on twelve domains shown in Table 1 were conducted. 

CN2 using entropy and Laplace were compared. Also, comparisons with Quinlan's C4.5 

[Quinlan et al., I987, Quinlan, 1987] were performed. Data was split into 67% for training and 

33% for testing, and the results averaged over 20 runs. For CN2, a star size of 20 was used and 

significance testing was switched off. (The effect of significance testing is examined later). For 

C4.5 a single, pruned tree was generated for each run. 

2.5.2 Results: Comparative Accuracies 

Table 2 shows the average accuracies obtained over the above domains. To make an overall 

comparison between the algorithms, a paired, two-tailed t-test was used, whose results are also 

shown in this table. From this t-test, it can be seen that using the Laplacian heuristic significantly 

(>99% significant, from the 2-tail prob.) improves CN2's accuracy, with an average improvement 

of 6.4%. The comparison between CN2 (Laplace) and C4.5 did not reveal any significant difference 

in accuracy. Additionally, the average size of the rule lists induced by CN2 (Laplace) was smaller 

than for CN2 (Entropy). The sizes are tabulated in Appendix 1. 
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Table 2: Percentage Accuracies of Algorithms 

The table shows percentage accuracies (a denotes their standard deviations). The 
graph schematically re-presents the data as follows: Each line corresponds to a dif- 
ferent domain, and connects the observed accuracy using one algorithm with another. 
Thus an upward slope reflects an improvement in accuracy, and a downward slope a 
worsening. The average improvement of CN2 (Laplace), and the significance of this 
improvement, is summarised in the second table. 

Domain Algorithm 
CN2 C4.5 Default 

(Entropy) (Laplace) 
lymphography 
pole-and-cart 

soybean 
heart-diseaseC 
heart-diseaseH 

glass 
primary-turnout 
voting-records 

thyroid 
breast- can cer 

hepatitis 
echocardio 

71.5 ~6.3 79.6 ~5.7 76.4 e6.2 54.2 ~6.7 
52.5 ~1.9 70.6 a3.1 74.3 a2.0 48.8 al.O 
74.7 ~6.7 82.7 ~3.9 80.0 ~3.6 10.3 al.5 
66.3 t~8.5 75.4 a3.6 76.4 ~4.5 53.1 ~3.8 

90 .1 

/ s s 

.-.._pc 

< 60q / q 

' ° ] /  
C..N2 CN2 C4.5 CN2 

Comparison 

73.0 a4.6 75.0 a3.8 78.0 ¢r5.5 64.9 a3.5 
45.2 ~8.1 58.5 ~5.0 64.2 ~5.1 34.0 ~r4.4 
35.6 ~5.2 49.7 a9.8 39.0 ~4.0 24.5 a2.8 
93.6 al.8 94.8 al.7 95.6 at.1 61.6 ~2.9 
95.6 ~0.7 96.3 a0.7 96.4 a0.9 95.4 ~0.8 
69.0 a3.6 65.1 a5.3 72.1 a3.7 71.3 ~2.3 
71.3 ~r5.2 77.6 ~r5.9 79.3 ~5.8 78.0 ~4.6 
63.9 a5A 62.3 a5.1 63.6 ¢r5.3 64.4 a4.9 

tent.) (Lap.) (Lap.) 

of mean accuracies using l)aired, two-tailed t-test on the above data: 
Algorithms Mean Improvement Significance of 
Compared: (Mean X - Y) improvement 

CN2 (Laplace) - CN2 (Entropy) 6.4% 
CN2 (Laplace) - C4.5 -0.5% 

99.3% 
30.0% 

2.5.3 Results: Effect of Pruning 

In the original CN2 (ie. using entropy), using a significance test caused the algorithm to select a 

smaller number of more general rules (possibly with counter-examples against them) in preference 

to a large number of highly specific rules. The Laplace heuristic, however, is sufficient on its own 

to bias the search towards those general rules with higher predictive accuracy, tending to find rules 

of highest predictive accuracy (and thus also high significance) first. It would thus be expected 

that removing less significant rules using a significance test would have a different effect, namely 

that CN2 would stiU select the same rules early on during the search but would terminate earlier. 

This was indeed observed (see Appendix 1) with the same early rules tending to appear in the 

rule list but with the number of rules decreasing and the overall accuracy also slightly decreasing. 
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3 Generat ing Unordered Rules  

3.1  T h e  D i s a d v a n t a g e  o f  O r d e r e d  R u l e s  

The original CN2 algorithm generates rules assembled in a particular order, described as a rule list 

by Rivest [Rivest, 1987]. During classification of a new example, each rule is tried in order until 

one fires. The algorithm then exits, assigning the class which that rule predicted to the example. 

Rule lists have the nice property of being 'logical', in the sense that clashes between rules cannot 

occur as only one rule can ever fire. Thus there is no need to include probabilistic machinery for 

resolving clashes between rules. 
However, there is also a corresponding problem in understanding the rules, in that the meaning 

of any single rule is dependent on all the other rules which precede it in the rule list. Consider, 
for example, a rule list: 

If feathers = yes then class = bird 

else if legs = two then class = human 

else ... 

The rule "if legs=two then class=human", when considered alone, is not correct as birds also 

have two legs. Thus to understand the rule, all the previous rules in the list must also be taken 

into consideration. This problem becomes acute with a large number of rules, making it difficult 

for an expert to understand the true meaning of a rule far down in the list. As induced rules must 

generally be validated by experts before their use in applications, this is a significant disadvantage. 

3 .2  G e n e r a t i n g  U n o r d e r e d  R u l e s  U s i n g  C N 2  

3.2.1 The  CN2 (unordered)  Algor i thm 

CN2 consists of a search procedure and a control procedure. Fortunately CN2 can be easily 

modified to generate an unordered rule set by changing only the control procedure, leaving the 

beam search procedure unchanged (apart from the evaluation function, described below). The 

original control procedure for ordered rules is shown in Figure 1, and the control procedure for 

unordered rules is shown in Figure 2. (The search procedure is shown in Appendix 1). 

The main modification to the algorithm is to iterate the search for each class in turn, removing 

only covered examples of that class when a rule has been found. Unlike for ordered rules, the 

negative examples remain because now each rule must independently stand against all negatives. 

The covered positives must be removed to stop CN2 repeatedly finding the same rule. 

To effect this rule search for each class in turn, the Laplace heuristic (Equation 1) must be 

applied differently: with ordered rules the predicted class c is taken simply as the one with the 

most covered examples in it, but with unordered rules the predicted class is fixed to be the c lass  

selected by the revised control procedure. 
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Figure h The CN2 Ordered Rules Algorithm 

p r o c e d u r e  CN2ordered(examples,  c l a s s e s ) :  
le t  r u l e l i s t  = H 
r e p e a t  

call F indBes tCondi t ion(examples )  to find bes t cond  
i f  bestcond is not null 
t h e n  le t  c l a s s  be the most common class of exs. covered by bes t cond  

& add rule ' i f  bes t cond  t h e n  predict c l a s s '  to end of r u l e l i s t  
&: remove from examples all examples covered by bes tcond  

un t i l  b e s t c o n d  is null 
r e t u r n  r u l e l i s t  

Figure 2: The CN2 Unordered Rules Algorithm 

p r o c e d u r e  CN2unordered(allexamples, classes): 
le t  ruleset = {} 
for each class in classes: 

generate rules by CN2ForOneClass(allexamples,class) 
add rules to ruleset 

return ruleset. 

p r o c e d u r e  CN2ForOneClass(examples,class): 
le t  rules = {} 
repeat 

call FindBestCondition(examples, class) to find bestcond 
if bestcond is not null 
t h e n  add the rule ' i f  be s t cond  t h e n  predict c l a s s '  to r u l e s  

&: remove from examples all exs in c l a s s  covered by bes t cond  
u n t i l  b e s t c o n d  is null 
r e t u r n  rules 

3.3 Applying Unordered Rules  

With an unordered rule list, all rules are tried and those which fired collected. If a clash occurs 

(ie. more than one class predicted), some probabilistic method is needed to resolve clashes. The 

method used here is to tag each rule with the distribution of covered examples among classes, and 

then to sum these distributions to find the most probable class should a clash occur. For example, 

cons ide r the th ree  rules: 

if legs=two and feathers=yes then class=bird, covers [13,0]. 

if size=large and flies=no then class=elephant, covers [2,10]. 

if beak=yes then class=bird, covers [20,0]. 

Here the two classes are [bird,  e lephant ] ,  [13,0] denoting that the rule covers 13 (training) 

examples of b i r d  and 0 of e l ephan t .  Given a new example of a large, beaked, two-legged, 
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Table 3: Percentage Accuracies of Algorithms 

(See Table 2 for explanation of graph and tables) 

Domain 

lymphography 
pole-and-cart 

soybean 
heart-diseaseC 
heart-diseaseH 

glass 
primary-tumour 

voting-records 
thyroid 

breast- can cer 
hepatitis 

echocardio 

Algorithm 
CN2 (Laplace) C4.5 

unordered ordered 
81.7 0.4.3 79.6 0.5.7 76.4 0.6.2 
72.0 0.2.9 70.6 0.3.1 74.3 0.2.0 
81.6 0.3.8 82.7 a3.9 80.0 a3.6 
76.7 ~3.9 75.4 0.3.6 76.4 0.4.5 
78.8 0.4.1 75.0 0.3.8 78.0 0.5.5 
65.5 0.5.6 58.5 0.5.0 64.2 0.5.1 
45.8 0.3.6 49.7 ~9.8 39.0 a4.0 
94.8 0.1.8 94.8 al.7 95.6 ~1.1 
96.6 0.0.9 96.3 0.0.7 96.4 0.0.9 
73.0 0.4.5 65.1 0.5.3 72.1 0.3.7 
80.1 0.5.7 77.6 ~5.9 79.3 0.5.8 
66.6 a7.3 62.3 ¢5.1 63.6 ~5.3 

100 

Default 90 

54.2 a6.7 s0 : : ~ h  
48.8 al.0 ~ ~ 1 ~  
10.3 ¢1.5 o~ T0 
53.1 a3.8 ~ 
64.9 0.3.5 < so 
34.0 a4.4 
24.5 0.2.8 so 
61.6 0.2.9 ""---.,..~p r 
95.4 0.0.8 40 
71.3 0.2.3 
78.0 0"4.6 $ 4 

CN2 CN2 64.4 ¢r4.9 (ord) (unord) 

~dred, two-tailed t-test on the above data: 
Mean Improvement Significance of 

(Mean X - Y) improvement 

Comparison of mean accuracies using p 
Algorithms 
Compared: 

,-...____+~ 

J 

pr 

J 
4 A 

C4.5 CN2 
(unord) 

CN2 (unordered) - CN2 (ordered) 2.0% 95.0% 
CN2 (unordered) - C4.5 1.5% 94.0% 

feathered, non-flying thing, all three rules fire. The clash is resolved by summing the covered 

examples (sum is [35, 10]) and then predicting the most common class in the sum (bird). 

3.4 Comparative Performance 

3.4.1 E x p e r i m e n t a l  M e t h o d  

The same experimental method as performed for the earlier experiments on ordered rules (Sec- 

tion 2.5.1) was followed in order to compare the performances of ordered and unordered rule sets. 

Additionally, a comparison with C4.5 was again made. 

3.4.2 Resu l t s :  C o m p a r a t i v e  Accurac i e s  

The results are shown in Table 3. Surprisingly, the CN2 (unordered) algorithm had an even higher 

accuracy than that of CN2 (ordered), with a small (2%) but significant (at the 95% level) higher 

average accuracy. The comparison also showed a slight (1.5%) but again significant (at the 94% 

level) improvement over C4.5. 

One possible explanation for this high performance is that, with unordered rules, several rules 
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may contribute ~o the classification of one example thus reducing effects of noise and an occasional 

poorly performing rule. Spreading.of the classification decision over several rules has been termed 

using 'multiple knowledge' [Gams et al., 1991] and algorithms specifically designed to generate 

'extra'  rules have been designed elsewhere (eg. [Gams, 1989, Cestnik and Bratko, 1988]). Cestnik 

and Bratko report this technique resulted in significantly improved accuracies, and it seems likely a 

similar phenomenon is occurring here. The possible presence of extra classificational information in 

the unordered rules, compared with the ordered rules and C4.5's trees, is supported by examination 

of the rule set sizes. Unordered rule sets were about twice the size of ordered rule lists, and about 

four times the size of C4.5 trees, as tabulated in Appendix 1. Pruning the unordered rule sets 

by significance testing using a significance threshold of 99.5% reduced them to a size similar to 

C4.5's trees, but also slightly reduced the accuracy to one no longer significantly different from 

that of C4.5. 

3.4 .3  Effect  o f  P r u n i n g  

As for ordered rules, applying a significance test reduced the number of rules found by the algo- 

rithm while also slightly reducing the predictive accuracy (see Appendix 1). 

3.4.4 W o r s e - t h a n - D e f a u l t  Domains  

An interesting finding, worthy of brief comment, was that CN2 (ordered), in the breast-cancer and 

echocardio domains, induced rules performing significantly (ie. outside the bounds of one standard 

error) worse than the default rule (confirmed by repeating the experiments over 250 runs). The 

simple explanation for this is that, in these cases, CN2 was still slightly overfitting the rules to the 

data. To understand how induced rules can actually do worse than the default rule, consider the 

worst case of overfitting where a ruleset/decision tree is grown so every rule/leaf covers only one 

training example. Given 70% of examples are in class cl  and 30% in class c2, and the classes are 

completely independent of the attributes (ie. 100% noise), the overfltted rules/tree will be correct 

with probability 0.7 for rules predicting c l  and 0.3 for c2. With 70% of the examples in c l  and 

30% c2, the overall probability correct will thus be 0.7 × 0.7 + 0.3 × 0.3 = 0.58, worse than the 

default accuracy of 0.7. The overfltting observed in our experiments reflects behaviour between 

these two extremes, and suggests the pruning of ordered rules could still be slightly improved. 

4 C o n c l u s i o n  

In this paper we have described two important extensions to the CN2 algorithm. Most importantly, 

we has shown how the algorithm can be extended to generate unordered as well as ordered rules, 

thus contributing to the comprehensibility of the induced rule set. Secondly, we have described a 

different evaluation function for CN2, and experimentally demonstrated a significantly improved 
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performance resulting from this change. These two extensions thus contribute to CN2's utility as 

a tool for inductively building knowledge-based systems. 
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D a t a  C o n v e r s i o n  N o t e s  

Key: cl=classes, ex=examples, att=attributes, lymph: orig data 9cl/150ex reduced to 4cl/148ex 
by removing 3cl (populations 1,1,0) & merging 2 x 2cl (forms 'X' and 'maybe X'). p-tumour: 
orig data 22cl/339ex reduced to 15cl/330ex by removing 6cl (popns. 0,1,2,1,2,2,1). b-cancer: Sex 
replaced illegal att val with 'unknown'. soybean: UCI file soybean-large.data, h-disease{C,H}: 
orig 5cl reduced to 2cl (0=absence, 1-4=presence). glass: remove attl (ex no.). thyroid: 1960ex 
randomly drawn from UCI file allbp.data, echocardio: Predict for att 2 ('alive'/'dead'), delete 
atts 1 & 13 (alternative class vals), 10-12 (meaningless), delete lex with unknown cl val. Others: 
conversion straightforward. 
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A p p e n d i x  1:  E f f e c t  o f  P r u n i n g  o n  C N 2  

(See Table 2 for explanation of tables) 

A c c u r a c y :  

CN2 (Entropy) CN2 (Laplace) C4.5 
Domain ~ (Ordered rules) Ordered Rules Unordered Rules 

Sig. Threshold -~ 0% 99.5% 0% 99.5% 0% 99.5% 
lymphography 
pole-and-cart 

soybean 
heart-diseaseC 
heart-diseaseH 

glass 
pr imary-tumour 
voting-records 

thyroid 
breast-cancer 

hepatitis 
echocardio 

71.5 a6.3 68.4 a8.6 
52.5 al.9 52.2 0"1.7 
74.7 a6.7 54.2 a6.5 
66.3 a8.5 67.1 a9.2 
73.0 a4.6 81.6 a3.4 
45.2 a8.1 44.4 a7.7 
35.6 ~5.2 33.0 a3.5 
93.6 al.8 94.0 al.8 
95.6 ~0.7 95.6 0"0,9 
69.0 a3.6 68.7 a4.3 
71.3 a5.2 77.5 ~5,6 
63.9 a5.4 67.5 a5.6 

79.6 a5.7 74.4 ~5.9 
70.6 a3.1 67.9 0"3.3 
82.7 a3.9 57.5 0"4.6 
75.4 a3.6 76.1 0"4.4 
75.0 a3.8 74.9 a4.7 
58.5 a5.0 56.9 a7.7 
49,7 ~9.8 38,7 a5.3 
94.8 al.7 92.8 0"1.8 
96,3 0"0.7 96.3 a0.5 
65.1 a5.3 64.2 a7,6 
77.6 a5.9 78.1 0"5.9 
62.3 a5.1 63.2 a7.7 

81.7 a4.3 76.5 a5.3 
72.0 a2.9 63,0 a3.2 
81.6 a3.8 76.1 a4.4 
76.7 a3.9 76.6 a3.7 
78.8 a4.1 77.8 a3.9 
65.5 a5.6 61.6 a8.3 
45,8 a3.6 41.4 a5.8 
94.8 al.8 93.3 or2.1 
96.6 a0.9 96.1 al.2 
73.0 a4.5 70.8 a3.5 
80.1 ~5.7 80.8 0"4.5 
66.6 ¢r7.3 69.4 a6.8 

Average 67.7 67.0 74.0 70.1 76.1 73.6 

R u l e  l i s t / r u l e  s e t / d e c i s i o n  t r e e  size: 
(Number of nodes inc. leaves in tree, or total number of att. tests in rule list/set) 

CN2 (Entropy) CN2 (Laplace) C4.5 
Domain ~ (Ordered rules) Ordered Rules Unordered Rules 

Sig. Thr. --, 0% 99.5% 0% 99.5% 0% 99.5% 

76.4 a6.2 
74.3 a2.0 
80.0 a3.6 
76.4 a4.5 
78.0 a5.5 
64.2 a5.1 
39.0 a4.0 
95.6 ~1.1 
96.4 a0.9 
72.1 a3.7 
79,3 ~5.8 
63.6 a5.3 

74.6 

lymph 
pole-&-cart 

soybean 
heart-disC 
heart-disH 

glass 
p- tumour 

voting 
thyroid 

b-cancer 
hepatitis 

echocardio 

24.6 a4.4 5.1 al.1 
16,8 a6,8 3.5 a2.8 

213.2 ~38.8 21.6 al.7 
60.0 0"10.3 9.1 cr2.7 
37.0 a7.7 6.1 a2.6 
79.0 0"9.4 4.7 a2.3 

313.9 ~24.7 5.4 a2.1 
11.8 a3.4 8.1 a2.0 
1.3 ~0.8 1.1 a0.5 

27.9 ~6.0 3.8 al.5 
18.2 a4.9 2.2 al.2 
16.5 a5.0 1.9 a0.9 

21.1 ~3.8 8.2 0"2.4 
133.6 a6.3 80.3 at5.3 
55.8 ~7.4 31.3 a2.7 
35,1 a2.5 28.4 a3.2 
40.9 a4.0 26.1 a5.4 
32.8 a3.0 17.2 0.3.0 
85.2 a9.6 23.0 a5.2 
41.6 a8.2 15.8 0.5.2 
48.4 a5.8 37.2 a7.1 

53.7 a5.4 25.8 0.7.4 
24.0 a5.5 12.6 Cr3.0 
26.4 ~4.0 13.3 a4.4 

40.4 a4.6 13.5 a2.3 
255.8 ~8.3 46.5 a8.2 
113.9 cr9.7 83.5 a6.3 
68,6 a5.4 22.8 a4.1 
83.4 a7.5 20.7 a4.5 
49.8 a3.6 30.8 a3.5 

351.0 cr23.4 131.4 a9.3 
64.8 ~r12.1 19.9 (r3.1 
95.6 ~9.9 30.6 a4.5 
100.5 a6.7 18.0 a5.6 
43.4 a6.7 12.6 a2.3 
48.6 a3.6 13.1 a2.1 

Average 68.4 6.1 49.9 26.6 109.7 37.0 

16.4 cr6.3 
90.2 a10.2 
65.9 a8.4 
22.7 a4.6 
7.2 a3.7 

30,9 ~5.8 
55.9 0.13.1 

7.7 (r3.4 
15.5 ~7.4 
13.0 aT.0 
6.4 0"2.6 
9.2 0.4.7 

28.4 
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A p p e n d i x  2:  T h e  C N 2  R u l e  S e a r c h  A l g o r i t h m  

p r o c e d u r e  F indBes tCondi t  ion(examples [ ,clas s]a): 
le t  mgc = the most general condition ( ' t rue ' )  
le t  s t a r  initially contain only the mgc (ie. = { mgc }) 
le t  news ta r  = {} 
le t  bes t cond  = null 
whi le  s t a r  is not empty 

for  each condition cond in s t a r :  
fo r  each possible attr ibute test not already tested on in cond 

le t  cond' = a specialisation of cond, formed by adding t e s t  
as an extra conjunct to cond (ie. cond' = 'cond A~ t e s t ' )  

i f  cond' is better  than bes tcond  
A~ cond' is statistically significant 

t h e n  le t  bes t cond  = cond'. 
add cond' to news ta r  
if  size of newsta r  > maxs tar  (a user-defined constant) 
t h e n  remove the worst condition in newstar .  

le t  s t a r  = newsta r  
r e t u r n  be s t cond  

aclass is only required for generating unordered rules 


