
Rule Interchange Format: The Framework

Michael Kifer

State University of New York at Stony Brook, USA

Abstract. The Rule Interchange Format (RIF) is an activity within the
World Wide Web Consortium aimed at developing a Web standard for
exchanging rules. The need for rule-based information processing on the
Semantic Web has been felt ever since RDF was introduced in the late
90’s. As ontology development picked up pace this decade and as the
limitations of OWL became apparent, rules were firmly put back on the
agenda. RIF is therefore a major opportunity for the introduction of rule
based technologies into the main stream of knowledge representation and
information processing on the Web.

Despite its humble name, RIF is not just a format and is not primar-
ily about syntax. It is an extensible framework for rule-based languages,
called RIF dialects, which includes precise and formal specification of the
syntax, semantics, and XML serialization. In this paper we will discuss
the main principles behind RIF, introduce the RIF extensibility frame-
work, and outline the Basic Logic Dialect—the only fully developed RIF
dialect so far.

1 Introduction

The Rule Interchange Format (RIF) activity within the World Wide Web Con-
sortium (W3C) aims to develop a standard for exchanging rules among disparate
systems, especially on the Semantic Web. Given that the existing rule systems,
both commercial and research prototypes, have wide variety of features and dif-
fer not only syntactically but also—more importantly—semantically, the goal
of the RIF effort is not at all simple. Some systems extend one another syn-
tactically and/or semantically, but in many cases this is true only to a degree.
Other rule systems are largely incompatible, each having features that the other
system does not. With this diversity, how can interoperability be achieved?

The vision of RIF is a collection of dialects—an extensible set of languages
with rigorously defined syntax and semantics. Extensibility here means that new
dialects can be added, if sufficient interest exists, and the languages are supposed
to share much of the syntactic and semantic apparatus.

Because of the emphasis on rigor and semantics, the term “format” in the
name of RIF might seem a misnomer. However, making a cute acronym is not the
only reason for the choice of this term. The idea behind rule exchange through
RIF is that the different systems will be able to map their languages (or sub-
stantial parts thereof) to and from the appropriate RIF dialects in semantics-
preserving ways and thus rule sets and data could be communicated by one

system to another provided that the systems can find a suitable dialect, which
they both support. The intermediate RIF language is supposed to be in the XML
format, whence the term “format” in the RIF name.

The RIF Working Group has plans to develop two kinds of dialects: logic-
based dialects and dialects for rules with actions. The logic-based dialects include
languages based on first-order logic and also a variety of logic programming
dialects based on the different non-first-order semantics such as the well-founded
and stable semantics [22, 12]. The rules-with-actions dialects will be designed for
production rule systems, such as Jess and Drools [15, 14], and for reactive rules
such as those represented by XChange [4], FLORA-2 [16], and Prova [18]. At
the time of this writing, only the Basic Logic Dialect, RIF-BLD (which belongs
to the first category), has been substantially completed and is in the “Last
Call” status in the W3C standardization process [2]. In the second category, a
Production Rule Dialect, RIF-PRD, is under active development [8].

These plans are very ambitious, and in the beginning it was not at all obvious
how the different dialects could be made to substantially share syntactic and,
especially, semantic machinery. Even within the logic-based category the dialects
are expected to have vastly different semantics: the first-order semantics warrants
inferences that are different from those warranted by the logic programming
semantics, and the various logic programming semantics do not agree in all
cases. This is where the RIF extensibility framework comes in. At present, only
the Framework for Logic Dialects, RIF-FLD, has been worked out to sufficient
degree of detail [3], and this is the main subject of this paper.

We assume general familiarity with first-order logic syntax and semantics,
and with the idea of rule-based languages, especially logic programming lan-
guages like Prolog [7]. We also assume that the reader understands the difference
between first-order logic based languages and those based on logic programming;
especially the difference that the notion of negation plays in both.

This survey is organized as follows. In Section 2, we give an overview of the
RIF framework for logic dialects. Section 3 describes the syntactic machinery of
the framework, including the notions of terms, formulas, signatures, and well-
formedness. Section 4 describes the semantic framework. In Section 5 we give
a brief introduction to the Basic Logic Dialect of RIF and show how it can be
described in terms of the RIF framework. Section 6 concludes the paper.

2 RIF Framework for Logic Dialects—An Overview

The RIF Framework for Logic Dialects, RIF-FLD, is a formalism for specifying
all logic dialects of RIF, including the Basic Logic Dialect [1]. In itself, FLD
is a logic in which both the syntax and semantics of the dialects are described
through a number of mechanisms that are commonly used in practice and in
literature, but are rarely brought all together. Fusion of all these mechanisms is
required because the framework must be broad enough to accommodate several
different types of logic languages and because various advanced mechanisms are
needed to facilitate translation into a common framework. RIF-FLD gives precise

definitions to these mechanisms, but allows details to vary. The design of RIF
envisages that its future logic dialects will be based on RIF-FLD and will be
defined as specializations of FLD. Being all derived from the same framework
will ensure that RIF dialects are syntactically and semantically compatible in the
sense that extensions, restrictions, and common subsets of the different dialects
will be formally identifiable and rule systems would be able to communicate
their rule sets using a collection of such dialects.

The framework has three main components: the syntactic framework, the se-
mantic framework, and the XML framework. The syntactic framework defines a
general mechanism for specifying which kinds of terms and formulas are allowed
and how to specialize this mechanism to produce specific dialects. The seman-
tic framework provides model-theoretic mechanisms for specifying how logical
inference is to be defined in the derived dialects. The XML framework defines
the general principles for mapping the syntax of RIF-FLD to a concrete XML
interchange format.

As an example of this approach, the RIF Basic Logic Dialect is normatively
defined as a specialization of RIF-FLD. Having RIF-FLD is a major advantage
because the specification of RIF-BLD as a specialization of RIF-FLD is very
short and easy to grasp. For comparison, RIF-BLD is also specified directly,
without relying on the framework. This specialization is also normative, but
much longer and more complex. It is required that the two specifications of BLD
are equivalent and any discrepancy must be treated as a mistake to be corrected.

In the following sections, we will provide an informal survey of the syntactic
and semantic frameworks. It is informal both in order to be brief and also because
the reader is encouraged to consult the definitive document [3].

3 The Syntactic Framework

The syntactic framework defines the types of terms and formulas that are allowed
in a dialect. A specific dialect might choose to restrict certain combinations of
symbols and throw out some combinations altogether.

3.1 Terms: The Object Level

The framework defines the following types of terms (among others: it is not the
purpose this this survey to complete):

– Constants and variables. In the RIF presentation syntax, variables are de-
noted using alphanumeric symbols prefixed with a “?”-mark, and we will
also do so here.

– Positional terms. If t and t1, ..., tn are terms then t(t1 ... tn) is a posi-
tional term.1 These are like the usual terms of first-order logic except that

1 The presentation syntax of RIF does not use commas to separate the arguments in
predicates and terms. It is an abstract syntax and, as such, it omits certain details
that might be important for unambiguous parsing.

the symbols are not necessarily partitioned into individuals, functions, and
predicates (any such restrictions are left to the dialects’ discretion). In addi-
tion, variables are allowed to occur anywhere a term can. Thus, a positional
term can be as general as a HiLog term [5] and expressions of the form
?X(abc ?W)(?Y ?Z(?V 33)) are well within the limits of what is allowed.

– Terms with named arguments. The arguments of a term can be named as in
person(name→Bob age→33). Such a term is distinct from, say, person(Bob 33)
or person(spouse→Bob age→33). However, the order of the named argu-
ments within such a term is immaterial, so person(name→Bob age→33)
and person(age→33 name→Bob) are indistinguishable.

– Frame and classification terms. RIF-FLD includes certain terms borrowed
from F-logic [17]. A frame term has the form t[p1→v1 ... pn→vn], where
t, p1, ..., pn, v1, ..., vn are terms. The order of the attribute specifications
(the pi→vi’s) is immaterial, like in the case of terms with named arguments.
However, frames have very different semantics compared to the named ar-
gument terms. For instance, in bob[name→Bob age→33], bob denotes an ob-
ject and name→Bob, age→33 are statements about the properties of that
object. In contrast, person(name→Bob age→33) is not a statement about
the object person. Here person is the name of a relation type (think of a
database table) and name→Bob age→33 describes a particular relation of
that type. So, bob[spouse→mary] would still be a statement about the same
object bob (just about some other of its properties), while the statement
person(spouse→Mary) would have no relationship to the earlier statement
person(name→Bob age→33).
Classification terms include membership and subclass terms. Here t#s rep-
resents a membership relationship between the member-object t and the
class-object s; s##c is a term that represents the subclass relationship be-
tween the objects s and c.2 For instance, student##person.

– Other kinds of terms include equality and external terms. The latter repre-
sent references to outside sources of information and built-ins.

Since communication between the different rule systems through the medium
of RIF is supposed to be by translation, one might ask why so many different
kinds of terms? After all, it is well known that everything can be encoded us-
ing just the first-order terms; in fact lists alone suffice. The answer is model-
preservation or round-tripping. One of the requirements in RIF is to support
round-tripping, i.e., the ability to translate a rule set from, say, system S1 to
RIF, then to S2, then back to RIF, back to S1, and get not only a semantically
equivalent set of rules, but essentially the same set of rules from the modeling
points of view. What this is supposed to mean precisely has not been addressed,
but the intuitive idea is that if something was modeled as an object (a frame
term) then it should stay an object and not metamorphose itself into a relation
(a positional or a named argument term) after returning back to S1. Likewise,

2 Those familiar with F-logic might be surprised to see t#s and s##c instead of t : s

and s :: c, but the colon has been irrevocably appropriated for other purposes in the
world of W3C standards.

the subclass and membership relationships are well-established modeling prim-
itives and must be recognized by the syntax. This also simplifies translation to
and from RIF, and makes it more natural.

The other question that comes to mind is why things that are normally called
formulas (e.g., frames and classification terms in F-logic [17]) are called terms in
RIF-FLD? The answer is that RIF-FLD is required to support a degree of reifi-
cation—the ability to represent formulas (which are statements about true facts
or beliefs) as terms (i.e., objects). In this way, RIF will allow dialects in which
statements can be made about other statements, and these meta-statements can
then be processed by rules.

3.2 Formulas: The Statement Level

The logic RIF framework defines several types of formulas, most of which are
adaptations from other known logics. However, in RIF-FLD they are all together
in one logic system.

– Atomic formulas: A term is also an atomic formula. Like in HiLog [5], this
blurs the distinction between objects and statements about objects and lays
a foundation of the infrastructure for meta-reasoning in RIF dialects that
might choose to support it.

– Conjunction and disjunction: These are the usual connectives in first-order
logic. The RIF syntax for that is And(φ1 ... φn) and Or(φ1 ... φn).

– Negation: RIF-FLD supplies both the classical negation as used in first-order
logic, denoted Neg, and a symbol for default negation, as used in logic pro-
gramming. The latter is intended for logical notions of default negation, such
as those based on the well-founded and the stable-model semantics [22, 12]—
not for negation-as-failure, as used in Prolog [6]. In view of this, the current
choice of the symbol for default negation, Naf, is misleading and might be
replaced in the future. It is also possible that explicit negation (a weaker
form of classical negation that is sometimes used in logic programming [13])
might be added in the future.3

– Rule implication: A rule implication is a formula of the form phi :- ψ. This
is the notion of implication as used in logic programming; it is different from
the classical implication and is not equivalent to Or(φ Negψ).

– Quantification: A quantified formula is, as usual, a formula of the form
Forall ?V1 ... ?Vn (φ) or Exists ?V1 ... ?Vn (φ).

Apart from these, FLD also has Group-formulas and Document-formulas. A group
formula is simply a set of formulas of the above form, and groups can be nested.
This type of formulas exists just for convenience and for possible future enhance-
ments. One convenience is the ability to assign an identifier (say, a URL) and
meta-data to a group of formulas. This information can then be used in other
Web documents.

3 Since true classical negation and explicit negation are never used together, it is also
possible that Neg will be used for both.

A Document-formula generalizes what we earlier informally called a “rule
set.” The Web consists of documents and this is also a structural unit chosen for
RIF. An important aspect of documents is that one can import the other. This
provides a degree of modularity similar to what exists in other Web standards,
such as XML Schema and OWL [11, 9].

Documents also provide a convenient way to localize constant symbols to
particular documents and avoid clashes. This is particularly important for logic
programming languages where it is common to use intermediate predicates that
are not supposed to have meaning outside of a particular document.

3.3 Signatures: The Key to Extensibility

One of the most important ingredients that makes RIF-FLD into a framework
for defining other languages (dialects) is the concept of a signature. Signatures
determine which terms and formulas are well-formed. It is a generalization of the
notion of a sort in classical first-order logic [10]. Each symbol has an associated
signature. A signature defines, in a precise way, the syntactic contexts in which
the symbol is allowed to occur.

For instance, the signature associated with a symbol p might allow p to
appear in a term of the form f(p), but disallow it to occur in the term p(a,b).
The signature for f, on the other hand, might allow that symbol to appear in
f(p) and f(p,q), but disallow f(p,q,r) and f(f). Note that, say, f(f) is still a term
according to our earlier definition; it is just not a well-formed term. In this way,
it is possible to control which symbols are used for predicates and which for
functions, where variables are allowed to occur and where they are not allowed.

A signature is a statement of the form η{e1, ..., en, ...} where η is the name
of the signature and {e1, ..., en, ...} is a countable set of arrow expressions. The
number of such expressions in a particular signature can be zero or more, or it
can be infinite. The dialects decide for themselves. In RIF-BLD, signatures can
have at most one arrow expression. Dialects that support polymorphism may
allow more than one arrow expression in a signature. HiLog [5], for example,
puts a countably infinite number of arrow expressions in all signatures.

An arrow expression is a statement of the form (κ1 ... κn) ⇒ κ, where κ,
κ1, ..., κn are signature names. For instance, if term is a signature name then
() ⇒ term and (term) ⇒ term are signatures.

There is more to the notion of arrow expression that the above suggests. For
instance, the above are arrow expressions for just the positional terms. There
are also signatures for terms with named arguments, frames, and signatures can
be organized into class hierarchies. However, we will ignore these aspects and
focus on the essentials.

Signatures are used to control the context in which symbols occur using the
notion of well-formedness. Earlier we defined the notion of terms and formulas,
but those definitions do not say whether a term or a formula is well-formed. In
order to define this notion we must assume that every symbol in the alphabet of
the language is assigned a unique signature. How exactly this is done depends on
a dialect. For instance, BLD imposes very strict conditions on signatures, which

makes it possible to assign signatures by the context in which the symbols are
used. Terms are well-formed if their structure conforms to the following rules.

– A constant or variable symbol with signature η is a well-formed term with
signature η.

– A term t(t1 ... tn) is well-formed and has a signature σ if and only if
• t is a well-formed term that has a signature that contains an arrow

expression of the form (σ1 ... σn)⇒σ; and
• Each ti is a well-formed term with signature σi.

This is not a full definition. It omits terms with named arguments, frames,
membership and subclass terms, and other aspects. The full definition can be
found in [3]. However, this partial definition should convey the idea. For instance,
if p has the signaturemysig{(obj)⇒ obj, (obj obj)⇒ obj, (obj obj obj)⇒ obj} and
a, b, c each has the signature obj{ } then p(p(a) p(a b c)) is a well-formed term
with signature obj{ }. On the other hand, p(a b c a) is a term, but not a well-
formed one, since the signature of p has no arrow expression that permits p to
have four arguments. The following is an even more telling example. Suppose
John and Mary are symbols with the signature obj{ }, the variable ?P has
the signature h2{(obj obj)⇒ obj}, and closure has the signature h3{(h2)⇒ p2},
where p2 is the name of the signature p2{(obj obj)⇒ obj}. Then ?P (John Mary)
and closure(?P)(John Mary) are well-formed terms with signature obj{ }.

Designers of each particular RIF dialect can decide which signatures can be
assigned to which symbols and in this way fully determine the syntax of the
dialect. Thus, RIF-FLD provides a general framework, which dialects can use to
specify their syntaxes. The present draft of RIF-BLD uses a different technique
for defining well-formed formulas, but a future draft will extend signatures to
cover well-formedness of formulas by assigning signatures to logical connectives.
In particular, RIF dialects would be entitled to introduce connectives, such as
modal operators, which do not explicitly exist in RIF-FLD.

4 The Semantic Framework

The RIF-FLD semantic framework defines the notions of semantic structures
and of models for RIF-FLD formulas. The semantics of a dialect is derived from
these notions by specializing the following parameters.

1. The effect of the syntax.
The syntax of a dialect may limit the kinds of terms that are allowed. For in-
stance, if a dialect’s syntax excludes frames or terms with named arguments
then the parts of the semantic structures whose purpose is to interpret those
types of terms become redundant.

2. Truth values.
The semantic framework allows formulas to have truth values from an ar-
bitrary partially ordered set of truth values, TV . A concrete dialect must
select a concrete partially or totally ordered set of truth values. For in-
stance, most dialects are expected to stay within the regular two-valued

category, but, for example, logic programming dialects that are based on
the well-founded semantics would use a three-valued logic where the order
is true > undefined > false.

3. Datatypes.
A datatype is a set of symbols that have a fixed interpretation in any seman-
tic structure. RIF-FLD defines a set of core datatypes that each dialect is
required to include as part of its syntax and semantics. However, it does not
limit dialects to just the core types: they can introduce additional datatypes,
and each dialect must define the exact set of datatypes that it includes.
This is just a remark in passing about the role of datatypes in RIF, which
is beyond the scope of this survey. RIF datatypes are defined in a separate
document produced by the working group [20].

4. Logical entailment.
Logical entailment in RIF-FLD is defined with respect to an unspecified set
of intended models. A RIF dialect must define which models are considered
to be intended. For instance, one dialect might specify that all models are
intended (which leads to classical first-order entailment), another may regard
only the minimal models as intended, while a third might use only well-
founded or stable models [22, 12].

We will not reproduce all the definitions here, but instead will highlight the
most interesting aspects. The definition of semantic structures is pretty standard,
especially to those who are familiar with F-logic and HiLog [17, 5]. The main
differences are the mechanisms for dealing with multiple truth values (recall
that the set TV of truth values can include more than the standard true and
false) and formula reification. It amalgamates the techniques from [17, 5] to allow
reification of frames.

Another interesting technique is used to define the semantics of document
formulas. Recall that documents can import other documents, and documents
can have local symbols. So, import is not just a mechanical union of all the
imported document: the local symbols need to be disambiguated. FLD provides
a model-theoretic semantics for that.

What makes FLD into a true framework for a range of different semantics
is the concept of entailment that is based on the notion of intended models.
To make the problem clear and highlight the difficulties, let us recall that apart
from the syntax, what makes the different logic languages really different is their
notion of entailment, i.e., the way they determine which formulas are regarded as
consequences of other formulas. For instance, a large subset of first-order logic
can be seen as a rule-based language. In such a language, the formula p←¬p
logically entails p, but not, say, q. If the same formula is considered to be part of
a logic programming language with ¬ understood as default negation then the
situation is different. First, there are several semantics for default negation, and
two of them are widely used. According to the stable model semantics [12], p←¬p
is an inconsistent formula, so every conclusion follows, including q. According to
the other popular semantics, the well-founded semantics [22], p←¬p is consistent,
but nothing of interest follows from it: neither p nor q.

The question therefore is: how does one accommodate all these different
semantics in one framework so that the different RIF dialects could share the
same machinery and be compatible with each other? The solution adopted in
RIF-FLD was proposed by Shoham over two decades ago [21] when he observed
that many logics that seemingly use completely different notions of entailment
share essentially the same elements and can be explained away with the help of
one simple definition.

We already talked about the notion of semantic structures, which is also
often called interpretation in the literature. The purpose of semantic structures
is to define certain sets and functions, which together determine the truth value
(drawn from the set TV) of every well-formed formula in the logic language. If
a semantic structure assigns the value true to a formula then it is said to be a
model of that formula.

If S is a set of semantic structures then we say that one formula, φ, S-entails
another formula, ψ, if and only if for every semantic structure in S, if it is an
intended model of φ then it is also a model of ψ.

It turns out that all the interesting logic-based rule languages, including
first-order logic and many others, define their notions of entailment in this or an
equivalent way. The only difference is the set S, which they consider in defining
entailment, and what they consider to be an “intended” model. For instance,
first-order logic has the simplest definition in this regard: S is just the set of all
semantic structures and every model is intended. Other logics are more picky.
For instance, S might contain only Herbrand semantic structures [19], and only
minimal (in a certain sense) models might be considered as intended. Yet other
languages have their own ideas about what is intended. We already mentioned
the well-founded semantics and the stable-model semantics, for which the in-
tended models are, as their names suggest, the well-founded models and the
stable models, respectively [22, 12].

So, the bottom line is that RIF-FLD defines entailment with respect to the
sets of intended models, as above, but it does not specify what these intended
models are—it only defines semantic structures in general. It is left to the dialects
to choose the appropriate notion.

5 The Basic Logic Dialect

The Basic Logic Dialect, RIF-BLD, is currently the only fully specified dialect of
RIF. From the expressivity point of view, this dialect corresponds to the familiar
Horn subset of logic programming [19]. No negation of any kind is allowed in the
rule head and in the body. However, RIF-BLD has many syntactic extensions
with respect to stock Horn rules. These include:

– Conjunctions in rule heads and disjunctions in rule bodies.
– Frames, membership, and subclass formulas.
– Predicates and functions with named arguments.
– Data types, group and document formulas.
– Equality both in rule heads and bodies.

There is also one notable restriction compared to FLD (and to many logic pro-
gramming languages, like Prolog): as in a standard textbook version of first-order
logic, every symbol is allowed to occur in at most one context in any document
(including the imported documents). Thus, if a symbol occurs in the context of,
say, binary predicate then it cannot occur as a ternary predicate. It cannot also
occur as a function symbol or individual constant.

Ostensibly, these extensions and restrictions are supposed to simplify round-
trippable translations to and from RIF-BLD (see Section 3.1 about round-
tripping), but ultimately they are results of compromises. While they do sim-
plify translation for some languages, they also make round-trippable translation
harder for others. Nevertheless, round-tripping is helped greatly by another in-
teresting feature of RIF: meta-information. In RIF-FLD (and in RIF dialects),
meta-information can be attached to various syntactic objects at a very fine-
grained level. For instance, it can be attached to variables, constants, etc. If
enough meta-information is supplied with the RIF document obtained by trans-
lation from the language of some other system, then translation from that doc-
ument back to the original system can be done unambiguously.

RIF-BLD can be easily defined as a specialization of the syntax and semantics
of RIF-FLD. The restriction about the uniqueness of context for every symbol
can be achieved by requiring that the signatures that are associated with the
symbols that are used in RIF-BLD terms can have at most one arrow expression.
Other syntactic restrictions are expressed by disallowing negation in rule impli-
cations and disjunction in rule heads. The corresponding semantic restrictions
largely follow from the restrictions on the syntax. The exact details can be found
in [1, Section 6].

6 Conclusions

This paper is an introduction to RIF Framework for Logic Dialects, an exten-
sibility framework that ensures that the current and future dialects of the Rule
Interchange Format share common syntactic, semantic, and XML markup appa-
ratus. RIF-FLD is still work in progress: some details may change and additions
to the framework should be expected.

Apart from RIF-BLD and the dialect under development for production rule
systems, other dialects are being planned. These include the logic programming
dialects that support well-founded and stable-model negation, a dialect that
supports higher-order extensions as in HiLog [5], and a dialect that extends
RIF-BLD with full F-logic [17] support (BLD accommodates only a very small
part of F-logic).

The development of the RIF standard is an open process and feedback from
experts and users is welcome. All the documents of the working group, meeting
agendas, and working lists are publicly available at the group’s Web site http:

//www.w3.org/2005/rules/wiki/RIF_Working_Group. The working version of
the RIF framework document can be found at the following address: http:

//www.w3.org/2005/rules/wiki/FLD.

References

1. H. Boley and M. Kifer. RIF basic logic dialect. http://www.w3.org/TR/rif-bld/,
October 2007.

2. H. Boley and M. Kifer. RIF Basic logic dialect. W3C Working Draft. http:

//www.w3.org/TR/rif-fld/, July 2008.
3. H. Boley and M. Kifer. RIF Framework for logic dialects. W3C Working Draft.

http://www.w3.org/TR/rif-fld/, July 2008.
4. F. Bry, M. Eckert, and P.-L. Patranjan. Reactivity on the web: Paradigms and

applications of the language xchange. Journal of Web Engineering, 5(1):3–24, 2006.
5. W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logic

programming. Journal of Logic Programming, 15(3):187–230, February 1993.
6. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

Data Bases, pages 292–322. Plenum Press, 1978.
7. W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1981.
8. C. de Sainte Marie and A. Paschke. RIF Production rule dialect. W3C Working

Draft. http://www.w3.org/TR/rif-prd/, July 2008.
9. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,

P.F. Patel-Schneider, and L.A. Stein. Owl web ontology language 1.0 reference.
Technical report, WWW Consortium, November 2002.

10. H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2001.
11. D.C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition.

Technical report, WWW Consortium, October 2004. http://www.w3.org/TR/

xmlschema-0/.
12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In Logic Programming: Proceedings of the Fifth Conference and Symposium, pages
1070–1080, 1988.

13. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

14. Drools. Web site. http://labs.jboss.com/drools/.
15. Jess, the rule language for the java platform. Web site. http://herzberg.ca.

sandia.gov/jess/.
16. M. Kifer. FLORA-2: An object-oriented knowledge base language. The FLORA-2

Web Site. http://flora.sourceforge.net.
17. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-

based languages. Journal of ACM, 42:741–843, July 1995.
18. A. Kozlenkov. PROVA: A Language for Rule-based Java Scripting, Data and Com-

putation Integration, and Agent Programming, May 2005.
19. J.W. Lloyd. Foundations of Logic Programming (Second Edition). Springer-Verlag,

1987.
20. A. Polleres, H. Boley, and M. Kifer. RIF Datatypes and built-ins. W3C Working

Draft. http://www.w3.org/TR/rif-dtb/, July 2008.
21. Y. Shoham. Nonmonotonic logics: meaning and utility. In Proc. 10th Interna-

tional Joint Conference on Artificial Intelligence, pages 388–393. Morgan Kauf-
mann, 1987.

22. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620–650, 1991.

