Rule Languages and Internal Algebras for Rule-Based Optimizers

Mitch Cherniack*

Department of Computer Science. Brown University

mfc@cs.brown.edu

Abstract

Rule-based optimizers and optimizer generators use rules to specify
query transformations. Rules act divectly on query representations,
wihich typically are based on query algebras. But most algebras
complicate rule formulation, and rules over these algebras must
often resort to calling to externally defined bodies of code. Code
makes rules difficult to formulate, prove correct and reason about,
and therefore compromises the effectiveness of rule-based systems.

In this paper we present KOLA: a combinator-based algebra
designed to simplify rule formulation. KOLA is not a user language,
and KOLA's variable-free queries are difficult for humans to read.
But KOLA is an effective internal algebra because its combinator-
siyle makes queries manipulable and structurally revealing. As
a result. rules over KOLA queries are easily expressed without
the need for supplemental code. We illustrate this point, first by
showing some transformations that despite thewr simplicity, require
head and body routines when expressed over algebras that include
variables. We show that these transformations are expressible
without supplemental routines in KOLA. We then show complex
transformations of a class of nested queries expressed over KOLA.
Nested query optimizations, while having been studied before, have
seriously challenged the rule-based paradigm.

1 Introduction

Rule-based optimizers and optimizer generators use rules to
specify transformations of queries. Rules act directly on query
representations, which typically are based on query algebras.
In this paper, we argue that query algebras determine the
success with which rules can express transformations. We
make the argument by describing desirable transformations,
and comparing rules that express these transformations over
differing algebras.

*Partial support for this work was provided by the Advanced Research
Projects Agency under contract NO0014-91-J-4052 ARPA order 8225, and
contract DAAB-07-91-C-Q518 under subcontract F41100.

Permission to make digitalhard copy of part or all of this work for personai
or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, inc. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee.

SIGMOD '96 6/96 Montreal, Canada
© 1996 ACM 0-89791-794-4/96/0006...$3.50

401

Stanley B. Zdonik~

Department of Computer Science, Brown University

sbz@cs.brown.edu

1.1 The Problem

A rule describes a query transformation and the queries
subject to the transformation. A declarative rule specifies
transformations without committing to code that manipulates
representations, and specifies the queries to which 1t
applies without committing to code that makes the decision.
Declarative rules grant optimizers and optimizer generators
the freedom to make intelligent implementation decisions,
But most existing systems limit themselves by permitting rule
inputs that are not declaratively expressed.

The Starburst [20] optimizer and EXODUS [8} optimizer
generator are example rule-based systems that permit rules to
be supplemented with code. Code appears in two places:

o Head Routines (called “conditions” in [8] and “condition
functions” in [20]) are invoked in the heads (left-hand
sides) of rules and analyze query representations to decide
if they should be transformed by rules.

e Body Routines (called “support functions” in [8] and
“action routines” in [20]) are invoked in the bodies (right-
hand sides) of rules and are used to transform query
representations into alternative forms.

Code fragments are restrictive, making the quality and
correctness of generated optimizers depend on the quality
and correctness of included code. Code tragments also
make rules difficult to formulate, prove correct and reason
about. This helps to explain why for example, transformations
of nested queries do not typically get implemented as
instances of rules. Nested query optimization is particularly
important and particularly difficult when nested gueries are
expressed over data with complex structure, as in nested
relational [33]. complex object [1] and object-oriented [27]
databases. Such data models exacerbate both the classification
and manipulation of nested queries by allowing tuples and
objects to refer to sets and to each other. This potentially
introduces data dependencies into queries, complicating their
transformation as we later show. There has been much
progress in nested query optimization [24]. [17], [20], [30],
[31], [12], [14]. But nested queries tend to be fairly
large and rules for them tend to lack generality or have
especially complex head and body routines. As a result, these
transformations are rarely implemented as instances of rules.

and when they are, the rules are complex and difficult to reason
about.

In this paper, we show that it is the choice of query
representation that determines if code fragments are required
to build general and expressible rules. In particular,
representations based on variable-based query algebras
(algebras that use variables to name manipulated data) make
code fragments necessary supplements to rules. Intuitively,
this is because rule-based optimization has the flavor of
unification [32]; a rule and a query match if the rule head
unifies with a part of the query, and the transformation
of a matched query is expressed by substituting for the
variables that appear in the rule body. Unification has
the benefit of being efficient in practice while facilitating
the formulation of general rules. But unification demands
that a query’s representation be revealing (in how the query
should be transformed) and manipulable. Variable-based
representations complicate unification in both respects.

Our concern is with the expression of rules rather than the
strategies for their use. The latter, while an important issue,
[29] is not considered in this paper.

1.2 Our Contributions

We propose a variable-free (combinator-based) algebra,
KOLA, that supports the formulation of expressive transfor-
mation rules. (A good tutorial on combinators can be found
in Turner’s paper [37]). Combinator-based internal algebras
have been considered for queries before. In particular, [6]
uses a combinator algebra to express the semantics for their
query calculus and to allow category theory machinery to be
used to reason about the correctness of transformations. We
consider an alternative use, proposing combinators as the ba-
sis for query representations manipulated by an optimizer.
We propose an alternative combinator set to that of [6] that
permits smaller translations of queries [11] at the expense of
allowing some redundancy. We have implemented translators
into our combinator set from both OQL [9] and AQUA [25].
(See {11] for details.) This makes our work similar in spirit
to the use of combinators in functional language compilers.
But whereas the trend in this community is to generate a vari-
able set of combinators on-the-fly (to improve the efficiency
of graph reduction), our combinator set is fixed and therefore
our queries are amenable to algebraic preprocessing.

We are able to formulate rules over KOLA-based represen-
tations of queries that are problematic to express over variable-
based algebras. The impact of this is in the following areas:

Optimizer Generation: Declarative rule sets make opti-
mizer generators more effective, as optimizers generated from
input code are limited by the potential inefficiency or incor-
rectness of that code. Our work makes the goal of fully
declarative rule sets realizable in two respects.

o We can formulate rules without code. We are able to
formulate transformation rules that would require code
if expressed over variable-based query representations,

402

We present some rules that require code (over variable-
based representations) in Section 2 and their code-
free equivalents (over KOLA-based representations) in
Section 3.

We can formulate rules for transformations that are not
usually expressed with rules. In Section 4, we present
rules that transform a class of nested queries into joins.
The transformation described is not new, but as far as we
know has not been previously expressed in terms of a set
of generally applicable and gradually transforming rules.

Optimizer Correctness: The famous “count bug” of [24]
illustrates how difficult it can be to formulate correct trans-
formations. Rule-based optimizations simplify correctness
proofs of optimizations because rules are simpler to prove cor-
rect than algorithms. But this is exactly why rules should not
include calls to code. As has been pointed out elsewhere ([3],
[6]), combinator algebras make rule proofs easier because of
the absence of variables. In fact, we have constructed a formal
specification of KOLA using the Larch [19] specification tool
LSL, and have constructed proofs of over 500 rules that form
a pool from which a rule-based optimizer could draw. The
proofs have been verified using the Larch theorem proving
tool, LP. This work is described in [10].

Optimizer Extensibility: Rules that are expressed in a
purely declarative fashion are easier to understand, reason
about and manipulate than those that are not. Our work is
a step forward in the direction of completely declarative rule
sets. This means that rule sets should be easily augmented to
extend the functionality of existing optimizers.

1.3 Outline of the Paper

In Section 2, we present the problems that variables introduce
to the formulation of transformation rules. We use examples
written in AQUA [25]. In Section 3 we present KOLA
and show how KOLA simplifies the formulation of these
same rules. In Section 4, we show that a KOLA-based
rule language can express transformations that typically are
not implemented as instances of rules (transformations of
nested queries). We compare our work with related work
on optimizer rule languages, combinator-based languages and
nested query optimizations in Section 5, and then summarize
in Section 6.

2 Variables Considered Harmful

Optimizers manipulate query representations. Effective repre-
sentations facilitate manipulation, simplifying the optimizer
with respect to both its implementation and formalization.
Query algebras usually form the basis of query representa-
tions. Therefore it is crucial that the algebra facilitate ma-
nipulation of the representation and not be simply a means of
expressing a query.

In this section, we explore the reasons why variable-based
query algebras make it necessary for rules to include head

and body routines. We will use AQUA [25] as a case study,
although our remarks apply to other variable-based algebras
(e.g. [18], [38], [36] and [23]).

2.1 Rules that Build New Functions

Anonymous functions are functious denoted without names.
An expressive query algebra should permit anonymous
functions to be used within a query to express what should
he done with each object in a queried collection. Most object
algebras provide anonymous function support using a notation
borrowed from the A-calculus'. But while A-notation is
straightforward for users to write, it is far less straightforward
for optimizers to manipulate. We present two examples (in
Sections 2.1 and 2.2 respectively) to illustrate,

Figure 1 presents two useful transformations of AQUA
queries. The queries in this Figure (and Figure 2.2) use the
AQUA set operators app and sel which have the semantics
shown below. Note that [and] delimit object pairs.

app (fi{4) = {f(a)a€ A}
sel (p}{4) = Jala€ A.pla)}
flatten (4) = {«|3B(Bc 4,a € B}}

{l

join (p. f)([A. BI) {fla,b)[a € A, be B,pla.b)}

The transformations are expressed with the notation
Q1 = Q,, where Q; and (J denote equivalent queries. We
assume a schema with an abstract data type (ADT), Person,
whose interface includes addr (returning an Address),
age (returning an integer), child (returning a set of
Persons corresponding to the children of a given person),
cars (returning a set of Vehicles corresponding to the cars
owned by a particular person) and grgs (returning a set ot
Addresses corresponding io the set of garages kept by a
person). The ADT, Address has an interface that includes
city (returning a string). P and V denote sets of Persons
and Vehicles respectively.

The transformations of Figure 1 require construction of
new functions and predicates from the anonymous functions
and predicates found in the original queries. 7T} constructs a
new function. A (p) p.addr.city by composing the two
functions used in the original query. 7, constructs both
a tunction (A (p)p.age) and predicate (A (a)a > 25) by
decomposing the original predicate, A (p) p.age > 25. These
transformations are difficult to express over variable-based
query representations because they require the optimizer
to open the “black-boxes” that are A-expressions. The
manipulation must then be of the expressions that are the
function and predicate bodies, requiring additional machinery
to perform such tasks as

e variable renaming For example, “A (z)z.age” of the
first query of T should be renamed to “A (p)p.age”
so that this function is recognized as a “subfunction” of
“A (p) p.age > 257

'For example, A-calculus notation is explicit in GOM, EQUAL and
AQUA. The others use namuing conventions (OFL) or vanable declarations
(Excess) as an alternative means of denoting a variable’s meaning and scope.

403

T, app () {a)a.city)(app (A (p)p.addr)(P) =
app (A (plp-addr.city)(P)

Return the cities inhabited bv people in P.

-

>

T:: app (A (z)x.age)(sel (A (p)p.age > 25)(P))
sel (A (a)a > 25)(app (A (p)p.age)(P))

Return the ages of people in P older than 25.

Figure 1: Building New Functions and Predicates

As . app (Mp) [p.sel (Alcle.age > 25)(p.chzid) i)
Return persons m P, p paired with thewr children

who are older than 25.

Ao app (A(p) [p.sel (Alc)p.age > 25)(p.child)] I P)
Return persons in P, p paired with p s cluldren

(if p is older than 25) and with the ~ (otherwise)

Figure 2: Structurally Identical Nested Queries

expression composition The transformation of Ti requires
building a new function by composing the expressions.
“a.city” and “p.addr” from the original query. Expres-
sion composition requires substituting one expression for
a free variable in the other expression (e.g., substituting
p.addr fora ina.city gives p.addr.city). This sub-
stitution is not expressible using unification alone because
expressions are not uniform (while some may be path ex-
pressions, others may involve pre-defined operators and
functions (prefix, infix or postfix) or even queries).

This additional machinery complicates the optimizer’s imple-
mentation and specification.

2.2 Rules that Manipulate Nested Queries

Queries are nested 1f they contain other queries. Figure 2
shows two nested queries expressed in AQUA. The queries
are nested because the anonymous function inputs to app are
queries (involving the operator, sel).

Within nested queries it is possible for subexpressions to
reference free variables. Query A4 includes the function
“\ (c)p.age > 25" with a reference to the free variable p.
Whether or nota variable appears free in a query can determine
if a transformation is appropriate. For example, query 4 of
Figure 2 is subject to a code motion transformation [2] which
would move the predicate out of the inner query, resulting in
the equivalent (but more efficient) form, app (A (p) f(p))(F)
where

f=if (p.age > 25) then [p,p.ch11d] else (p. 1.

Query As of Figure 2 is structurally identical to .14, differmg
only by the 1dentifier appearing in the predicate. (Ax checks

that the age of the child ¢ is greater than 25 rather than
the age of the person p.) But A3 is not subject to a code
motion optimization. That variables appear in the query
representation makes these queries structurally identical but
subject to different transformations. Therefore, the rule that
expresses this transformation must be supplemented with a
head routine to perform environmental analysis to determine
if variables that appear in the expression are free variables,

2.3 Problem Summary

The operation of rule-based optimizers typically resembles
unification. The unification style supports the formulation of
general rules (through the use of unification variables) and
efficient performance. But a pure unification style requires
that query representations have structure that is both revealing
in how queries should be transformed, and easily manipulable.
Variable-based representations do not have these properties.

e Variables are used in expressions that are function and
predicate bodies. The function and predicate manipulation
that is required in expressing the queries that result from
transformation requires machinery above and beyond what
one gets for free with unification. Therefore, this kind of
manipulation requires rules with body routines.

e Variables cannot be distinguished by their structure.
Because transformations can depend on which variables
appear in various parts of the query (i.e., scoping), rules
expressing these transformations must be supplemented
with head routines.

We complete our argument by presenting a variable-free
(combinator-based) algebra, and showing how the problems
discussed in this section go away.

3 KOLA: A Combinator Algebra

KOLA’s> combinator-style facilitates the kind of query
manipulation that is difficult with variable-based algebras.
KOLA has the flavor of Backus’ FP [3] but unlike FP can
build functions and predicates over sets. It provides for
anonymous functions through formers; functionals that denote
new functions in terms of existing ones. It also provides a
set of primitive functions and predicates such as the identity
(id) function and equality (eq) predicate, as well as functions
and predicates found in ADT interfaces included in a schema
(such as the age, addr, child, cars and grgs functions
on Person), Variables and A-notation are neither provided
nor required to denote functions.

Tables 1 and 2 describe the operational semantics of some
KOLA primitives and formers. (A formal specification of
the entire algebra using Larch [19] is presented in [10]).
The semantics equations show the results of invoking KOLA
functions and predicates on their arguments. All functions
are invoked via the infix operator, “!”, while predicates are
invoked with “7” (also infix). Within these equations and
throughout the rest of the paper, we use variables to denote

2KOLA is an acronym for {K]ind [O]f [Llike [AJQUA.

404

| KOLA | Semantics
id id!z = x
m m ! [, y] = z
2 m!lz,yl = y
eq eq? [z,y] <= z=y
leq leq? [z,y] <= z<y
gt gt? [z, y] = x>y
in in?{z,A] <= z€A
° (fog)lz = fl(glx)
() (fig)le = [flz,g'z]
X (fxg)!lz,yl = [flz,g!yl
Ky Re(e)ly = =
Cy ¢y (f)ly = flilzyl
i ifp? 2
con con(p, f,g)lz = {;i;: ;flsi'l
&b pofle = p?{f!a)
& pP&q)?c <= (p?z A qlx)
[(ple)?z <= ((p?z V qlz)
=1 (P~ 7[z,y] < p?lyz]
Kp Kp (b)?72 = b
Cp Cp(pz)?y &= p?lz,yl

Table 1: Basic KOLA Combinators

arbitrary functions (f, g, h, j), predicates (p, q), objects (z,
), bools (b) and sets (A, B). Variables therefore indicate how
a former is instantiated. Table 1 presents generally applicable
KOLA primitives and formers, while Table 2 presents those
that generate functions and predicates on sets (queries).

The semantics equations can be used to derive a query’s
“meaning”. For example, the query below uses the primitive
functions city and addr, o (the composition function
former), iterate (a set function former similar to OFL’s
“iterate” operator [18], and that captures both of AQUA’s
app and sel operators®) and the constant predicate former, .
(iterate’s semantics is given in Table 2 — all others are listed in
Table 1). This query’s “meaning” is derived by the reduction
below.

iterate (K, (T'),city caddx)! P
= {(city caddr)lele€ P, K, (T)?e} (1)
= {city!(addrle)|e€ P, K, (T)?e} (2)
{city!(addr!le) e € P} 3)

[

Steps (1-3) of the reduction are justified by the definitions
of iterate, o and K, respectively. This query is therefore a
translation of the transformed query of transformation (1) of
Figure 1, as the KOLA expression, “city ! (addr !e)” is
equivalent to the path expression e.addr.city.

Table 1 is in divided into four sections, The first two
sections present KOLA primitive functions and predicates
respectively, which, besides id and eq, include the projection

Sapp {f) is equivalent to iterate (K, (T), f) andsel (p) 1s equivalentto
iterate (p, 1d), where id and X, are as defined in Table 1

flat ! A
iterate (p, f) 1 A
iter (p,) ! [z, B]

x|z € B,BeA}
fle|lzeApla)}
flile,yllyeB,p?lzyl}

Table 2: KOLA Query Combinators

join (p, f) ! [A4, B]
nest (f,g) ! (A4, B]
unnest (f,g) ! A

y{glz|lz €A fle=y}]l|yc B}
fle,yllz€Aye(g!a))

e e

{ {fViz,yl |z €A yeB,p?z.yl}
{ {1
{ {1

e

functions on pairs (7 and m;), the “greater than” (gt} and
“less than or equal” (leq) predicates, and the set membership
predicate (in). (Not listed, but assumed are schema-based
primitives such as those described in Section 2.1.) The
third section of the table presents general purpose function
formers. Besides o, these include () (pairing functions),
X (pairwise function application), K; (constant functions),
Cs {(currying) and con (conditionals). The fourth section
lists KOLA predicate formers which besides X,, include ¢
(predicate/function combiner), & and | (predicate conjunction
and disjunction), ~! (predicate inverse), K, (constant
predicates) and C, (currying).

Table 2 presents KOLA’s query formers, Besides iterate,
these include flat (set flattening), join, iter, nest and unnest,
iter is similar to iterate, but is invoked on pairs [e, A]
rather than on sets. (Binary functions and predicates are
invoked over pair objects in KOLA). iter is suited for
expressing nested queries as e can be a representation of
the environment that would be implicit in a variable-based
query representation. To illustrate, we trace the reduction
of the “Garage Query” [28] (K, of Figure 3); a query
that associates each of a set of Vehicles with the set of
Addresses where the Vehicle might be located. For
notational simplicity, we adopt the convention that chains of
function compositions (f; o f o ... o f,) are written without
parentheses (exploiting associativity) and with each f; on a
separate line. Similarly, function pairs (£, g) are sometimes
written with g directly below f. The semantics of K¢, is
shown by the reduction below, where f denotes the function,
“flat o iter (K, (T),grgs o m)”, g denotes the function
“fter (in & (m, cars om),)" and P, (for Vehicle, v)
denotes the set, {p | p € P,v € p.cars}.

iterate (K, (T'), (id, fo(id, go(id, Ky (P))}})) 1V
= {lv,f!lv,g! [v,P111|veEV, K (T)?70} (1

)
= {lv,f![v,P1]1]veEV} (2)
= {lv,{z]|2z€pygrgs, pe P}l |veEV} (3)

Step (1) follows from the definitions of iterate, {), id, o and
K;. Step (2) followsas g ! {v, P]

iter (in & (7, cars om), m)! [v, P]

{m ! [v,p] | p € Pyin & {(my, cars om) ? [v,pl}
{plpe Pin? [m ! [v,p]l,(cars om) ! [v,p]]1}
{plp€ P, vE€pcarst = P,

{l

405

Kg, : iterate (K, (T), (id,
flat o
iter (K, (T'),grgs om)o
(id, iter (in o (m;, carsom), m) o
(id, K (P)) ! V
Kg, : nest (71, m) o

(unnest (7, m) x id) o
(join (in & (id X cars), id x grgs), m) ! [V, P]

Figure 3: Two Equivalent Versions of the “Garage Query”

while step (3) follows as f ! [v, P,]

= flat oiter (K, (T),grgs om)! [v, P,]

= flat! {(grgs om)! [v,p] |p€ Py, K, (T) ? [v\p1})
flat! {p.grgs|p € P,}

= {z|z €p.grgs, p€ P, }.

I

Steps (2) and (3) of the reduction have g and f each being
evaluated with respect to an explicit environment (pair)
containing v. These environments are created when the
identity function is invoked as part of the application of
functions (id, K; (P)) (which creates an environment for
g) and (id, g o K (P)) (which creates an environment for
-

The combinator nest forms a function that is invoked on
pairs of sets. A typical use of nest involves nesting a join of
two sets A and B, pairing each element a € A with the subset
of B containing all elements that satisfy the join predicate
with a. To ensure that the cardinality of the result is the same
as that of A, many algebras introduce an outer join operator
that associates NULLs with elements of A which never satisfy
the join predicate (e.g. [14]). That is, NULLSs preserve values
of A thatare needed in the nesting but are lost by the join. Our
version of nest allows us to avoid NULL values by instead
making the nesting of a set (the first argument to nest) relative
to a second set (the second argument to nest). Rather than
associating NULLs with particular elements of A as a result
of the join, we associate the empty set with these elements as
a result of the nest. We avoid “losing” join values by making
A a second argument (o nest. as in

nest (w1, m) ! [join (p,id) ! [A, B], A].

The reader can verify, by reducing this expression according
to the rules of Table 2 that every element of A is represented

iterate (X, (T'), city) oiterate (K, (T'),addr) ! P -

iterate (X, (T') & (X, (T) ¢ addr),city oaddr)! P 4

iterate (K, (T') & K, (T),city caddx)! P N

iterate (K, (T'), city ocaddr) ! P

iterate (K, (T'),age) o

iterate (gt & ((age. K; (25))),id) | P o3

iterate (gt & ((age, K; (25))),age) ! P Y
-1

iterate (C, (leq, 25) b age,age)) ! P 12

iterate (C,, (leq,25),id) o iterate (X, (T),age) ! P

Figure 4: KOLA Transformations 7% and TJ¢

in the result. The second “garage query” (K¢, of Figure 3)
invokes nest on the result of join. We show its equivalence to
K¢, in Section 4.

3.1 Rules that Build New Functions

Figure 4 presents step-by-step transformations of KOLA
queries equivalent to the AQUA transformations of Figure 1.
Each step in the transformation is justified by a rule from
Figure 5. We use the notation "™ to indicate the rules used
to justity a step in the transformation. Rule references of the
form i~ are “right-to-left” interpretations of rule 7.

These transformations required head and body routines
when expressed over AQUA queries because sophisticared
manipulation of function and predicate bodies was required.
KOLA’s many function and predicate formers provide a
catalog of ways to recognize and build complex functions.
Transformation TX uses the o function former to combine
two existing functions (rule 11). Transformation TZ,K
decomposes the predicate and function subparts of a predicate
by separating the arguments to the & predicate former (rule
12-1). Formers simplify the optimizer’s implementation
(which requires no extramachinery such as variable renaming)
and formalization (which can be based on a set of declarative
rules such as those of Figure 5).

3.2 Rules that Manipulate Nested Queries

The nested AQUA queries of Figure 2 are structurally identical
to one another but only one is transformable using code
motion. The applicability of the code motion rule depends
on the freeness of a variable appearing in a subexpression.
Therefore, the routine that performs this transformation over
a variable-based representation must perform environmental
analysis.
The KOLA versions of these queries are both of the form,

iterate (K, (7), (id,
iter (gt ¢ (ageo 7 Ky (25)),m) o

(id, child)))! P

406

foid Z f (1) idof 2 f (2)
pdid = p (3 (m, m) Zid (4)

K (T)&p Zp (5) K B)af 2K () (6)
g™ Zleq (7) K;(k)of 2K/ (k) (8)
molfigy 2 f (9 mo(f.g) Zy (10)

-

iterate (p, f) o iterate (¢, g)
iterate (p,id) o iterate (, (T), f) = iterate (p f. f)

p(fy K (k) = G (pmh k)@ S (13)

p@(fog) = (pof) ey (14)
iter (p& m,m) = con (pd m, M, Ky (1) (15)
con(p, f,g)oh 2 con(pdhh,foh,goh) (16)

Figure 5: Rules for Figures 4 and 6

iterate (¢ & (p+g), fog)

iter (gt @ (age om, Ky (25)), m) o (id, child) Ny
iter (Cp (leq,25) & (age o my), m) o (id, child) L
iter ((C, (leq,25) & age) &), m) o (id, child) 2
con ((C, (leq,25) b age) & m1, m, Ky () o (id, child)
16 10 8 1"l 9
e Sl P A T T SN

con (C, (leq, 25) b age, child, Ky (1))

Figure 6: Rule-based Transformation of Query 4,

but differ by what is f: KOLA's version of A; (hereafter
referred (o as query K3), has f as 7, whereas K, has f
as m;. Thus, the KOLA queries are structurally similar to
one another, but not identical. The difference is sufficient to
determine that a code motion transformation only applies to
the translation of K.

In Figure 6, we present the stepwise transtormation of K.
Specifically, we show how the function argument to iterate,

iter (gt b (age o 7y, Ky (25)), m) o (id, child)

is transformed to remove the unnecessary looping operator,
iter. (We omit some steps in the interests of space.) K
would be transformed by similar steps, but after having been
transformed according to rule (14), its predicate argument to
iter would have the form, p m, (p = C, (leq, 25) &b age)
making it unaffected by rule (15).

To summarize, we have shown that the effectiveness of
a rule-based optimizer depends in part on the underlying
query algebra. An algebra is a means of representing
queries and not just a medium for expressing them. As the
basis of query representations, algebras should facilitate the
query analysis and manipulation performed by an optimizer.
But variables complicate transformation, demanding that

~)

additional machinery be available to build new functions and
examine environments. We have introduced our combinator-
based algebra, KOLA. KOLA is a useful basis for query
representations because both analysis and manipulation of
KOLA queries can be expressed in terms of declarative
rules and without code. This simplifies an optimizer’s
implementation and formalization, helping to ensure that it
is built correctly.

4 Transforming Hidden Join Queries

We have shown that KOLA’s combinator-based denotations
of functions and predicates make it possible to express
optimization rules without the need for head and body
routines. In this section, we consider rules for a class of nested
query transformations that further demonstrate the expressive
power we get from a KOLA-based rule language. A great
deal of research has been done in nested query optimization,
but typically this research makes it into practice with complex
rules that are difficult to formalize and reason about (e.g.. [12]
and [20]) or with transformations expressed informally over
query languages (e.g., [24, 17, 31]).

4.1 Hidden Join Queries

The class of queries we consider are kidden joins, nested
queries that (like join queries) pair objects that are taken
from two sets and that satisfy some relationship. Because of
their potentially deep nesting, it is not immediately apparent
that hidden joins can be transformed into explicit joins. We
propose a five-step strategy for “untangling” hidden join
queries into their join equivalents, complete with rule sets used
at each step. The rules we use for these transformations are
generally applicable and perform the optimization in gradual
steps, unlike the monolithic and overly specific rules that
sometimes appear in the literature [12]. We describe and
illustrate our technique showing how to transform from one
“Garage Query” (Kg,) to the other (K g,).
AQUA’s hidden join queries are of the form:

app (A (a) [7 (a), 91 (92 (- (9 (B)) --))]) (4)

where j is any function and each g; is a function that invokes
a query, as in, app (...}, sel (...), flatten (app (...)) or
flatten (sel (...)). KOLA translations of these queries are of
the form shown in Figure 7, where j is any function, each h; is
either flat or id, and each g, is iter (p,, f;} for some function
fi and predicate p;. For K, of Figure 3, we have n = 2,
J=id by =flat, p; =K, (T), fi = grgs omy, hy = id*,
p=in & {r, cars om), fr=m,B = Pand4d = V.

The optimization of hidden joins involves transforming
them into nestings of explicitjoins, as in the KOLA query K¢,
of Figure 3. This kind of optimization may be advantageous
because of the variety of implementation techniques known
for performing nestings of joins [24]. But hidden joins are

4Note that the association of id with hy follows after applying rule 2!
of Figure 5.

407

iterate (K, (T'), (j, h1 o gio
(id,hp0g20...0
(id, hn 0 gno
(id, Ky (B))..)) ! A

Figure 7: KOLA Hidden Join Queries

difficult to transform with rules because nesting can occur to
any degree (i.e., the value of n above is unbounded). Rules
that express the optimization monolithically (as in [12]) must
analyze the query using complex head routines that delve to
any level of nesting, to see if the query is of the desired form.
(The query is not of the desired form for example if the query
that is the function instantiating iterate is invoked on a set
derived from a rather than the globally named set B). Our
techniques use multiple smaller rules to gradually transform
the query to its desired form. As we will see, the rules chosen
simplify queries to the point where it is straightforward to
decide if the query is transformable into a nest of a join. In
cases where this transformation is inapplicable, the query has
still been simplified enough that other appropriate strategies
can be simply considered.

Below we present a strategy and associated rule set for
converting hidden join queries into queries with explicit joins.
Our strategy consists of five steps, where each step uses a
small rule set to guide the transformation of its input query.
We summarize these steps in terms of the actions that are
taken on parse tree representations of hidden join queries.

1. Break up complex iterate into multiple, smaller iterate’s.
2. Bottom-Qut the parse tree with a nest of a join.

3. Pull up nest to the top of the query tree

4. Pull up unnests to the top of the query tree (below nest).
5. Absorb into join, the iterate operations above it.

We consider each step in detail below, by describing the
general idea behind each step, the general form of the query
that results from the transformation and the effect of each step
on the “Garage query”. The rules used at each stage are listed
in Figures 5 and 8. All of these rules have been proven correct
with proofs verified by the Larch theorem prover, LP [19].

Step 1: Break up complex iterate This step has the effect
of breaking up the query from the monolithic form,

iterate (X, (T), (F, G)) ! A,

where (is potentially very large, into a composition chain of
iterate operations. Rules 17, and 18 of Figure 8, and rule 4
of Figure 5 are used to reduce the initial query into a query of
the form,

iterate (K, (T'), (jom, m))o
iterate (X, (T), f1) o iterate (K, (T), g7) o ...
iterate (X, (T'), (id, K; (B))) ! 4

where f; = (m, flat o ™)’ and @7 = (m, iter (p;, £,)).
For example, applying these transformations to A, of
Figure 3 leaves K¢, =

iterate (K, (T'), (7, flat om)) o

iterate (X, (T), (m1, iter (K, (), grgs om)))o
iterate (K, (T'), (my, iter (in ¢ (7|, cars om), m))) o
iterate (K, (T), (id, K; (P))) ' V

Because in this example, j is id, the first function in the
composition chain reduces to id (by rule 18) and then is
eliminated (by rule 2).

Step 2: Bottom-Out In this step we convert the expression,
iterate (X, (T),(id, X; (B)}) ! A, (which occurs at the
bottom of the query tree) into a nest of a join. Rule 19
of Figure 8 is used to reduce the query resulting from the
transformations of Step 1, into a query of the form,

iterate (K, (T), (jom, m))o
iterate (K, (T), fi) o iterate (K, (T), g7) o
iterate (K, (T), fn) o iterate (X, (T), 7n) ©
nest (m;, m) o
(join (K, (T, id), =) ! [A, B]

Applied to K¢, , this transformation results in Kg,, =

iterate (K, (T), (7, flat o m)) o

iterate (K, (T'), (m, iter (K, (T), grgs om)}) o
iterate (K, (T'), (i, iter (in & (7, cars om), m))) o
nest (7w, m) o

(join (X, (T, id), m) ! [V, P]

Step 3: Pull Up nest In this step, nest is pulled from the
bottom of the query tree to the top. Rules 20 and 21 of
Figure 8 reduce the query resulting from Step 2, into a query
of the form,

iterate (K, (T'), (j o7y, m)) o

nest {m;, m) o

ki o (iterate (p;, (m, f1)) xid) o ... o
I, © (iterate (p,, {my, f,)) x id) o
(join (X, (T), id), m) ! [A, B}

where each ; is either unnest (7|, m,) or id (in which case it
“drops out” by rule 2 of Figure 5). (If j is id, nest will appear
at the top of the query tree after this step.) Applied to Kg,,,
this transformation results in K¢, =

nest (71, m) o
(wonest (7, 7) x id) o
(iterate (X, (T'), (m, grgs om)) x id) o
(iterate (in & (7, cars om), id) x id) o
(join (K, (T), id), m) ! [V, P]

5F, could also be of the form, (1, id o m) = id (by rules 2 and 4 of

Figure 5), in which case iterate (X, (T), f;) “drops out” of the query by
rules 18 (Figure 8) and 2 (Figure 5).

408

17. iterate (X, (1'), (j, (g o iter (p,
iterate (K, (T), {(§ o m), m))
iterate (K, (T), (w1, (g o m)}) o
iterate (X, (1), (my, iter (p, f))) o

iterate (X, (T), (id, h))

Jo(id. h)))) =

18. iterate (X, (T, id) =2 id

19. iterate (K, (T), (id, K; (B)))!1 4 =
nest (71‘1, 7r2) o (join(Kp (T), id), 71'1> '1A, Bl

20. iterate (K, (T), {m, iter (p, f))) o nest (m;, m) =
nest (7, m) o (iterate (p, (m, f)) x id)

13

21. iterate (K, (T), (m, flat o m})) o nest (7,)
nest (71, m2) o (unnest (7, m) x id)
22. (iterate (p, (m, f)) x id) o (unmest (7}, m) x id) =
(unnest (7, m) x id) o
(iterate (K, (T'), (my, iter (p, f))) x id)
23. (unnest (7, m) x id) o (unnest (7],) x id) =
(unnest (7,) x id) o
(iterate (K, (T'), (m, flat o m)) x id)

—

24. (iterate (p, f) x id) o (join (q, g), m)
(Join (¢ & (pb g), fog), m)

Figure &: Rules Used to Optimize Hidden Joins

Step 4: Pull Up unnest In this step, all unnest operations
appearing in the parse tree are pulled up to the top, just below
the nest operator. Naturally, if the only instance of unnest is
situated immediately following nest, this step need not be
performed. Rules 22 and 23 of Figure 8 are used to reduce
the query resulting from the transformation of Step 3, into a
query of the form,

iterate (K, (T), (j o m, m)) o nest (7, m3) o
(jo) o (71 x id) o o (jn x id)o
{Join (K, (T), id), m) ! [4, B]

where jo is (unnest (7, m) x id) orid (in which case it
“drops out”), and j; (i > 0) is iter (K, (T), (71, h,)) where
h, is either iterate (p, f) (for some predicate p and function
f)orflat o m. Query A, is unaffected by this step because
unnest appears just once in the parse tree just following nest.

Step 5: Absorb into join In this step, the join operation
found at the bottom of the query tree is combined with
the iterate operations above it, thereby removing the
iterate operations in favor of a join with a potentially complex

function and predicate. Rule 24 of Figure 8 is used to reduce
the query resulting from the transformation of Step 4, into a
query of the form,

iterate (K, (T), {(jom, m)) o
nest (7, ™) o jo o (join (P, h), m) | [4, B]

where h is any function and 7 is any predicate. Applied to
K¢, this transformation produces query K'g, of Figure 3.

4.2 Discussion

The hidden join transformation illustrates the advantages of
using a combinator-based query representation for develop-
ing rules. This transformation is far more difficult to express
over variable-based query representations because the prob-
lems that variables introduce into the expression of rules are
exaggerated when these rules must express complex trans-
formations. To illustrate, we consider how the hidden join
optimization might be expressed over an AQUA-based query
representation. One could try and do so with multiple, simple
rules as we have done, but this is complicated by the same
problems described earlier. For example, Step 1 of our hidden
join strategy requires recognizing that a query is of the form,
“iterate (K, (7)., (f, ¢)) ! A.” The equivalent AQUA query
is of the form, “app (A (@) [e1, €2]) (A)”, where both e; and
e3 have occurences of a. Of course, e; and e, can be arbitrar-
ily complex expressions. Recognizing that a occurs in these
expressions would then require a complex head routine.

An alternative is to express the hidden join transformation
in terms of a single complex monolithic rule. (This is the
approach taken to express transformations in [12]). Such
rules are problematic for two reasons.

Complex Rules Need Complex Head and Body Routines.
This is not surprising, given the arguments presented in
Section 2. However, we can appreciate how complex the
routines can be by considering how a monolithic rule would
express the hidden join optimization. In order to fire this
rule on a query, matching must determine that the function
which is applied to the elements of A is a query over a
set, B. The reference to B can be arbitrarily deeply nested
within the query, meaning that the level at which it appears
in the representation parse tree is unbounded. Therefore,
the structural matching provided by unification must be
insufficient to decide that the hidden join rule is applicable
to a query. Rather, a head routine is neccessary to perform
the “dive” into the query tree, sinking as many levels as is
required to decide whether or not the rule should be fired.

Complex Rules Do Not Simplify Queries. The complex
head routines that would be required to express this
rule monolithically are especially troublesome when one
remembers that most often, rules are not applicable to queries.
(The rule set used to transform the query will invariably be a
small subset of the entire rule set used by the optimizer). In
deciding that the monolithically expressed hidden join rule is

409

not applicable to a given query, the query is not simplified in
any way. Thus, the resources required in attempting to match
a rule to a query do not bring the query much closer to being
optimized (except that there is one less rule to try).

We believe the approach of using multiple simple rules
to transform the query to be especially promising, because
many of these rules simplify the query in such a way that
alternative strategies are easily considered. (This was the case
for queries K3 and A4 (from Section 3.2). Both queries were
subject to the same initial transformations. These simplified
the query to a point where it was possible to determine if
code motion transformations were applicable.) Similarly, the
first step of the “garage query” transformation simplified the
initial query by breaking up the large function applied to each
vehicle, and replacing the query with a composition chamn of
simpler functions. If the function applied to each vehicle,
v had not been a query on P but instead a query on some
set attribute of v (such as v.drivers), this first step would
still have simplified the query by breaking up its monolithic
function into simpler subparts. Step 2 would then be quickly
recognized as inapplicable, and an alternative strategy could
be considered.

While the advantages of combinator algebras have been
spelled out in some detail, their drawbacks must also be
considered:

Expressibility: It is not obvious at first glance that a
combinator algebra such as KOLA is expressive enough to
serve as an intermediate form for such expressive query
languages as OQL. However, we have designed, implemented
and verified translators from both OQL and AQUA to KOLA,
demonstrating KOLA's expressive power [11].° Translation
(which proceeds in similar fashion to that described in [6]
and [13]) relics on combinators that permit generation of
explicit environments (id and ()), and access to those
environments (), 7, and o). For iteration, KOLA provides
the environment accessing former, iter (which generalizes the
“pairwith” combinator of [6]).

The other issue concerns the expressibility of rules,
especially given our avoidance of head and tail routines.
Some transformations are only valid or appropriate provided
that certain conditions hold. We permit preconditions within
the KOLA rule language (for details see [10]), but they are
expressed as attributes whose values are determined not with
code, but with annotations and additional rules. For example,
a function is injective if it results in unequal results when
invoked on unequal objects (as in a key). We permit rules
such as

injective (f) i
((iterate (X, (T), f) ! A) N (iterate (X, (T), f) ! B)) =
iterate (X, (1), f) 1 (A N B)

which says that provided a function is injective it can be
applied before or after two sets are intersected. As well, rules

SBoth translators are confined to queries on sets involving objects and
tuples, as bags and lists are not yet accounted for in the algebra.

such as
injective (f) A injective (g) = injective (f o g)

indicate (without code) how conditions can be inferred of
complex functions and predicates. KOLA preconditions add
expressibility to the rule language, as rules can depend on
whether, for example, a function is a key or is functionally
dependent on another function. These preconditions can be
exploited and inferred without calls to code.

Complexity: Combinators make queries “larger”. Intuitively,
this is because variables, which occupy one node of a parse
tree) must be replaced by functions, which can occupy several
nodes. But we show in [11] that the complexity of translated
queries are O (mn) in the size of the input, where size is
measured in parse tree nodes, 7 is the number of nodes in the
original query, and m is the maximum number of variables
appearing simultaneously in the original query’s environment
(i.e., the “degree of nesting”). m is typically small (e.g., < 10)
as queries with large values of m are difficult to conceive and
formulate, In our experience, we have found that translated
queries are less than twice the size of the queries they translate.

In simplifying rules, we have also increased the size of the
rule set. For example, we have introduced 24 KOLA rules
to replace the four transformations presented in this paper.
However, most of the rules introduced (e.g. 1-11, 13-14, 16
and 18) have general applicability beyond the transformations
described here, and therefore we speculate that the rule set will
not increase in size by a large factor. But to handle the still
large set of rules, as well as to account for rules that are
bidirectional (rules 2, 12 and 14 were all used in a “right-
to-left” manner in this paper), we are developing a language,
COKO with which to express rule blocks; sets of rules that
are used together, together with strategies for their firing. Rule
blocks correspond to “conceptual transformations” which are
transformations that are small enough to be thought of as
individual transformations, but too complex to be expressed
with a single rule. Example rule blocks include “push selects
past joins” and “convert predicates to CNF’, as well as each
of the steps in the hidden join transformation described in
Section 4.1. What is common to these transformations is the
need to apply one or more rules in succession, and throughout
a tree. Rule blocks reduce the number of transformations that
an optimizer needs to consider without complicating proofs
establishing the correctness of the transformation, COKO
will be presented in a later paper.

5 Related Work

Rule-based optimization is a well-known approach to building
extensible query optimizers. We mentioned EXODUS [8]
and Starburst [20] as examples of rule-based systems. Both
systems assume a graph or tree-based query representation
annotated with variables. (Therefore rules over both
representations can require head and tail routines.) Both
also assume that nodes in the representation are based on

7COKO is an acronym for [Clontrol [O}f {K]OLA [O]ptimizations.

410

query operators, and not on the anonymous functions or
predicates that they use (e.g., select a < 100 forms
a node in the EXODUS representation, whereas entire
select from where queries (minus subgueries) form
nodes in Starburst’s representation). This has the effect of
making representations have fewer nodes at the expense of
making nodes larger and more complex. As well, it means
that transformations involving manipulation of anonymous
functions (as in Figures 1 and 2) require construction of new
nodes and not just new trees, and therefore are inexpressible
with rule languages based solely on unification.

Many rule-based systems (e.g. [26]) use rules to map
algebraic operators to plan-level implementations. The
transformations addressed do not consider rewriting at the
source level. [16] has similar motivations to ours in that
they attempt to remove code fragments that appear 1 rules.
Like [26] however, their work primarily addresses rules that
express source-to-physical transformations. They replace
head routines with declarative preconditions that test the
values of attributes that annotate the call-graph formed with
rules at the nodes. However, the values that these attributes
take sometimes require calls of externally defined routines;
in effect, head routines are replaced in their framework
by attribute-generating body routines. The few algebraic
transformations they show also include tail routines. For
example, they use a rule that describes how join predicates
must be adjusted with a join reordering. This rule invokes a
routine that sorts the predicates appearing in joins into bins,
according to which tuples the predicates reference. Predicate
sorting of this kind is straightforward to express with KOLA
rules, as predicates of the form p 4 m; examine tuples only
from the first set while p @& m, examine only those in the
second.

Despite the wide-spread use of the rule-based approach,
scant mention can be found discussing design issues for rule
languages. Rather, rule languages are usually assumed to be
by-products of algebra definitions and not considered in and of
themselves. An exception is the work of Sciore and Sieg [35],
who suggest ways to augment rule languages over variable-
based algebras to ensure formulation of a wide variety of rules.
Proposed extensions include rule preconditions (expressed
in code), and multivariables (abstractions of variable lists)
that allow optimization rules to be independent of function
arity. Multivariables are declarative, but make matching
inefficient. (This is pointed out by the authors). Also,
because multivariables abstract away from variable names,
they make certain transformations over variable-based query
representations inexpressible. For example, the code motion
rule that guides the optimization of AQUA query A4 of
Figure 2 cannot be expressed with multivariables because
the precondition for this rules requires reasoning about the
“freeness” of variables that can no longer be referenced. In
short, multivariables and precondition code are intended to
address the same problem that we do; variables in query
algebras make rules over algebraic representations difficult
to express without additional machinery. But whereas [35]

add the machinery, we instead remove the variables.

As we mentioned earlier, ours is not the first combinator-
based algebra proposed in a database context. [15] and [5]
propose an FP-style [3] query language. But combinator-style
languages are difficult for users to master and thus ill-suited
as query languages. [7], [6] and {4] use combinator-based
algebras to present optimization rules, They do not consider
the reasons why this style of algebra is useful for implementing
rule-based optimizers.

Combinator representations are often used within func-
tional language compilers as internal representations of A-
expressions. Combinator sets proposed in the functional lan-
guage literature can be classified according to whether they are
Jixed or variable. Fixed combinator sets use the same finite
set of combinators as the target for every program’s trans-
lation. Variable combinator techniques produce new com-
binators specific to particular programs. Fixed combinator
sets include the SKI combinator set of Schonfinkel {34] (and
its many variations) as well as the Category Theory-inspired
combinator set of Curien [13]. Variable-set combinators are
produced by A-lifting [22] and supercombinator techniques
[21]. Variable sets of combinators keep the size of trans-
lated expressions reasonably small while still producing the
desired effect of making graph reduction efficient (the com-
binators generated tend to be fairly complicated). We settled
on a fixed set of combinators for KOLA for two reasons:

1. Algebraic query optimization must reference a known (i.e.
fixed) set of operators.

A reasonable increase in query size resulting from
translating queries into combinator form is tolerable
because queries tend to be small (compared with functional
programs for example).

Nested queries have been studied extensively in the
relational context [24], and have recently been examined in
the context of object-oriented models [12]. In this paper, we
have seen how structured data in these models can lead to
very complex nested queries. The optimizations described.
while useful, are expressed monolithically. We believe our
approach of using multiple, gradually transforming rules will
make these optimizations more easily realized and verified.

6 Conclusions

Rule-based optimizers require an internal representation of
queries and a rule language for expressing transformations.
Because rules act directly on representations, the effective-
ness of the rule language is dependent on the form of the
representation, Rule-based optimizers and optimizer genera-
tors typically cannot “go it alone”. Rather, rule languages and
rule-driven optimizer modules must often be supplemented
with extensions to support optimizations that are inexpress-
ible otherwise.

Optimizer extensions typically contain bodies of code.
Head and body routines are calls to code placed within rules
to supplement the matching and transformation capabilities

411

provided by unification. Transformations whose expression is
beyond the capability of the rule language, require expression
with procedural code. But code compromises the declarative
nature of rules. Optimizer generators are forced to use
provided code and adopt whatever inefficiencies and errors
it contains. Rules are made more difficult to reason about
and prove correct, making optimizers vulnerable to mistakes
in their design and implementation. The success of the
rule-based optimization paradigm therefore depends on the
development of expressive rule languages that support the
formulation of rules without the need for supplemental code.

In this paper, we have demonstrated that the choice
of query representation is a crucial factor influencing the
expressivity of a rule language. We showed that variable-
based representations compromise the expressive capabilities
of the rule language for two reasons. First, variables are
structurally indistinguishable. Because the appropriateness
of a transformation can depend on what variables appear in a
query, rules must necessarily resort to techniques beyond the
matching provided by unification. Secondly, variables make
function manipulation occur at the level of the expression.
Expressions are not easily manipulated in the manner required
for many transformations. Rules therefore must invoke
external routines.

Our proposed alternative is a combinator-based algebra,
KOLA. KOLA query representations have revealing and
manipulable structure. We showed in Section 3 that
simple transformations that require head and body routines
when expressed over variable-based representations, can be
expressed with KOLA rules without code. We showed in
Section 4 that KOLA representations permit the expression of
transformations that are not typically expressed with rules
(nested query optimizations). The class of nested query
optimizations that we looked at are those that “untangle”
hidden join queries. We showed a five-step strategy and
associated rule set that could be used to convert these queries
into expressions involving nests and joins.

Our current efforts are concentrated in two areas. First,
we are extending KOLA to incorporate other bulk types
besides sets, both to increase compatibility with languages
such as OQL (which supports bags and lists also) and
to permit expressions of optimizations that exploit these
kinds of collections (e.g. optimizations that defer duplicate
elimination can be expressed as transformations that produce
bags as intermediate results). Our other work concerns
COKO. We are in the process of implementing a generator
of algebraic optimizer modules based on COKO inputs. As
well, we are writing COKO rule blocks for a number of
optimization strategies including those presented here as
well as others related to nested query optimization, join
optimization, predicate ordering and semantic optimization.

7 Acknowledgements

Special thanks are due to Gail Mitchell for helpful comments
on an earlier draft of this paper.

References

1

{2}

{31

[4

™

(61

(71

i9

[10]

[11]

[15

{16]

[17}

(18]

(191

S. Abiteboul and C. Beert. On the power of languages for the
manipulation of complex objects. Technical Report 846, INRIA. 1988.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1988.

J. W. Backus. Can programmung be liberated from the von Neumann
style? A functional style and its algebra of programs. Communications
of the ACM, 21(8):613~641, August 1978.

C. Beer1 and Y. Kornatzky. Algebraic optiruzation of object-oriented
query languages. In S. Abiteboul and P. C. Kanellakis, editors.
Proceedings of the Third Inte mational Conference on Database Theory,
number 470 1n Lecture Notes in Computer Science, pages 7288, Paris,
France, December 1990. EATCS, Springer-Verlag.

A. Bossi and C. Ghezzi. Using FP as a query language for relational
data-bases. Compurer Languages, 9(1):25-37, 1984.

V. Breazu-Tannen. P Buneman, and L. Wong. Naturally embedded
query languages. In J. Biskup and R. Hull, editors, Database Theory -
{CDT’92, 4th International Conference, volume 646 of LNCS. Springer
Verlag, 1992.

P. Buneman and R. E. Frankel. FQL — a functional query language. In
Proc. ACM SIGMOD Int’l Conference on Management of Data, 1979.

M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson,
D. T. Schuh, E. J. Shekita, and S. L. Vandenberg. The EXODUS
extensible DBMS project: An overview. In S, B. Zdonik and D. Maser,
editors, Readings in Object-Oriented Database Systems, pages 474—
499. Morgan Kaufmann Publishers, Inc., Los Altos, California, 1990.

R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan-
Kaufman, 1993.

M. Chermack. Form(ers) over function(s): The KOLA query algebra.
Techmucal report, Brown University Department of Computer Science,
May 1995, In preparation.

M. Chermniack and S. B. Zdonik. Combinator translations of
quenies. Technical Report CS-95-40, Brown University Department
of Computer Science, September 1995.

S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. 4th
Int'l Workshop on Database Programmung Languages, NY, NY, August
1993. Springer-Verlag.

P-L. Curien. Categorical Combinators, Sequential Algorithms, and
Functional Programming. Birkhiuser, 1993.

U. Dayal. Of nests and trees: A unified approach to processing queries
that contain nested subqueries, aggregates and quantifiers. In P. M.
Stocker, W. Kent, and P. Hammersley, editors, Proceedings if the 13th
International Conference on Very Large Databases, pages 197-208,
Brighton, England, September 1987. Morgan-Kaufman.

M. Erwig and U. W. Lipeck. A functional DBPL revealing high level
optimizations. In P. Kanellakis and J. W. Schmidt, editors, Bulk Types
& Persistent Data: The Third International Workshop on Database
Programming Languages, pages 306—, Nafplion, Greece, August 1991.
Morgan Kaufmann Publishers, Inc.

L. Fegaras, D. Maier, and T. Sheard. Specifying rule-based query
optimuzers 1n a reflective framework. In S. Cer1, K. Tanaka, and S. Tsur.
editors, Proceedings of the International Conference on Deductive and
Object-Oriented Databases, pages 146168, 1993.

R. A. Ganski and H. K. T. Wong. Optimization of nested SQL queries
revisited. In U. Dayal and I. Traiger, editors, Proceedings of the
SIGMOD International Conference on Management of Data, pages
23-33, San Francisco, California, May 1987. ACM Special Interest
Group on Management of Data, ACM Press.

G. Gardarin, F Machuca. and P. Pucheral. OFL: A functional execution
model for object query languages. In Proc. ACM SIGMOD Int'l
Conference on Management of Data, pages 59-70, 1995.

J. Guttag, J. Hornung, S. Garland, K. Jones, A. Modet, and J. Wing.
Larch: Languages and Tools for Formal Specifications. Springer-
Verlag, 1992.

412

(201

(21]

[22]

(23}

{24

{251

[26]

{271

28]

{291

[30]

[31]

[32]

[33]

[34]

135]

[36]

371

[38]

L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible
query processing 1n Starburst. In Proc. ACM SIGMOD Int’l Conference
on Management of Data, pages 377-388, 1989.

R. J. M. Hughes. The design and implementation of programmng
languages. PhD thesis, University of Oxford, 1984.

T. Johnsson. Lambda Iifting: transforming programs to recursive
equations. In Conference on Functional Programming Languages and
Computer Architecture, LNCS. Springer Verlag, 1985.

A. Kemper, G. Moerkotte, and K. Peithner. A blackboard architecture
for query optimuzation in object bases. In R. Agrawal. S. Baker, and
D. Bell, editors, Proceedings if the 19th International Conference on
Very Large Databases, pages 543554, Dublin, freland, August 1987.
Morgan-Kaufman.

W. Kim. On opumuzing an SQL-like nested query. ACM Transactions
on Database Systems, 7(3):443-469, September 1982.

T. W. Leung, G. Mitchell, B. Subramanian, B. Vance, S. L. Vandenberg,
and S. B, Zdonik. The AQUA data model and algebra. In Proc. 4th
Int’l Workshop on Database Programming Languages,New York. New
York, August 1993. Springer-Verlag.

G. Lohman. Grammar-like functional rules for representing query
optimuzation alternatives. In Proceedings of ACM SIGMOD, June 1988.

D. Mater and S. B. Zdonik. Fundamentals of object-oriented databases.
Introduction to the book 'Readings 1n Object-Oriented Databases.

G. Mutchell. Extensible Query Processing in an Object-Onented
Database. PhD thesis, Department of Computer Science, Brown
Unuversity, Providence, Rhode Island 02912-1910, May 1993.

G. Mitchell, S. B. Zdonik, and U. Dayal. An architecture for query
processing in persistent object stores. In Proc. Hawaii Int'l Conference
on System Scyences, Volume I, pages 787-798, 1992.

M. Muralikrishna. Optimization and dataflow algorithms for nested tree
quertes. In P. M. G. Apers and G. Wiederhold, editors, Proceedings
10f the 15th International Conference on Very Large Databases, pages
77-85, Amsterdam, the Netherlands, August 1989. Morgan-Kaufman.

M. Muralikrishna. Improving unnesting algorithms for join aggregate
SQL queries. In Yuan, editor, Proceedings of the 18th Int'l Conference
on Very Large Databases, Vancouver, Canada, August 1992.

J. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23-41, 1965.

H. J. Schek and M. Scholl. The relational model with relation-valued
attributes. Information Systems, 11(2):137-147.1986.

M. Schonfinkel. Uber die bausteine der mathemauschen logik. Math.
Annalen, 92:305-316, 1924.

E. Sciore and J. S. Jr. A modular query optimizer generator. ln
Proceedings of the 6th International Conference on Data Engineering.
pages 146-153, Los Angeles, USA, 1990.

D. D. Straube and M. T. Ozsu. Queries and query processing in object-
oriented database systems. ACM Transactions on Office Information
Systems, 8(4), 1990.

D. A. Turner. A new implementation techmque for applicative
languages. Software - Practice and Experience, 9:31-49, 1979.

S. L. Vandenberg and D. J. DeWitt. Algebraic support for complex
objects with arrays, identity, and inheritance. In J. Clifford and R. King,
editors, Proceedings of the SIGMOD Interational Conference on
Management of Data, pages 158-167, Denver, Colorado, May 1991.
ACM Special Interest Group on Management of Data, ACM Press.

