
Rule Languages and Internal Algebras for Rule-Based Optimizers

Mitch Cherniack* Stanley B. Zdonik”

Department of Computer Science, Brown Umversity Department of Computer Science, Brown Waiverslty

mfc(a)cs.browo. eclu sbz@cs.brown.edu

Abstract

Rnk-based optimizers and optimizer generators use rules to rpecifi

query transformations. Rules act directly on query r-epresemahons,

whwh typically are based on query algebras. But rno.s~algebras

complica~e rule formulation, and rules over these algebrcu must

ojten resort to calling to externally defined bodies of code. Code

makes rules dcjicult to formulate, prove correct and reason about,

and therefb re contp romises the e~ectiveness of rule-based systems.

[n this paper we presenl KOLA: a contbinator-based algebra

designed to simpljj rule formulation. KOLA is not a user language,

and K(). !.A’svariable-free queries are dlfjicult for humans to read.

But KOL4 is an effective internal algebra because its combinator -

,style tnakes queries manipulable and structurally revealing. As

a resalt. rules over KOLA queries are ea,~ily expressed without

the need for supplemental code. We illustrate this point, first by

showing ,some transformations that despite thews itnp[icity, require

head and body routines when expressed over algebrm that include

variables. We show thal these transformations are expressible

wilhout ,supplernental routines in KOLA. We then ,show complex

transformations of a class of nested queries expressed over KOL4.

Nested query optimization, while havin,g been studied before. have

,serio USIVchallenged the rule -based paradigm.

1 Introduction

Rtde-based optimizers and optimizer generators use rules to

specify transformations of queries. Rules act directly on query

representations, which typically are based on query algebras.

In this paper, we argue that query algebras determine the

success with which rules can express transformations. We

m,ake the argument by describing desirable transformations,

,and comp,wing rules that express these transformations over

differing algebras.

* Pwt!al support for this work was prowded by the Advanced Research

Projects Agency under conrract NOO014-9I -J-4052 ARPA order 8225, and

contract DAAB-07-9I-C-Q518 under subcontract F41100.

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the mpyright notic=a,the
title of the pubhcation and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada

Q 1996 ACM 0-89791 -794-419610006 ...$3.50

1.1 The Problem

A rule describes a query transformation and the queries

subject to the transformation. A declarative rule specifies

tmnsfortnations without committing to code that manipulates

representations, and specifies the queries to which it

applies without committing to code that makes the decision,

Declarative rules grant optimizers and optimizer generators

the freedom to make intelligent implementation decisions.

13ULmost existing systems limit themselves by permitting rtde

inputs that are not declaratively expressed.

The Stax%ttrst [20] optimizer and EXODUS [8] optimizer

generator are example rule-based systems that pertnit rules to

be

●

●

supplemented with code. Code appe,ars in two places:

Head Routines (called “conditions” in [8] and “condition

functions” in [20]) are invoked in the heads (left-hand

sides) of rules and analyze query representations to decide

if they should be transformed by rules.

Body Routines (called “support functions” in [8] and. .
“action routines” in [20]) are invoked in the botfie.r (right-

hand sides) of rules and are used to transform query

representations into alternative forms.

Code fragments are restrictive, making the qwdity and

correctness of generated optimizers depend on the quality

and correctness of included code. Code fragments also

make rules difficult to formulate, prove correct ,and reason

about. This helps to explain why for ex~ample, tmnsformations

of nested queries do not typically get implemented as

instances of rules. Nested query optimization is particularly

important and p,articulady difficult when nested queries ,are

expressed over data with complex structure, as in nested

relational [33]. complex object [1] and object-oriented [27]

databases. Such data models exacerbate both the cka.ssification

and manipulation of nested queries by allowing tuples and

objects to refer to sets and to each other. This potentlall y

introduces data dependencies into queries, complicating then’

tmusformation as we later show. There has been much

progress in nested query optimization [24]. [17], [20], [30],

[31], [12], [14]. But nested queries tend to be fairly

large and rules for them tend to lack generality or have

especially complex head and body routines. As a result, these

transformations are rarely implemented as instamces of rules,

401

and when they are, the rules are complex and difficult to reason

ba out.

In this paper, we show that it is the choice of query

representation that determines if code fragments are required

to build general and expressible rules. In particular,

representations based on variable-based query algebras

(algebras that use variables to name manipulated data) make

code fragments necessary supplements to rules. Intuitively,

this is because rule-based optimization has the flavor of

unification [32]; a rule and a query match if the rule head

unifies with a part of the query, and the transformation

of a matched query is expressed by substituting for the

variables that appear in the rule body. Unification has

the benefit of being efficient in practice while facilitating

the formulation of general rules. But unification demands

that a query’s representation be revealing (in how the query

should be transformed) and manipulable. Variable-based

representations complicate unification in both respects.

Our concern is with the expression of rules rather than the

strategies for their use, The latter, while an important issue,

[29] is not considered in this paper,

1.2 Our Contributions

We propose a variable-free (combinator-based) aigebr~

KOLA, that supports the formulation of expressive transfor-

mation rules, (A good tutorial on combinators can be found

in Turner’s paper [37]). Combinator-based internal algebras

have been considered for queries before. In particular, [6]

uses a combinator algebra to express the semantics for their

query catculus and to allow category theory machinery to be

used to reason about the correctness of transformations. We

consider an alternative use, proposing combinators as the ba-

sis for query representations manipulated by an optimizer.

We propose an alternative combinator set to that of [6] that

permits smaller translations of queries [11] at the expense of

allowing some redundancy. We have implemented translators

into our combinator set from both OQL [9] and AQUA [25].

(See [11] for details.) This makes our work similar in spirit

to the use of combinators in functional language compilers.

But whereas the trend in this community is to generate a vari-

able set of combinators on-the-fly (to improve the efficiency

of graph reduction), our combinator set is fixed and therefore

our queries are amenable to algebraic preprocessing.

We are able to formulate rules over KOLA-based represen-

tations of queries that are problematic to express over variable-

b,ased atgebras. The impact of this is in the following areas:

Optimizer Generation: Declarative rule sets make opti-

mizer generators more effective, as optimizers generated from

input code are limited by the potential inefficiency or incor-

rectness of that code. Our work makes the goal of fully

declarative rule sets realizable in two respects.

● We can formulate rules without code. We are ab~e to

formulate transformation rules that would require code

if expressed over variable-based query representations.

●

We present some rules that require code (over variaMe-

based representations) in Section 2 and their code-

free equivalents (over KOLA-based representations) in

Section 3.

We can formulate rules for transformations that are not

usually expressed with rules. In Section 4, we present

rules that transform a class of nested queries into joins,

The transformation described is not new, but as far as we

know has not been previously expressed in terms of a set

of generally applicable and gradually transforming rules.

Optimizer Correctness: The famous “count bug” of [24]

illustrates how difficult it can be to formulate correct trans-

formations. Rule-based optimization simplify correctness

proofs of optimizationsbecause rules are simpler to prove cor-

rect than algorithms. But this is exactly why rules should not

include calls to code. As has been pointed out elsewhere ([3],

[6]), combinator algebras make rule proofs easier because of

the absence of variables. In fact, we have constructed a formal

specification of KOLA using the Larch [19] specification tool

LSL, and have constructed proofs of over 500 rules that form

a pool from which a rule-based optimizer could draw. The

proofs have been verified using the Larch theorem proving

tool, LP. This work is described in [10].

Optimizer Extensibility: Rules that are expressed in a

purely declarative fashion are easier to understand, reason

about and manipulate than those that are not, Our work is

a step forward in the direction of completel y declarative rule

sets. This means that rule sets should be easily augmented to

extend the functionality of existing optimizers.

1.3 Outline of the Paper

In Section 2, we present the problems that variables introduce

to the formulation of transformation rules. We use ex<amples

written in AQUA [25]. In Section 3 we present KOLA

and show how KOLA simplifies the formulation of these

same rules. In Section 4, we show that a KOLA-based

rule language can express transformations that typically are

not implemented as instances of rules (transformations of

nested queries). We compare our work with related work

on optimizer rule languages, combinator-based languages and

nested query optimizations in Section 5, and then summarize

in Section 6.

2 Variables Considered Harmful

Optimizers manipulate query representations. Effective repre-

sentations facilitate manipulation, simplifying the optimizer

with respect to both its implementation and formatizatiou.

Query algebras usually form the basis of query representa-

tions. Therefore it is crucial that the algebra facilitate ma-

nipulation of the representation and not be simply a means of

expressing a query.

In this section, we explore the reasons why variable-based

query algebras make it necessary for rules to include head

402

,and body routines. W“e will use AQUA [25] ,asa case study,

although our remarks apply to other variable-based algebras

[e.g. [18], [%3], [36] <and[231).

2.1 Rules that Build New Functions

AYw~~mous ,Jimctions tare functions denoted without names.

An expressive query algebra should permit anonymous

functions to be used within a query to express what should

he done with each object in a queried collection. Most object

id gebrcasprovide <anonymous function support using a nomtion

borrowed from the A-ca.lculusi. But while A-notation is

str<tightforw<ard for users to write, it is f<arless straightforw,ad

for optimizers to manipulate. We present two exampIes (in

Sections 2.1 and 2.2 respectively) to illustrate.

Figure 1 presents two useful transformations of AQUA

queries. The queries in tills Figure (and Figure 2.2) use the

AQUA set operators app and sel which have the semantics

shown below. Note that [and] delimit object pairs.

app(f)(.-i) = {f((L) /(1 E .4}

se] (p)(.’lj = {(1 I (1 E .4, p(a J}

flatten(A) = {a / 313 (B ~ .4, a 6 B)J

join (p, j)([. A, B]) = {~(a,b) I a G .A, b G B,p[a, b))

The transformations are expressed with the notation

QI ~ G?2,where Qi and QZ denote equnmlent queries. We

assume a schema with an abstract data type (ADT), J?ers on,

whose interface includes addr (returning au Address),

age (returning an integer), child (returning a set of

persons corresponding to the children of a given person),

cars (returning a set of Vehi c 1 es corresponding to the cars

owned by a particular person) and grgs (returning a set of

Addresses corresponding to the set of garages kept by a

person) The ADT, Address has an interface that includes

c i ty (returning a string). P and V denote sets of Persons

and Veh i c 1 es respectively.

The transformations of Figure 1 require construction of

new functions ,and predicates from the anonymous functions

,and predicates found in the original queries, 7’1 constructs a

new function, A (p) p.addr. c i t y by cornposirtg the two

functloms used in the origiud query. TZ constructs both

a function (A (p)p.age) and predicate (A (a)rs > 25) by

decomposirtg the original predicate, A (p) page >25. These

transformations ,are difficult to express over wariable-based

query representations because they require the optimizer

to open the “black-boxes” that are ~-expressions, The

manipulation must then be of the expressions that are the

function and predicate bodies, requiring additional machinery

to perform such tasks ,as

● variable renaming For example, ‘“~ (~) z.age” of the

first query of T2 should be renamed to “A (p)p,age”

so that this function is recognized as a “subfunction” of

“A (p) page >25”

~For example. A-mlculus uotation IS expIicit m GOM. EQUAL and

AQLJA. ‘The others use nammg convent]om (()FL) or varmble deckaratjom

I Excess I m an alternative means of denoting a variable’s meamng and scope.

T’, app (A (a)a. city)(app (A (p)p.addrj(f’)i ~

app (~ (p)p. addr. city)(P)

Return the cities mhalxted bv people m P.

T~ : app (A (r).c.age)(sel (A (p)p.age > 25)(P)) ~

sel (~ (a)a > 25)(app (A (p)p. age)(~’))

Return the ages ofpeople in P older than 25.

Figure 1: Building New Funct~ons and Predlcams

.43: app (A(p) [p, sel (~(clc.age > 25)(p. ch; ldJ])(1U

Return persons In P, p pawed wjth their chikiren

who are older lhan 25.

.44: app (A(p) [p, sel (Afcjp.age > 25)(p. child)l)(P)

●

Remrn persons m P, p paired with p ,<cluklren

{Lfp is older Ehan 25) and v$’itlt the {olhe,rwvse)

Figure 2: Structurally Identical .Nested Queries

expression composition The transformation of 27 requu’es

building a new function by composing the expressions.

“a. c i t y“ and “p.addr” from the origin,al query. Expres-

sion composition requires substituting one expression for

a free variable in the other expression (e.g., substituting

p.addr for t~ in a.city gives p.addr, c ity). This sub-

stitution is not expressible using unification ,alone because

expressions are not uniform (while some may be path ex-

pressions, others may involve pre-defined operators and

functions (prefix, inilx or postfix) or even queries).

This additional machinery complicates the optimizer’s imple-

mentation and specification.

2.2 Rules that Manipulate Nested Queries

Queries are nested if they contain other queries. Figure 2

shows two nested queries expressed in AQLTA. The queries

are nested because the anonymous function inputs to app <are

queries (involving the operator, sel).

Wh,hin nested queries it is possible for Subexpressions to

reference free variables. Query Ad includes the function

“A (c)page > 25” with a reference to the free v,ariable p.

Whetheror not a variable appears free in a query can determine

if a transformation is appropriate. For example, query 4 of

Figure 2 is subject to a code motion transformation [2] which

would move the predicate out of the inner query, resulting in

the equivalent (but more efficient) form, app (A (p)f(p)) (F)

where

.f = if (page > 25) then [p,p.child] else [p. j .

Query A3 of Figure 2 is structurally identical to L+, dlfferm.g

only by the identifier appearing in the predicate. (A? checks

403

that the age of the child c is greater than 25 rather than

the age of the person p.) But As is not subject to a code

motion optimization. That variables appem in the query

representation makes these queries structurally identical but

subject to different transformations. Therefore, the rule that

expresses this transformation must be supplemented with a

head routine to perform environmental analysis to determine

if variables that appear in the expression are free variables,

2.3 Problem Summary

The operation of rule-based optimizers typically resembles

unification. The unification style supports the formulation of

general rules (through the use of unification variables) and

efficient performance. But a pure unification style requires

that query representations have structure that is both revealing

in how queries should be transformed, and easily manipulable.

Variable-based representations do not have these properties.

●

●

Variables are used in expressions that are function and

predicate bodies. The function and predicate manipulation

that is required in expressing the queries that result from

transformation requires machinery above and beyond what

one gets for free with unification. Therefore, this kind of

rnzmipulation requires rules with body routines.

Variables cannot be distinguished by their structure.

Because transformations can” depend on which variables

appear in various parts of the query (i.e., scoping), rules

expressing these transformations must be supplemented

with head routines.

We complete our argument by presenting a variable-free

(combinator-based) dgebr% and showing how the problems

discussed in this section go away.

3 KOLA: A Combinator Algebra

KOLA’S2 corrtbinator-style facilitates the kind of query

manipulation that is difficult with variable-based algebras.

KOLA has the flavor of Backus’ FP [3] but unlike FP can

build functions and predicates over sets. It provides for

anonymous functions through~omners; functional that denote

new functions in terms of existing ones. It also provides a

set of primitive functions and predicates such as the identity

(id) function and equality (eq) predicate, as well as functions

and predicates found in ADT interfaces included in a schema

(such as the age, addr, child, cars and grgs functions

on Person), Variables and A-notation are neither provided

nor required to denote functions.

Tables 1 and 2 describe the operational semantics of some

KOLA primitives and formers. (A formal specification of

the entire algebra using Larch [19] is presented in [10]).

The semantics equations show the results of invoking KOLA

functions and predicates on their arguments. All functions

are invoked via the infix operator, “!”, while predicates are

invoked with “?” (also infix). Within these equations and

throughout the rest of the paper, we use variables to denote

2K0LA is an acronym for [K]ind [C3]f [L]ike [A] Q[JA.

KOLA

id

7T1

7r2

eq

leq

gt

in

?)

x

Kf

Cf

con

m
&

I
–1

KP

CP

(f, g)!z = [.f!%, g!xl

(.fx9)![z, yl ❑ [f!z, g!y]

K~(~)!y ~ $

Cf (j, 3) ! y ❑ f! [z}y]

[

j!z, ifp?r
con (p, ~,g) ! z =

q!z, else

Table 1: Basic KOLA Combinators

arbitrary functions (j, g, h, j), predicates (p, q), objects (z,

y), bools (b) and sets (A, B). Variables therefore indicate how

a former is instantiated. Table 1 presents generally applicable

KOLA primitives and formers, while Table 2 presents those

that generate functions and predicates on sets (queries).

The semantics equations can be used to derive a query’s

“meaning”. For example, the query below uses the primitive

functions city and addr, o (the composition function

former), iterate (a set function former similar to OFL’s

“iterate” operator [18], and that captures both of AQUA’s

app and sel operators) and the constant predicate former, KP.

(iterate’s semantics is given in Table 2- all others are listed in

Table 1). This query’s “meaning” is derived by the reduction

below.

iterate (KP (T), c i ty o addr) ! P

= {(city oaddr) !e /e E P, Kp (T) ?e} (1)

= {city! (addr!e) \e c P, K, (T) ?e} (2)

= {city! (addr!e) \e c P} (3)

Steps (1-3) of the reduction are justified by the definitions

of iterate, o and KP respectively. This query is therefore a

translation of the transformed query of transformation (1) of

Figure 1, as the KOLA expression, “city ! (addr ! e)“ is

equivalent to the path expression e.addr. c i ty.

Table 1 is in divided into four sections. The first two

sections present KOLA primitive functions and predicates

respectively, which, besides id and eq, include the projection

3wt3 (f) is ewivalent to ~t-te (KP (~) t f) and =1 (P)ISwiva~entto
iterate (p, 1d), where id and KP areas defined in Table 1

404

flat ! .4 ={l:/xc B, BeA] join (p, f) ! [A, 1?] ❑{.f![x, Yllz EA, YGB, P’?[c, Yl}

iterate (p, ~) ! A E{ f!x/z EA, p?x} nest (.f, g) ! [A, B] ={[y,{g!xlxEA,j!x=y}]ly~B}

iter (p, ~) ! [r, B] ={.f! [$, YI lYGB, P?[a, Yl} Unnest(f, g)!A ={[f!r, yllx6A, yE(g! z:)}

Table 2: KOLA Query Combinators

functions on pairs (TI ad m2), the “greater than” (gt) and

‘less than or equat” (leq) predicates, and the set membership

predicate (in). (Not listed, but assumed are schema-based

primitives such as those described in Section 2.1.) The

third section of the table presents general purpose function

fmmers. Besides o, these include () (pairing functions),

x (ptirwise function application), Kj (constant functions),

Cf (currying) and con (conditionals), The fourth section

lists KOLA predicate formers which besides KP, include @

(predicate/function combiner), & and I (predicate conjunction

,and disjunction), – 1 (predicate inverse), KP (constant

predicates) and CP (currying).

Table 2 presents KOLNS query formers. Besides iterate,

these include flat (set flattening), join, iter, nest and unnest,

iter is similar to iterate, but is invoked on pairs [e, A]

rather than on sets. (Binary functions and predicates are

invoked over pair objects in KOLA). iter is suited for

expressing nested queries as e can be a representation of

the environment that would be implicit in a variable-based

query representation. To illustrate, we trace the reduction

of the “Garage Query” [28] (~iG, of Figure 3); a query

that associates each of a set of Vehicles with the set of

Addresses where the Vehicle might be located, For

uotatiomd simplicity, we adopt the convention that chains of

function compositions (~1 o jz 0 ...0 jn) are written without

parentheses (exploiting associativity) and with each J on a

separate line. Similarly, function pairs (j, g) are sometimes

written with g directly below f. The semantics of KG, is

shown by the reduction below, where ~ denotes the function,

“flat o iter (KP (7’), grgs o 7r2)”, g denotes the function

‘titer (in @ (ml, cars o n2), 72)” and P. (for Vehi. cle, v)

denotes the set, {p I p C P, v G p.cars}.

iterate (KP (T), (id, f o (id, g o (id, Kf (P))))) ! V

= {[v, f![v, g![v, plll~~EV, Kp(~)?v} (1)

= {[v,.f! [v, PvllllJGv} (2)

= {[v, {z12Ep.grgs, pEPV}]~v EV} (3)

Step (1) follows from the definitions of iterate, (), id, o and

K~. Step (2) follows as g ! [v, P]

= iter (in & (7TI, cars o 7rz), 7rz) ! [v, P]

= {7rz! [vjp] lpcP,in &(7rI, cars 07r2)? [v, p]}

= {plp6P, in? [7rI ! [v, p], (cars 07r2)! [v, PI I}

= {P IPGp, vCp.cars} = Pu

A’c;, : iterate (KP (T), (id,

flat o

iter (KP (T), grgs o T2) o

(id, iter (in w (ml, cars o 7T2), TZ) o

(id, K~ (P))))) ! V

~<G2 : nest (Tl, 7T2)O

(unnest (ml, 7r2) x id) o

(join (in @ (id x cars), id x grgs), ml) ! [P’, P]

Figure 3: Two Equivalent Versions of the “Garage Query”

while step (3) follows as j ! [VI Pu]

= flat o iter (KP (T), grgs o 7r2) ! [v, PU]

= flat !{(grgs 07rz) ! [v, p] lpe Pu, KP (T) ? [v, p]})

= flat ! {p.grgs [p ~ PV}

= {Z I z Gp.grgs, PC P.}.

Steps (2) and (3) of the reduction have g and ~ each being

evaluated with respect to an explicit environment (pair)

containing v. These environments are created when the

identity function is invoked as part of the application of

functions (id, Kj (P)) (which creates an environment for

g) and (id, g o K~ (P)) (which creates an environment for

f)

The combinator nest forms a function that is invoked on

pairs of sets. A typicat use of nest involves nesting a join of

two sets A and B, pairing each element a E A with the subset

of B containing W elements that satisfy the join predicate

with a. To ensure that the cardinality of the result is the same

as that of A, many algebras introduce an outer join operator

that associates NULLS with elements of A which never satisfy

the join predicate (e.g. [14]), That is, NULLS preserve values

of A that are needed in the nesting but are lost by the join. Our

version of nest allows us to avoid NULL values by instead

making the nesting of a set (the first argument to nest) relative

to a second set (the second argument to nest). Rather than

associating NULLS with particular elements of A ,OSa result

of the join, we associate the empty set with these elements as

a result of the nest. We avoid “losing” join vatues by making

A a second argument to nest, as in

nest (ml, n2) ! [join (p, id) ! [A, B] ,A] .

The reader can verify, by reducing this expression according

to the rules of Table 2 that every element of A is represented

405

iterate (Kf, (T), c i t y) o iterate (KP (T’), addr) ! P ~ j“oid ~~ (1) idof ~f (2)

(ml, mz) Z id
iterate (Kr, (T) & (KP (T) @ addr), city o addr) ! P ~

p@id =p (3) (4)

K, (T) &p ~ p (5) K, (b) @f ~ Kp (b) (6)
iterate (KP (’T) & K~, (T), city o addr) ! P 3

~~- 1 S leq (7) Kf (k) of ~ Kf (k) (8)
iterate (Kr, (~), city o addr) ! P

7r~ o (f, g) =f (9) 7r~o(f, g) =g (10)

iterate (KP (T), age) o

iterate (p, j) o iterate (q, g) ~ iterate (q & (p*g)$,f of]) (11
iterate (gt @ ((age, Kf (25))), id) ! P

11, ~s. 1

,.- iterate (P, id) o iterate (K. (T), f) ~ iterate (v Y f, f) (1~)

iterate (gt @ ((age, Kt (25))), age) ! P
lJ, ! .-.-, .. -”.
+

12–]
iterate (CP (Ieq, 25) @ age, age)) ! P +

iterate (CT, (leq, 25), id) o iterate (KP (T), age) ! P

Figure 4: KOLA Transformations ‘T,K and T2X

in the result. The second “garage query” (lf~2 of Figure 3)

invokes nest on the resu~t of join. We show its equivalence to

lK~;, in Section 4.

3.1 Rules that Build New Functions

Figure 4 presents step-by-step transformations of KOLA

queries equivalent to the AQUA transformations of Figure 1.

Each step in the transformation is justified by a rule from

Figure 5. We use the notation” ‘+’” to indicate the rules used

to justify a step in the transformation. Rule references of the

form i-1 ,are “right-to-left” interpretations of rule i.

These transformations required head and body routines

when expressed over AQUA queries because sophisticated

manipulation of function and predicate bodies was required.

KOLA’S many function and predicate formers provide a

catalog of ways to recognize and build complex functions.

Transformation TIK uses the o function former to combine

two existing functions (rule 11). Transformation T2K

decomposes the predicate and function subparts of a predicate

by separating the arguments to the @ predicate former (rule

12- 1), Formers simplify the optimizer’s implementation

{which requires no extra machinery such as variable renaming)

[and formalization (which can be based on a set of declarative

rules such .asthose of Figure 5).

3.2 Rules that Manipulate Nested Queries

The nested AQUA queries of Figure 2 are structurally identical

to one another but only one is transformable using code

motion. The applicability of the code motion rule depends

on the freeness of a variable appearing in a subexpression.

Therefore, the routine that performs this transformation over

a variable-based representation must perform environmental

~analysis.

The KOLA versions of these queries are both of the form,

iterate (KP (T), (id,

iter (gt @ (age o ~, Kf (25)), mz) o

(id, child))) ! P

Pb(.f, K~(k)) = Cp (p-1, k)6?f (13)

P@(fo9) = (Pe.f)&9 (14)

iter (p @ ml, mz) ~ con (p@ 7r~,mz,Kf (v;)) (15)

con (P, ~, 9) o h ~ con(p@h, ~oh, gOh) (16)

Figure .5: Rules for Figures 4 and 6

iter (gt @ (age o ml, Kj (25))1 rz) o (id, child)
137

iter (CP (leq, 25) & (age o mI), 7rz) o (id, child)
~

iter ((cP (Ieq, 25) & age) @ fill T2) o (id, child)
~

con ((Cp (leq, 25) & age) @ ml, 7rz, K~ ((~))) o (id, child)

14–1
. ..~. 4, 4, +, 4, -+, ,.

con (cp (Ieq, 25) @ age, child, Kj (t;)))

Figure 6: Rule-based Transformation of Query 4~

but differ by what is ~: KOLA’S version of Aj (hereafter

referred to as query A’3), has ~ as m, whereas 1(4 has ~

as ml. Thus, the KOLA queries are structurally similar to

one another, but not identical. The difference is sufficient to

determine that a code motion transformation only applies to

the translation of K4.

In Figure 6, we present the stepwise transformation of Kq.

Specifically, we show how the function argument to iterate,

iter (gt @ (age o ml, Kj (25)), ml) o (id, child)

k transformed to remove the unnecessary looping operator,

iter. (We omit some steps in the interests of space.) 1[3

would be transformed by simiku steps, but ‘after having been

transformed according to rule (14), its predicate ,argument to

iter would have the form, p @ m (p = CP (leq, 25) @ age)

making it unaffected by rule (15).

To summarize, we have shown that the effectiveness of

a rule-based optimizer depends in part on the underlying

query algebra. An atgebra is a means of representing

queries and not just a medium for expressing them. As the

basis of query representations, algebras should facilitate the

query analysis and manipulation performed by an optimizer,

But variables complicate transformation, demanding that

406

additional machinery be available to build new functions and

examine environments. We have introduced our combinator-

based algebr% KOLA, K(’)LA is a useful basis for query

represenmtions because both analysis and manipulation of

KOLA queries can be expressed in terms of declarative

rules and without code. This simplifies an optimizer’s

implementation ,and formalization, helping to ensure that it

is built correctly.

4 Transforming Hidden Join Queries

We have shown that KOLA’S combinator-based denotations

of functions and predicates make it possible to express

optimization rules without the need for head and body

routines. hI this section, we consider rules for a class of nested

query transformations that further demonstrate the expressive

power we get from a KOLA-based rule language. A great

deal of research has beeIl done in nested query optimization,

but typically this research makes it into practice with complex

rules that are difficult to formalize and reason about (e.g., [12]

,and [20]) or with transformations expressed informally over

query languages (e.g., [24, 17, 31]).

4.1 Hidden Join Queries

The class of queries we consider are hidden joinv nested

queries that (like join queries) pair objects that are taken

from two sets and that satisfy some relationship. Because of

their potentially deep nesting, it is not immediately apparent

that hidden joins can be transformed into explicit joins. We

propose a five-step strategy for “untangling” hidden join

queries into their join equivalents, complete with rule sets used

at each step. The rules we use for these transformations are

generally applicable and perform the optimization in gradual

steps, unlike the monolithic and overly specific rules that

sometimes appear in the literature [12]. We describe and

illustrate our technique showing how to transform from one

“Gmage Query” (~fG,) to the other (Ii’~2).

AQUA’s hidden join queries are of the form:

app (A (a) [j (a), gl (gz (... (gn (B)) . . .))]) (A)

where j is any function and each g~ is a function that invokes

a query, as in, app (.. .), sel (. . .), flatten (app (.. .)) or

flatten (sel (.. .)). KOLA translations of these queries are of

the form shown in Figure 7, where j is any function, each hi is

either flat or id, and each gi is iter (p,, fi) for some function

fi and predicate pi. For l(G1 of Figure 3, we have n = 2,

j = id. Ill = flat PI = KP (T), ~1 = grgs o m, 112= id4,

pz=in+(nl, cars em), f2=m, B = Pand A = V.

The optimization of hidden joins involves transforming

them into nestings of explicit joins, as in the KOLA query KG,

of Figure 3. This kind of optimization may be advantageous

because of the variety of implementation techniques known

for performing nestings of joins [24]. But hidden joins are

4Note that the association of id wittr /12 follows after applying rule 2-’

of Figure 5.

iterate (Kp (~), (j, ~~1 o glo

(id, h20g20... o

(id, hn o gno

(id, K~ (B))).. .))) ! A

Figure 7: KOLA Hidden Join Queries

difficult to transform with rules because nesting can occur to

any degree (i,e., the value of n above is unbounded). Rules

that express the optimization monolithically (as in [121) must

analyze the query using complex head routines that delve to

any level of nesting, to see if the query is of the desired form.

(The query is not of the desired form for example if the query

that is the function instantiating iterate is invoked on a set

derived from a rather than the globatly named set B). Our

techniques use multiple smaller rules to graduatly transform

the query to its desired form. As we will see, the rules chosen

simplify queries to the point where it is straightforward to

decide if the query is transformable into a nest of a join. In

cases where this transformation is inapplicable, the query has

still been simplified enough that other appropriate strategies

can be simply considered.

Below we present a strategy and associated rule set for

converting hidden join queries into queries with explicit joins.

Our strategy consists of five steps, where each step uses a

small rule set to guide the transformation of its input query.

We summarize these steps in terms of the actions that are

taken on parse tree representations of hidden join queries.

1. Break up complex iterate into multiple, smaller iterate’s.

2. Bottom-Out the parse tree with a nest of a join.

3. Pull up nest to the top of the query tree

4. Pull up unnests to the top of the query tree (below nest).

5. Absorb bz[o join, the iterate operations above it.

We consider each step in detail below, by describing the

general idea behind each step, the general form of the query

that results from the transformation and the effect of each step

on the “Garage query”. The rules used at each stage are listed

in Figures 5 and 8. All of these rules have been proven correct

with proofs verified by the Larch theorem prover, LP [19].

Step 1: Breakup complex iterate This step has the effect

of breaking up the query from the monolithic form,

iterate (Kp (T), (1’, G)) ! A,

where G is potentially very large, into a composition chain of

iterate operations. Rules 17, and 18 of Figure 8, and rule 4

of Figure 5 are used to reduce the initial query into a query of

the form,

iterate (Kp (!/’), (j’ o TI, ~2)) O

iterate (Kp (~), T) o iterate (Kp (~), fi) o . . .

iterate (Kp (T), (id, K~ (B))) ! A

407

—
where f~ = (ml, flat o 7rl)5 iand z = (ml, iter (pi, ~!)).

For example, applying these transformations to }{~, of

Figure 3 leaves li~,o =

iterate (Kr, (~), (ml, flat o 7r2)) o

iterate (Kp (~), (ml, iter (Kp (~), grgs o 7r2))) o

iterate (Kp (~), (mI, iter (in ~ (n~, cars o 7r2), 7rz))) o

iterate (Kp (T), (id, Kj (P))) ! V

Because in this example, j is id, the first function in the

composition chain reduces to id (by rule 18) and then is

eliminated (by rule 2).

Step 2: Bottom-Out In this step we convert the expression,

iterate (Kp (T), (id, Kj (B))) ! A, (which occurs at the

bottom of the query tree) into a nest of a join, Rule 19

of Figure 8 is used to reduce the query resulting from the

transformations of Step 1, into a query of the form,

iterate (Kp (~), (~ o 7TI, 7T2)) o

iterate (Kp (~), Z) o iterate (Kp (~), fi) o . . .

iterate (Kp (~), ~) o iterate (Kp (T), ~) o

nest (7rl, 7r2) o

(join (KP (~), id), m) ! [A, B]

Applied to ~{~,~, this transformation results in ~{G,, =

iterate (Kp (~), (T1, flat o TZ)) o

iterate (Kp (T), (mI, iter (Kp (~), grgs o 7T2))) o

iterate (Kp (T), (ml, iter (in @ (7rI, cars o 7r2), 7P2.))) o

nest (ml, 7rz) O

(join (KP (2’), id), m) ! [V, P]

Step 3: Pull Up nest In this step, nest is pulled from the

bottom of the query tree to the top. Rules 20 and 21 of

Figure 8 reduce the query resulting from Step 2, into a query

of the form,

iterate (Kp (~), (~ o 7T1, 72)) o

nest (7rl, 7rz) o

~ o (iterate (pl, (Tl, ~1)) x id) o . . . 0

~ o (iterate (pn, (ml, ~n)) x id) o

(join (Kp (T), id), Tl) ! [A, 1?]

where each E is either unnest (T1, 7r2) or id (in which case it

“drops out” by rule 2 of Figure 5). (If j is id, nest will appew

at the top of the query tree after this step.) Applied to ~{G,b,

this ~~sfo~ation results in ~fGlc =

nest (7rl, 7rz) o

(unnest (m, 7rz) x id) o

(iterate (Kp (T), (T1, grgs o n-2)) x id) o

(iterate (in @ (nl, cars o 7r2), id) x id) o

(join (KP (T), id), m) ! [V, PI

‘~ could also be of the form, (m, id o W) = id (by rules 2 and 4 of

Figure S), in which case iterate (Kp (’T), ~) “drops out” of the query by

rules 18 (Figure 8) and 2 (Figure 5).

17. iterate (Kp (T), (j, (goiter (p, ~) o (id, /L)))j ~

iterate (Kp (~), ((.7’ o ~1), ~2)) 0

iterate (Kp (T), (nl, (g o 7T2))) o

iterate (Kp (~), (T1, iter (p, ~))) o

iterate (Kp (T), (id, h})

18. iterate (Kp (T), id) ~ id

19. iterate (Kp (T), (id, Kf (B))) ! A ~

nest (ml, 7rl) o (join (Kp (T), id), TI) ! [A, B]

20. iterate (Kp (T), (ml, iter (p, j))) o tIeSt (7rI, 7rI) ~

nest (Tl, 7r2) o (iterate (p, (ml, ~)) x id)

21. iterate (Kp (T), (ml, flat o Tj)) o nest (ml, 7r2) ~

nest (ml, 7r2) o (unnest (ml, T2) x id)

22. (iterate (p, (ml, ~)) x id) o (,unnest (ml, 7r2) x id) Z

(unnest (ml, 7r2) x id) o

(iterate (Kp (~), (7’rI, ikr (p, ~))) x id)

23. (unnest (nI, Tz) x id) o (unnest (rl, 7r2) x id) Z

(unnest (ml, 7r2) x id) o

(iterate (Kp (T), (TI, flat o m)) x id)

24. (iterate (p, ~) x id) o (join (q, g), Tl) ~

(join (q&(p @g), fog), ml)

Figure 8: Rules Used to Optimize Hidden Joins

Step 4: Pull Up unnest In this step, all unnest operations

appearing in the parse tree are pulled up to the top, just below

the nest operator. Naturally, if the only instance of unnest is

situated immediately following nest, this step need not be

performed. Rules 22 and 23 of Figure 8 are used to reduce

the query resulting from the transformation of Step 3, into a

query of the form,

iterate (Kp (~), (j’ o ml, 7r2)) o iM!St (TI, ?T2) o

(h)o(fi xid)o... o(fixid)o

(join (Kp (T), id), Tl) ! [A, B]

where j. is (unnest (ml, 7r2) x id) or id (in which case it

“drops out”), and ji (i > O) is iter (Kp (T), (TI, z)) where

K is either iterate (p, ~) (for some predicate p and function

~) or flat o ~2. Quw KG,. is unaffected by this step because
unnest appears just once in the pafse tree just following nest.

Step 5: Absorb into join In this step, the join operation

found at the bottom of the query tree is combined with

the iterate operations above it, thereby removing the

iterate operations in favor of ajoin with a potentially complex

408

function and predicate. Rule 24 of Figure 8 is used to reduce

the query resulting from the transformation of Step 4, into a

query of the form,

iterate (Kp (~), (j o Tl, T2)) o

nest (ml, 7T2) o jO o (join (p, ~), ml) ! [A, B]

where ~ is any function and p is any predicate. Applied to

}{C;,C this transformation produces query ~{G2 of Figure ~.

4.2 Discussion

The hidden join transformation illustrates the advantages of

using a combinator-based query representation for develop-

ing rules, This transformation is far more difficult to express

over variable-based query representations because the prob-

lems that variables introduce into the expression of rules are

exaggerated when these rules must express complex trans-

formations. To illustrate, we consider how the hidden join

optimization might be expressed over an AQUA-based query

representation. One could try and do so with multiple, simp~e

rules ,as we have done, but this is complicated by the same

problems described earlier. For example, Step 1 of our hidden

join strategy requires recognizing that a query is of the form,

“iterate (Kp (T), (~, g)) ! A.” The equivalent AQUA query

is of the form, “app (A (a) [el, C2]) (A)”, where both el and

e2 have occurrences of a. Of course, e1 and e2 can be arbitrar-

ily complex expressions. Recognizing that a occurs in these

expressions would then require a complex head routine.

An alternative is to express the hidden join transformation

in terms of a single complex monolithic rule. (This is the

approach taken to express transformations in [12]). Such

rules ,we problematic for two reasons.

Complex Ruies Need Complex Head and Body Routines.

This is not surprising, given the arguments presented in

Section 2. However, we can appreciate how complex the

routines can be by considering how a monolithic rule would

express the hidden join optimization. In order to fire this

rule on a query, matching must determine that the function

which is applied to the elements of A is a query over a

set, B. The reference to B can be arbitrarily deeply nested

within the query, meaning that the level at which it appears

in the representation parse tree is unbounded. Therefore,

the structural matching provided by unification must be

insufficient to decide that the hidden join rule is applicable

to a query. Rather, a head routine is necessary to perform

the “dive” into the query tree, sinking as many levels as is

required to decide whether or not the rule should be fired.

Complex Rules Do Not Simplify Queries. The complex

head routines that would be required to express this

rule monolithically are especially troublesome when one

remembers that most often, rules are not applicable to queries,

(The rule set used to transform the query will invariably be a

small subset of the entire rule set used by the optimizer). In

deciding that the monolithically expressed hidden join rule is

not applicable to a given query, the query is not simplified in

any way. Thus, the resources required in attempting to match

a rule to a query do not bring the query much closer to being

optimized (except that there is one less rule to try).

We believe the approach of using multiple simple rules

to transform the query to be especially promising, because

many of these rules simplifi the query in such a way that

alternative strategies are easily considered. (This was the case

for queries 1<3 and A’4 (from Section 3.2). Both queries were

subject to the same initial transformations. These simplified

the query to a point where it was possible to determine if

code motion transformations were applicable.) Similarly, the

first step of the “garage query” transformation simplified the

initial query by breaking up the large function applied to each

vehicle, and replacing the query with a composition chatn of

simpler functions. If the function applied to each vehicle,

v had not been a query on P but instead a query on some

set attribute of v (such as v.drivers), this first step would

still have simplified the query by breaking up its monolithic

function into simpler subparts. Step 2 would then be quickly

recognized as inapplicable, and an alternative strategy could

be considered.

While the advantages of combiuator algebras have been

spelled out in some detail, their drawbacks must atso be

considered:

Expressibility: It is not obvious at first glance that a

combinator algebra such as KOLA is expressive enough to

serve as an intermediate form for such expressive query

languages as OQL. However, we have designed, implemented

and verified translators from both OQL and AQUA to KOLA,

demonstrating KOLA’S expressive power [11].6 Translation

(which proceeds in similar fashion to that described in [6]

and [13]) relies on combinators that permit generation of

explicit environments (id and ()), and access to those

environments (ml, 7rz and o). For iteration, KOLA provides

the environment accessing former, iter (which generalizes the

“pairwith” combinator of [6]).

The other issue concerns the expressibility of rules,

especially given our avoidance of head and tail routines.

Some transformations are only valid or appropriate provided

that certain conditions hold. We permit preconditions within

the KOLA rule language (for details see [10]), but they are

expressed as attributes whose values are determined not with

code, but with annotations and additional rules. For example,

a function is irzjective if it results in unequal results when

invoked on unequal objects (as in a key). We permit rules

such as

i71ject ive (f) ::

((iterate (Kp (T), i) ! A) n (iterate (KP (T), ~) ! B)) ~

iterate (Kp (T), .f) ! (A fl ~)

which says that provided a function is irtjective it can be

applied before or after two sets are intersected. As well, rules

6Both translators are confined to quer]es on sets mvolviug objects and

tuples, as bags and lists are not yet accounted for in the algebra.

409

such as

i?~jcctive (~) A i?ljrxtivr (g) ==+ i?~jecfive (~ o g)

indicate (without code) how conditions can be inferred of

complex functions and predicates. KOLA preconditions add

expressibility to the rule language, as rules can depend on

whether, for example, a function is a key or is functionally

dependent on another function, These preconditions can be

exploited and inferred without calls to code.

Complexity: Combinators make queries “larger”. Intuitively,

this is because variables, which occupy one node of a parse

tree) must be replaced by functions, which can occupy several

nodes. But we show in [11] that the complexity of translated

queries are O (inn) in the size of the input, where size is

measured in parse tree nodes, 71is the number of nodes in the

original query, and m is the maximum number of variables

appearing simultaneously in the original query’s environment

(i.e.. the “degree of nesting”). m is typically small (e.g., < 10)

as queries with large values of m are difficult to conceive and

formulate, In our experience, we have found that translated

queries are less than twice the size of the queries they translate.

In simplifying rules, we have also increased the size of the

rule set. For example, we have introduced 24 KOLA rules

to replace the four transformations presented in this paper.

However, most of the rules introduced (e.g. 1-11, 13-14, 16

,and 18) have generat applicability beyond the transformations

descxibed here, and therefore we speculate that t.herule set will

not increase in size by a large factor. But to handle the still

large set of rules, as well as to account for rules that are

bidirectional (rules 2, 12 and 14 were all used in a “right-

to-left” manner in this paper), we are developing a language,

Ct3K07 with which to express rule blocks; sets of rules that

are used together, together with strategies for their firing. Rule

blocks correspond to “conceptual transformations” which are

transformations that are small enough to be thought of as

individual transformations, but too complex to be expressed

with a single rule. Example rule blocks include “push selects

past joins” and “convert predicates to CN17’, as well as each

of the steps in the hidden join transformation described in

Section 4.1. What is common to these transformations is the

need to apply one or more rules in succession, and throughout

a tree, Rule blocks reduce the number of transformations that

an optimizer needs to consider without complicating proofs

establishing the correctness of the transformation, COKO

will be presented in a later paper.

5 Related Work

Rule-based optimization is a well-known approach to building

extensible query optimizers. We mentioned EXODUS [8]

and Starburst [20] as examples of rule-based systems. Both

systems assume a graph or tree-based query representation

tannotated with variables, (Therefore rules over both

representations can require head and tail routines.) Both

also ‘assume that nodes in the representation are based on

7COKO is an acronym for [C]orrtrol [O]f [K]OLA [O]ptirnizations.

query operators, and not on the anonymous functions or

predicates that they use (e.g., se 1 ec t a < 100 forms

a node in the EXODUS representation, whereas entire

select from where queries (minus subqueries) form

nodes in Starburst’s representation). This has the effect of

making representations have fewer nodes at the expense of

making nodes larger and more complex. As well, it means

that transformations involving manipulation of anonymous

functions (as in Figures 1 and 2) require construction of new

nodes and not just new trees, and therefore are inexpressible

with rule languages kmsed solely on unification.

Many rule-based systems (e.g. [26]) use rules to map

algebraic operators to plan-level implementations. The

transformations addressed do not consider rewriting at the

source level. [16] has similar motivations to ours in that

they attempt to remove code fragments that appe,ar m rules.

Like [26] however, their work primarily addresses rules that

express source-to-physicaI transformations. They replace

head routines with declarative preconditions that test the

wdues of attributes that annotate the call-graph formed with

rules at the nodes. However, the values that these attributes

take sometimes require calls of extematly defined routines;

in effect, head routines are replaced in their framework

by attribute-generating body routines. The few algebraic

transformations they show also include tail routines. For

example, they use a rule that describes how join predicates

must be adjusted with a join reordering. This rule invokes a

routine that sorts the predicates appeting in joins into bins,

according to which tuples the predicates reference. Predicate

sorting of this kind is straightforvmd to express with KOLA

rules, as predicates of the form p + ml examine tuples only

from the first set while p @ 7r2 examine only those in the

second.

Despite the wide-spread use of the rule-based approach,

scant mention can be found discussing design issues for rule

kmguages, Rather, rule languages are usuatly assumed to be

by-products of algebra definitions and not considered in and of

themselves. An exception is the work of Sciore and Sieg [35],

who suggest ways to augment rule languages over v,ariable-

based algebras to ensure formulation of a wide wariety of rules.

Proposed extensions include rule precortdilion.s (expressed

in code), and multivariables (abstractions of variable lists)

that allow optimization rules to be independent of function

arity, Multivariables are declarative, but make matching

inefficient. (This is pointed out by the authors). Also,

because multivariables abstract away from variable names,

they make certain transformations over variable-based query

representations inexpressible. For example, the code motion

rule that guides the optimization of AQUA query A4 of

Figure 2 cannot be expressed with multiwwiables because

the precondition for this rules requires reasoning about the

“freeness” of variables that can no longer be referenced. In

short, multivariables and precondition code are intended to

address the same problem that we do; variables in query

algebras make rules over algebraic representations difficult

to express without additional machinery. But where,m [35]

410

add the machinery, we instead remove the variables.

As we mentioned earlier, ours is not the first combinator-

based algebra proposed in a database context, [15] and 15]

propose an FP-style [3] query language. But combinator-style

hmguages are difficult for users to master and thus ill-suited

as query languages. [7], [6] and [4] use combinator-based

<atgebrasto present optimization rules. They do not consider

thereasons why this style of algebra is useful for implementing

rule-based optimizers.

Combinator representations are often used within func-

tional language compilers as internal representations of A-

expressions. Combinator sets proposed in the functional Lm-

guage literature can be classified according to whether they are

jixed or variable. Fixed combinator sets use the same finite

set of combinators as the target for every program’s trans-

lation, V,ariable combinator techniques produce new com-

binators specific to particular programs. Fixed combinator

sets include the SKI combinator set of Schonfinkel [34] (and

its many variations) as well as the Category Theory-inspired

combinator set of Curien [13]. Variable-set combinators are

produced by A-1ifting [22] and supercombinator techniques

[21]. Variable sets of combinators keep the size of trans-

lated expressions reasonably smatl while still producing the

desired effect of making graph reduction efficient (the com-

binators generated tend to be fairly complicated). We settled

on a fixed set of combinators for KOLA for two reasons:

1. Algebraic query optimization must reference a known (i.e.

fixed) set of operators.

2. A reasonable increase in query size resulting from

translating queries into combinator form is tolerable

because queries tend to be smatl (compared with functional

programs for example).

Nested queries have been studied extensively in the

relational context [24], and have recently been examined in

the context of object-oriented models [12]. In this paper, we

have seen how structured data in these models can lead to

very complex nested queries. The optimization described,

while useful, are expressed monolithically. We believe our

approach of using multiple, gradually transforming rules will

make these optimization more easily realized and verified.

6 Conclusions

Rule-based optimizers require an internal representation of

queries and a rule hmguage for expressing transformations.

Because rules act directly on representations, the effective-

ness of the rule language is dependent on the form of the

representation, Rule-based optimizers and optimizer genera-

tors typically cannot “go it alone”, Rather, rule languages and

rule-driven optimizer modules must often be supplemented

with extensions to support optimizations that are inexpress-

ible otherwise.

Optimizer extensions typically contain bodies of code.

Head and body routines are calls to code placed within rules

to supplement the matching and transformation capabilities

provided by unification. Transformations whose expression is

beyond the capability of the rule language, require expression

with procedural code. But code compromises the declarative

nature of rules. Optimizer generators are forced to use

provided code and adopt whatever inefficiencies and errors

it contains. Rules are made more difficult to reason about

and prove correct, making optimizers vulnerable to mistakes

in their design and implementation. The success of the

rule-based optimization paradigm therefore depends on the

development of expressive rule languages that support the

formulation of rules without the need for supplemental code.

In this paper, we have demonstrated that the choice

of query representation is a aucial factor influencing the

expressivity of a rule language. We showed that variable-

based representations compromise the expressive capabilities

of the rule language for two reasons. First, variables are

structurally indistinguishable. Because the appropriateness

of a transformation can depend on what variables appear in a

query, rules must necessarily resort to techniques beyond the

matching provided by unification. Secondly, variables make

function manipulation occur at the level of the expression.

Expressions are not easily manipulated in the manner required

for many transformations. Rules therefore must invoke

external routines.

Our proposed alternative is a combinator-based algebr%

KOLA. KOLA query representations have revealing and

manipulable structure. We showed in Section 3 that

simple transformations that require head and body routines

when expressed over variable-based representations, c,an be

expressed with KOLA rules without code. We showed in

Section 4 that KOLA representations permit the expression of

transformations that are not typically expressed with rules

(nested query optimizations). The class of nested query

opthnizations that we looked at are those that “untangle”

hidden join queries. We showed a five-step strategy and

associated rule set that could be used to convert these queries

into expressions involving nests and joins.

Our current efforts are concentrated in two areas, First,

we are extending KOLA to incorporate other bulk types

besides sets, both to increase compatibility with languages

such as OQL (which supports bags and lists atso) and

to permit expressions of optimizations that exploit these

kinds of collections (e.g. optimization that defer duplicate

elimination can be expressed as transformations that produce

bags as intermediate results). Our other work concerns

COKO. We are in the process of implementing a generator

of algebraic optimizer modules based on COKO inputs. As

well, we are writing COKO rule blocks for a number of

optimization strategies including those presented here as

well as others related to nested query optimization, join

optimization, predicate ordering and semantic optimization.

7 Acknowledgements

Special thanks are due to Gail Mitchell for helpful comments

on an earlier draft of this paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Ab@bmrl and C. Beem On the power of languages for the

mampulatrol~ of complex objects. Teclrmcal Report 846, INRIA. 1988.

A. Aho. R. Seth], and J. CJllman. Compiler.r: Principles, Tecl-uuques,

cmd Tools. Addison-Wesley, 1988.

J. W. Backus. Can programrmug be liberated from the von Neumann

style? A fttnctjonal style and its algebra of programs. Commurricaaons

o/rlre ACM, 21 (8):613–641, August 1978.

~, Beer] and Y. Kortmtzky. Algebrarc optmuzattort of object-oriented

query languages. h] S. AbitebouI and P. C. Kanellakm erhtors.

Proceedings of the Third International Conference on Database T7reo~,

number 470 m Lecture Notes in Computer Science, pages 72–88, Pans,

France, December 1990. EATCS, Springer-Verlag.

A. BOSSI and C. Ghezzr. tJsing FP as a query language for relational

datrr-bmes. Computer Languages, 9(1):25–37, 1984.

V. Breazu-Tamren. R Buneman, and L. Wong. Naturally embedded

query ~a~lguages. In J. Biskui~ and R. HuIL edltOrs, Da~base TheOw -
fCf)T’92, 4th International Conference, volume 646 of LVCS. Springer

Verl,vg, 1992.

P. Buueman and R. E. Fraukel. FQL – a functional query language. h]

Pr-oc. ACM SIGMOD Int’1 Conference on Management of Data, 1979.

M. J. Carey, D. J. DeW1tt, G. Ciraefe, D. M. Htught, J. E. IUchardson,

D T. Schuh, E. J. Sheluta, and S. L. Vandenberg. The EXODUS

extenslb]e DBMS project: Arr overview. In S. B. Zdonik and D. Nf,mer,

echtors, Readings tn Object-Orzented Database System, pages 474-

499. Morgan Kaufmmrn Publishers, Inc., Los Altos, Cahforma, 1990.

R. Cattel], editor. The Object Database Standard: ODMG-93. iVlorgan-

Kaufmau, 1993.

M. Chermack. Form(ers) over function(s): The KOLA query algebra.

Techmcal report, Brown CTuiverslty Department of Computer Science,

May 1995, In preparation.

M. Chermack and S. B. ‘Zdonik. Combinator translations of

queries. Techmcal Report CS-95-40, Brown LJniversity Department

of Computer Science, September 1995.

S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. 4t/r

[n?’1 Workshop on Database Programmutgbnguages, NY, NY, August

1993. Sprmger-VerIag.

P.-L. Curien. Categorical Combinators, Sequential Algorithms, and

Functional Programming. Bddiiuser, 1993.

U, I)ayal. Of nests and trees: A unified approach to processing queries

that contain nested subquerles, aggregates and quantifiers. In P. M.

Stocker, W. Kent, and P. Hammersley, edrtors, Proceedurgs rf the l.ith

lntemational Conference on I&y Large Databases, pages 197-208,

Br]ghton, England, September 1987. Morgan-Kaufman.

M. Erwig and J-J.W. Lipeck. A functional t)BPL revealing high level

Optimizations. In P. Kanellakis and J. W. Schmidt, editors, Bulk Types

& Persistent Data: The Third International Workshop on Database

Programming Languages, pages 306-, Nafplion, Greece, August 1991.

Morgan Kaufmarrn Publishers, Inc.

L, Feg,arw, D, Maier, and T, Sheard. Specifyurg rule-based query

optimizers m a reflective framework. hr ,S.Cerl, K. Tanaka, and S. Tsur.

editors, Proceedings of the Inte r-national Conference on Deductive and

ObJecl-Orzerrred Databases, pages 146-168, 1993.

R. A. Ganskr and H. K. T. Woug. O@nization of nested SQL queries

revmlted. In LT. Dayal and I. Trarger, editors, Proceedings of the

SIGMO[) International Conference on Management of Data, pages

23–33, San Franc]sco, California, May 1987. ACM Special Interest

Group on Management of Data, ACM Press.

G. &rr&rin, F. Machuca. and P. Pucheral. OFL: A functional execution

mode] for object query languages. hr Proc. ACM SIGMOD Int’1

Conference on Management of Data, pages 59–70, 1995.

J. Guttag, J. Hornung, S. Garland, K. Jones, A. Modet, and J. Wing.

Larch: Lwrguages and Toofs for Formal Specz~catzons. Sprmger-

Verlag, 1992.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

L. M. Hans, J, C. Freytag, G. M. Lohrnau, and FL Pmaftesh. Extemble

query processing m Starburst. ht Proc. ACM SIGMOD Int’1 Conference

on Management of Data, pages 377–388, 1989.

R. J. M. Hughes. The design and implementation of progmmmmg

languages. PhD thesis, (Jmverslty of oxford, 1984.

T. Johnsson. Lambda hftmg: transforrmng programs to recursive

equations. In Conference on Functional Programming Lnrrguagcs and

Computer Architecture, LNCS. Springer Verlag, 1985.

.& Kemper, G. Moerkotte, and K. Peithner. A blackboard archltscture

for query optnmzatron in object bases. ht R. Agrawal. S. Baker, a~~d

D. Bell, editors, Proceedusgs Lf the 19th lntemationa! Conference on

Wry Lzrge Databases, pages 543–554, Dubhn, irelancl, AugusL 1987.

MorgamKaufman.

W. Kim. On optmuzing an SQL-hke nested query. ACM Tran.~actzons

on Database Systems, 7(3):44 +!69, September 1982.

T. W. Lettng, G. Mitchell, B. Subramaman, B. Vance, S. L. Vandenberg,

and S. B. Zdomk. The AQLJA data model and algebra. In Pro<,. 4rh

Int’1 Workshop on Database Programming Lznguages, New York. New

York, August 1993. Sprmger-Verlag.

G. Lehman. Gramm,w-hke functtona] rules for representing query

optirmzatiou alternates. Iu Proceedings of ACM SIGMOD, June 1988.

D. Marer and S. B. Zdomk. Fundamenrak of object-orleuted darah,a.ws.

hrtroduct,on to the book ‘ Readings m ~bject-~)rlented Databases,

G. Mitchell. Extensible Query Processing in an Object- Orzented

Database. PhD thesis, Department of Computer Sclenee, Brown

CJnwersity, Prowdence, Rhode Island 02912-1910, May 1993.

G. Mitchell, S. B. Zdotuk, and U. DayaI. An architecture for query

processing in persistent object stores. In Proc. Hawaii Int’1 Cemfe rence

on System Scyences, Volume 1[, pages 787-798, 1992.

M. Muralikrishna. Optimization and dataflow algorithm for nested tree

queries. In P. M. G. Apers and G. Wlederhold, editors, Proceedings

zof the 15th Intematlonal Conference on Very ,brge Databases, pages

77–85, Amsterdam, the Netherlands, August 1989. MorgawKaufmau.

M. Muralikrishna. Improving unnesting algorithms for Join aggregate

SQL queries. In Yuan, editor, Proceedings of the 18th lnt’1 Conference

on Ve~ Large Databases, Vancouver, Canada, August 1992.

J. Robinson. A machme-oriented logic based on theresolutiou prmclple,

.?oumal of the ACM, 12:2341,1965.

H. J. Schek and M. Scholl. The relatloua] model with relatiou-valuet{

attributes. hrfornratzon Systems, 11(2): 137–I 47, 1986.

M. Schonfinkel. Uber dle bausteine der mathemarnchen loglk. Math.

Annalen, 92:305–3 16, 1924.

E. Sclore and J. S. Jr. A modular query optmtizer generator. in

Proceedings of the 6th International Conference on Data Engineering.

pages 146153, Los Angeles, USA, 1990.

D. D. Straube and M. T. Ozstr. Queries and query processing in obJect-

oriented database systems. ACM Transactions on Ojj’ice Inforrruztmn

Systems, 8(4), 1990.

D. A. Turner. A new implementation techmque for applicative

languages. Software - Practice and Experience, 9:31-49, 1979.

S. L. Vandenberg and D. J. DeW1tt. Algebraic support for complex

objects with arrays, identity. and inheritance. In J. Clifford m]dR. King,

editors, Proceedings of the SIGMOD Intematzonal Conference on

Management of Data, pages 158–167, Denver, Colorado, May 1991.

ACM SpecIaI Interest Group on Management of Data, ACM Press.

412

