
Math. Appl. 1 (2012), 13–35

RULE-RESTRICTED AUTOMATON-GRAMMAR

TRANSDUCERS: POWER AND LINGUISTIC APPLICATIONS

MARTIN ČERMÁK, PETR HORÁČEK and ALEXANDER MEDUNA

Abstract. This paper introduces the notion of a new transducer as a two-component
system, which consists of a finite automaton and a context-free grammar. In essence,

while the automaton reads its input string, the grammar produces its output string,

and their cooperation is controlled by a set, which restricts the usage of their rules.
From a theoretical viewpoint, the present paper discusses the power of this sys-

tem working in an ordinary way as well as in a leftmost way. In addition, the paper

introduces an appearance checking, which allows us to check whether some symbols
are present in the rewritten string, and studies its effect on the power. It achieves

the following three main results. First, the system generates and accepts languages

defined by matrix grammars and partially blind multi-counter automata, respec-
tively. Second, if we place a leftmost restriction on derivation in the context-free

grammar, both accepting and generating power of the system is equal to generative
power of context-free grammars. Third, the system with appearance checking can

accept and generate all recursively enumerable languages. From more pragmatical

viewpoint, this paper describes several linguistic applications. A special attention
is paid to the Japanese-Czech translation.

1. Introduction

In formal language theory, there exist two basic translation-method categories.
The first category contains interprets and compilers, which first analyse an input
string in the source language and, after that, they generate a corresponding output
string in the target language (see [2], [18], [21], [14], or [22]). The second cate-
gory is composed of language-translation systems or, more briefly, transducers.
Frequently, these transducers consist of several components, including various au-
tomata and grammars, some of which read their input strings while others produce
their output strings (see [3], [10], [20], and [23]).

Although transducers represent language-translation devices, language theory
often views them as language-defining devices and investigates the language fa-
mily resulting from them. That is, it studies their accepting power consisting in
determining the language families accepted by the transducer components that
read their input strings. Alternatively, it establishes their generative power that
determines the language family generated by the components that produce their

2010 MSC: primary 68Q45.
Keywords: n-languages, transducer, computational control.
This work was supported by the research plan MSM0021630528, BUT FIT grant FIT-S-11-2,

MŠMT grant MEB041003, and the European Regional Development Fund in the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

13

14 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

strings. The present paper contributes to this vivid investigation trend in formal
language theory.

In this paper, we introduce a new type of transducer, referred to as rule-
restricted transducer, based upon a finite automaton and a context-free grammar.
In addition, a restriction set controls the rules which can be simultaneously used
by the automaton and by the grammar.

The present paper discusses the power of this system working in an ordinary way
as well as in a leftmost way and investigates an effect of an appearance checking
placed into the system. First, we show that the generative power is equal to the
generative power of matrix grammars (see [1] or [7]). Second, the accepting power
coincides with the power of partially blind multi-counter automata (see [8] and
[9]). Third, under the context-free-grammar leftmost restriction, the accepting
and generating power of these systems coincides with the power of context-free
grammars. On the other hand, when an appearance checking is introduced into
these systems, the accepting and generating power coincides with the power of
Turing machines.

In the last part of the paper, we discuss application-related perspectives of
the studied systems in linguistics. Particularly, we concentrate our attention on
natural language translation. First, we demonstrate the basic idea in terms of
simple English sentence, performing its analysis and passive transformation. Fur-
thermore, we describe the translation of selected sentence structures between the
Czech, English, and Japanese languages. We demonstrate that while English and
Czech are structurally similar languages, some aspects of Japanese differ signifi-
cantly. We also show that some linguistic Czech-language features complicate this
translation very much. For example, compared to English, there is very rich inflec-
tion in Czech. Other difficult-to-handle features include non-projectivity (crossing
dependencies between words in a sentence), which mainly results from the fact
that Czech is a free-word-order language.

2. Preliminaries

In this paper, we assume the reader is familiar with the formal language theory
(see [17]) and the basic aspects of computational linguistics (see [19]).

For a set, Q, |Q| denotes the cardinality of Q. For an alphabet, V , V ∗ represents
the free monoid generated by V (under the operation concatenation). The identity
of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically, V + is thus the free
semigroup generated by V . For every string w ∈ V ∗, |w| denotes the length of
w, (w)R denotes the mirror image of w, and for A ∈ V , occur(A,w) denotes the
number of occurrences of A in w. For a, b ∈ Z, function max(a, b) returns the
greater value from a and b.

A finite automaton, FA, is a quintuple M = (Q,Σ, δ, q0, F), where Q is a finite
set of states; Σ is an alphabet; q0 ∈ Q is the initial state; δ is a finite set of
transition rules of the form qa→ p, where p, q ∈ Q, and a ∈ Σ ∪ {ε}; and F ⊆ Q
is a set of final states. A configuration of M is any string from QΣ∗. For any
configuration qay, where a ∈ Σ, y ∈ Σ∗, q ∈ Q, and any r = qa → p ∈ δ, M
makes a move from configuration qay to configuration py according to r, written
as qay ⇒ py[r], or simply qay ⇒ py. ⇒∗ and ⇒+ represent transitive-reflexive

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 15

and transitive closure of ⇒, respectively. If w ∈ Σ∗ and q0w ⇒∗ f , where f ∈ F ,
then w is accepted by M and q0w ⇒∗ f is an acceptance of w in M . The language
of M is defined as L(M) = {w| w ∈ Σ∗, q0w ⇒∗ f is an acceptance of w}.

A partially blind k-counter automaton, k-PBCA, is finite automaton M =
(Q,Σ, δ, q0, F) with k integers v = (v1, . . . , vk) in Nk

0 as an additional storage.
Transition rules in δ are of the form pa → qt, where p, q ∈ Q, a ∈ Σ ∪ {ε}, and
t ∈ Zk. As a configuration of k-PBCA we understand any string from QΣ∗Nk

0 .
Let χ1 = paw(v1, . . . , vk) and χ2 = qw(v′1, . . . , v

′
k) be two configurations of M and

r = pa → q(t1, . . . , tk) ∈ δ, where (v1 + t1, . . . , vk + tk) = (v′1, . . . , v
′
k). Then, M

makes a move from configuration χ1 to χ2 according to r, written as χ1 ⇒ χ2[r],
or simply χ1 ⇒ χ2. ⇒∗ and ⇒+ represent transitive-reflexive and transitive
closure of ⇒, respectively. The language of M is defined as L(M) = {w| w ∈
Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

A pushdown automaton, PDA, is a septuple M = (Q,Σ,Γ, δ, q0, Z0, F), where
Q is a finite set of states; Σ is an alphabet; q0 ∈ Q is the initial state, Γ is
a pushdown alphabet; δ is a finite set of transition rules of the form Zqa → γp,
where p, q ∈ Q, Z ∈ Γ, and a ∈ Σ ∪ {ε}; γ ∈ Γ∗; Z0 ∈ Γ is the initial pushdown
symbol; and F ⊆ Q is a set of final states. A configuration of M is any string
from Γ∗QΣ∗. For any configuration xAqay, where x ∈ Γ∗, y ∈ Σ∗, q ∈ Q, and any
r = Aqa → γp ∈ δ, M makes a move from configuration xAqay to configuration
xγpy according to r, written as xAqay ⇒ xγpy[r], or simply xAqay ⇒ xγpy. ⇒∗
and ⇒+ represent transitive-reflexive and transitive closure of ⇒, respectively. If
w ∈ Σ∗ and Z0q0w ⇒∗ f , where f ∈ F , then w is accepted by M and Z0q0w ⇒∗ f
is an acceptance of w in M . The language of M is defined as L(M) = {w| w ∈
Σ∗, Z0q0w ⇒∗ f is an acceptance of w}.

A k-counter automaton, k-CA, is finite automaton M = (Q,Σ, δ, q0, F) with k
integers v = (v1, . . . , vk) in Nk

0 as an additional storage. Transition rules in δ are
of the form pa → q(t1, . . . , tn), where p, q ∈ Q, a ∈ Σ ∪ {ε}, and ti ∈ {−} ∪ Z.
A configuration of k-CA is any string from QΣ∗Nk

0 . Let χ1 = paw(v1, . . . , vk) and
χ2 = qw(v′1, . . . , v

′
k) be two configurations of M and r = pa → q(t1, . . . , tk) ∈ δ,

where the following holds: if ti ∈ Z, then v′i = vi + ti; otherwise, it is satisfied
that vi, v

′
i = 0. Then, M makes a move from configuration χ1 to χ2 according to

r, written as χ1 ⇒ χ2[r], or simply χ1 ⇒ χ2. ⇒∗ and ⇒+ represent transitive-
reflexive and transitive closure of ⇒, respectively. The language of M is defined
as L(M) = {w| w ∈ Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

A context-free grammar, CFG, is quadruple G = (N,T, P, S), where N and T
are disjoint alphabets of nonterminal and terminal symbols, respectively; S ∈ N
is the start symbol of G; and P is a finite set of grammar rules of the form A→ α,
where A ∈ N , and α ∈ (N∪T)∗. A sentential form of G is any string from (N∪T)∗.
Let u, v ∈ (N ∪T)∗ and r = A→ α ∈ P . Then, G makes a derivation step from u
to v according to r, written as uAv ⇒ uαv[r], or simply uAv ⇒ uαv. Let ⇒∗ and
⇒+ denote transitive-reflexive and transitive closure of ⇒. The language of G is
defined as L(G) = {w| S ⇒∗ w,w ∈ T ∗}.

A matrix grammar, MAT, is a pair H = (G,C), where G = (N,T, P, S) is
a context-free grammar and C ⊂ P ∗ is a finite set of strings denoted as matrices.
A sentential form of H is any string from (N ∪ T)∗. Let u, v be two sentential

16 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

forms. Then, we say that H makes a derivation step from u to v according to
r, written as u ⇒ v[m], or simply u ⇒ v, if m = p1 . . . pm ∈ C and there are
v0, . . . , vm, where v0 = u, vm = v, and v0 ⇒ v1[p1]⇒ . . .⇒ vm[pm] in G. Let ⇒∗
and ⇒+ denote transitive-reflexive and transitive closure of ⇒. The language of
H is defined as L(H) = {w| S ⇒ w1[m1]⇒ . . .⇒ wn[mn], wn = w,m1, . . . ,mn ∈
C,w ∈ T ∗, n ≥ 0}. The class of languages generated by matrix grammars is
denoted by L (MAT).

A matrix grammar with appearance checking, MATac, is a pair H = (G,C),
where G = (N,T, P, S) is a context-free grammar and C is a finite set of strings,
matrices, of pairs (p, t) with p ∈ P and t ∈ {−,+}. A sentential form of H is
any string from (N ∪ T)∗. Let u, v be two sentential forms. Then, we say that
H makes a derivation step from u to v according to m, written as u ⇒ v[m], or
simply u ⇒ v, if m = (p1, t1) . . . (pm, tm) ∈ C and there are v0, . . . , vm, where
v0 = u, vm = v, and for all i = 0, . . . ,m− 1, either vi ⇒ vi+1[pi+1] in G, or ti+1 ∈
{−}, vi = vi+1, and pi+1 is not applicable on vi in G. Let ⇒∗ and ⇒+ denote
transitive-reflexive and transitive closure of ⇒. The language of H is defined as
L(H) = {w| S ⇒ w1[m1]⇒ . . . wn[mn], wn = w,m1, . . . ,mn ∈ C,w ∈ T ∗, n ≥ 0}.
The class of languages generated by matrix grammars with appearance checking
is denoted by L (MATac).

The classes of regular languages, context-free languages, context-sensitive lan-
guages, and recursively enumerable languages are denoted by REG, CF, CS, and
RE, respectively.

3. Rule-restricted transducer

In this section, we define and investigate a rule-restricted transducers consisting
of a finite automaton, a context-free grammar, and a control set of pairs of rules.
The finite automaton reads its own input string and, simultaneously, the context-
free grammar generates an output string. During the computation, the control
set determines which rules can be used at the same computation step performed
by both components. The computation of the system is successful if and only
if the finite automaton accepts the input string and the context-free grammar
successfully generates a string of terminal symbols.

Definition 3.1. The rule-restricted transducer, RT for short, is a triplet Γ =
(M,G,Ψ), where M = (Q,Σ, δ, q0, F) is a finite automaton, G = (N,T, P, S) is
a context-free grammar, and Ψ is a finite set of pairs of the form (r1, r2), where
r1 and r2 are rules from δ and P , respectively.

A 2-configuration of RT is a pair χ = (x, y), where x ∈ QΣ∗ and y ∈ (N ∪ T)∗.
Consider two 2-configurations, χ = (pav1, uAv2) and χ′ = (qv1, uxv2) with A ∈ N ,
u, v2, x ∈ (N ∪ T)∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. If pav1 ⇒ qv1[r1] in M ,
uAv2 ⇒ uxv2[r2] in G, and (r1, r2) ∈ Ψ, then Γ makes a computation step from χ′

to χ′, written as χ⇒ χ′. In the standard way,⇒∗ and⇒+ are transitive-reflexive
and transitive closure of ⇒, respectively.

The 2-language of Γ, 2-L(Γ), is 2-L(Γ) = {(w1, w2)| (q0w1, S) ⇒∗ (f, w2),
w1 ∈ Σ∗, w2 ∈ T ∗, and f ∈ F}. From the 2-language we can define two languages:

• L(Γ)1 = {w1| (w1, w2) ∈ 2-L(Γ)}, and

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 17

• L(Γ)2 = {w2| (w1, w2) ∈ 2-L(Γ)}.
By L (RT), L (RT)1, and L (RT)2, the classes of 2-languages of RTs, languages

accepted by M in RTs, and languages generated by G in RTs, respectively, are
understood.

It is well-known that finite automata and context-free grammars describe dif-
ferent classes of languages. Specifically, by the finite automata we can accept
regular languages, whereas the context-free grammars define the class of context-
free languages. However, in Example 3.2 is shown that by the combination of these
two models, the system is able to accept and generate non-context-free languages.

Example 3.2. Consider RT K = (M,G,Ψ) with

M = ({1, 2, 3′, 3, 4, 5′, 5, 6}, {a, b}, δ, 1, {6}), where
– δ = {

p1 = 1a→ 2, p2 = 2→ 1, p3 = 1b→ 3′, p4 = 3′ → 3,
p5 = 3b→ 4, p6 = 4→ 3, p7 = 3a→ 5′, p8 = 5′ → 5,
p9 = 5a→ 5, p10 = 5b→ 6, p11 = 6b→ 6}

(see the graphical representation of M in Figure 1),
G = ({S,A,B,C,D,D′}, {a, b}, P, S), where

– P = {
r1 = S → BbD′, r2 = B → Bb, r3 = D′ → D′D,
r4 = B → aA, r5 = D′ → C, r6 = A→ aA,
r7 = C → CC, r8 = D → b, r9 = A→ ε,
r10 = C → a},

Ψ = {(p1, r1), (p1, r2), (p2, r3), (p3, r4), (p4, r5), (p5, r6), (p6, r7), (p7, r8),
(p8, r9), (p9, r8), (p10, r10), (p11, r10)}.

1

6

b

2
a

3'
b
ε

3
4

b

5'
a

ε ε

5ε b

a

Figure 1. Definition of finite automaton M from Example 3.2.

The languages of M and G are L(M) = {aibjakbl| j, k, l ∈ N, i ∈ N0} and
L(G) = {aibjakbl| i, j, k ∈ N, l ∈ N0}, respectively. However, 2-language of K is
L(K) = {(aibjaibj , ajbiajbi)| i, j ∈ N}.

From the example, observe that the power of the grammar increases due to the
possibility of synchronization with the automaton that can dictate sequences of
usable rules in the grammar. The synchronization with the automaton enhances
the generative power of the grammar up to the class of languages generated by
matrix grammars.

Theorem 3.3. L (RT)2 = L (MAT).

Proof. First, we prove that L (MAT) ⊆ L (RT)2. Consider a MAT I =
(IG, IC) and construct RT Γ = (ΓM, ΓG,Ψ), such that L(I) = L(Γ)2, as follows:

18 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

Set ΓG = IG; construct finite automaton ΓM = (Q,Σ, δ, s, F) in the following way:
Set F,Q = {s}; for every m = p1 . . . pk ∈ IC, add k−1 new states, q1, q2, . . . , qk−1,
into Q, k new rules, r1 = s → q1, r2 = q1 → q2, . . . , rk−1 = qk−2 → qk−1, rk =
qk−1 → s, into δ, and k new pairs, (r1, p1), (r2, p2), . . . , (rk−1, pk−1), (rk, pk), into
Ψ.

The finite automaton simulates matrices in I by moves. That is, if x1 ⇒ x2[p]
in I, where p = p1 . . . pi for some i ∈ N, then there is q1, . . . , qi−1 ∈ Q such
that r1 = s → q1, r2 = q1 → q2, . . . , ri−1 = qi−2 → qi−1, ri = qi−1 → s ∈ δ
and (r1, p1), . . . , (ri, pi) ∈ Ψ. Therefore, (s, x1) ⇒i (s, x2) in Γ. Similarly, if
(s, x1) ⇒i (s, x2) in Γ, for i ∈ N, and there is no j ∈ N such that 0 < j < i and
(s, x1)⇒j (s, y)⇒∗ (s, x2), there has to be p ∈ IC and x1 ⇒ x2[p] in I. Hence, if
(s, S)⇒∗ (s, w) in Γ, where w is a string over the set of terminal symbols in ΓG,
then S ⇒∗ w in I; and, on the other hand, if S ⇒∗ w in I for a string over the set
of terminals in IG, then (s, S)⇒∗ (s, w) in Γ. The inclusion L (MAT) ⊆ L (RT)2

has been proven.
For any RT Γ = (ΓM = (Q,Σ, δ, s, F), ΓG = (ΓN, ΓT, ΓP, ΓS),Ψ), we can

construct a MAT O = (OG,OC) such that L(Γ)2 = L(O) as follows: Set OG =
(ΓN ∪{S′}, ΓT,OP, S′), OP = ΓP ∪{p0 = S′ → 〈s〉ΓS}, and OC = {p0}. For each
pair (p1, p2) ∈ Ψ with p1 = qa → r, q, r ∈ Q, a ∈ Σ ∪ {ε}, p2 = A → x, A ∈ ΓN ,
and x ∈ (ΓN ∪ ΓT)∗, add p1 = 〈q〉 → 〈r〉 into OP and p1p2 into OC. Furthermore,
for all q ∈ F , add p = 〈q〉 → ε into OP and p into OC.

By the following claims, we prove that L(Γ)2 = L(O).

Claim 3.4. If (sw, ΓS)⇒∗ (qw′, ω) in Γ, then S′ ⇒∗ 〈q〉ω in O.

Proof. By induction on the number of computation steps.

• Basis. Let (sw, ΓS) ⇒0 (sw, ΓS) in Γ. Then, S′ ⇒ 〈s〉ΓS[p] in OG and
p ∈ OC. Hence, S′ ⇒ 〈s〉ΓS[p] in O. Claim 3.4 holds for no steps in Γ.
• Induction hypothesis. Suppose that Claim 3.4 holds for j or fewer compu-

tation steps.
• Induction step. Let (sw, ΓS) ⇒j (qw′, ω) ⇒ (q′w′′, ω′) in Γ. Then, by the

induction hypothesis, S′ ⇒∗ 〈q〉ω in O. Without any loss of generality
suppose that ω = uAv for u, v ∈ (ΓN ∪ ΓT)∗, A ∈ ΓN , and (qw′, uAv) ⇒
(q′w′′, uxv) with x ∈ (ΓT ∪ ΓN)∗ and ω′ = uxv. From the construction of
O we know that p1 = A → x and p2 = 〈q〉 → 〈q′〉 is in ΓP and p1p2 ∈
OC. Therefore, S′ ⇒∗ 〈q〉ω ⇒ 〈q′〉uxv = 〈q′〉ω′ in O. Claim 3.4 holds.
Furthermore, for all f ∈ F there is a rule p = 〈f〉 → ε ∈ ΓP and p ∈ OC.
Hence, if (sw, ΓS)⇒∗ (f, ω), where f ∈ F and ω ∈ ΓT

∗ in Γ, S′ ⇒∗ 〈f〉ω ⇒
ω in O. That is, L(Γ)2 ⊆ L(O).

�

It remains to prove that L(O) ⊆ L(Γ)2.

Claim 3.5. If S′ ⇒∗ 〈q〉ω in O with ω ∈ ΓT
∗, then (sw, ΓS)⇒∗ (f, ω) in Γ for

some w ∈ Σ∗ and f ∈ F .

Proof. Consider any successful derivation of the form

S′ ⇒ 〈q0〉ω0[p0]⇒ 〈q1〉ω1[p1]⇒ 〈q2〉ω2[p2]⇒ . . .⇒ 〈qk〉ωk[pk]

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 19

in O, where q0 = s, qk = q, ω0 = ΓS, and ωk = ω. As it follows from the construc-
tion of O, for every i = 1, . . . , k, pi = p′ip

′′
i , where p′i = 〈qi−1〉 → 〈qi〉, ωi−1 ⇒ ωi[p

′′
i]

in ΓG, and for a ∈ Σ ∪ {ε}, (qi−1a → qi, p
′′
i) ∈ Ψ. That is, (qi−1wi−1, ωi−1) ⇒

(qiwi, ωi) for all i = 1, . . . , k, and hence, (sw0, ΓS) ⇒∗ (qkwk, ωk) with w = w0.
Having ωk ∈ ΓT

∗ and using p = p1p2, where p1 = 〈q〉 → ε ∈ OP , ωk−1 ⇒ ωk[p2],
and p ∈ OC, implies q ∈ F , wk = ε, and w ∈ L(ΓM), and therefore, ωk ∈ L(Γ)2.
L(O) ⊆ L(Γ)2. �

Theorem 3.3 holds by Claims 3.4 and 3.5. �

On the other hand, the context-free grammar in the RT can be exploited as an
additional storage space of the finite automaton to remember some non-negative
integers. If the automaton uses the context-free grammar in this way, the addi-
tional storage space is akin to counters in a multi-counter machine. The following
lemma says that the FAs in the RTs are able to accept every language accepted
by partially blind k-counter automata.

Lemma 3.6. For every k-PBCA I, there is an RT Γ = (M,G,Ψ) such that
L(I) = L(Γ)1.

Proof. Let I = (IQ,Σ, Iδ, q0, F) be a k-PBCA for some k ≥ 1 and construct
RT Γ = (M = (MQ,Σ,Mδ, q0, F), G = (N,T, P, S),Ψ) as follows: Set T = {a},
Ψ = ∅, N = {S,A1, . . . , Ak}, P = {A → ε| A ∈ N}, Mδ = {f → f | f ∈ F}, and

MQ = IQ.
For each pa→ q(t1, . . . , tk) in Iδ and for n = (Σk

i=1 max(0,−ti)) add:

• q1, . . . , qn into MQ;
• r = S → xS, where x ∈ (N − {S})∗ and occur(Ai, x) = max(0, ti), for
i = 1, . . . , k, into P ;

• r1 = q0a → q1, r2 = q1 → q2, . . ., rn = qn−1 → qn, rn+1 = qn → q
into Mδ with q0 = p; and (ri+1, αi → ε), where αi = Aj and each Aj is
erased max(0,−ti)-times during the sequence, into Ψ (n = 0 means that
only pa→ q, S → xS and (r1, r) are considered);

• (f → f, S → ε) into Ψ for all f ∈ F .

The finite automaton of the created system uses the context-free grammar as
an external storage. Each counter of the I is represented by a nonterminal. Every
step from p to q that modifies counters are simulated by several steps leading
from p to q and during this sequence of steps the number of occurrences of each
nonterminal in the grammar is modified to be equal to the corresponding counter
in I. Clearly, L(I) = L(Γ)1. �

Lemma 3.7 states that the context-free grammar is helpful for the finite au-
tomaton in RT at most with the preservation of the non-negative integers without
possibility to check their values.

Lemma 3.7. For every RT Γ = (M,G,Ψ), there is a k-PBCA O such that
L(O) = L(Γ)1 and k is the number of nonterminals in G.

Proof. Let Γ = (M = (Q,Σ,Mδ, q0, F), G = (N,T, P, S),Ψ) be an RT. Without
any loss of generality suppose that N = {A1, . . . , An}, where S = A1. The
partially blind |N |-counter automaton O = (Q ∪ {q′0},Σ,Oδ, q′0, F) is created in

20 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

the following way. For each r1 = pa → q ∈ Mδ and r2 = α → β ∈ P such that
(r1, r2) ∈ Ψ, add pa→ q(v1, . . . , v|N |), where vi = occur(Ai, β)− occur(Ai, α), for
all i = 1, . . . , |N |, into Oδ. Furthermore, add q′0 → q0(1, 0, . . . , 0) into Oδ.

The constructed partially blind |N |-counter automaton has a counter for each
nonterminal from the grammar of Γ. Whenever the automaton in Γ makes a step
and a sentential form of grammar G is changed, O makes the same step and
accordingly changes the number of occurrences of nonterminals in its counters. �

From Lemma 3.6 and Lemma 3.7, we can establish the following theorem.

Theorem 3.8. L (RT)1 =
⋃∞

k=1 L (k−PBCA).

Proof. It directly follows from Lemma 3.7 and Lemma 3.6. �

For the better illustration of the accepting and generating power of RT, let
us recall that the class of languages generated by MATs is properly included in
RE (see [1] or [7]), and the class of languages defined by partially blind k-counter
automata, with respect to the number of counters, is superset of CF and properly
included in CS (see [8] and [9]).

Although the investigated system is relatively powerful, in defiance of weakness
of models they are used, non-deterministic selections of nonterminals to be rewrit-
ten can be relatively problematic from the practical point of view. Therefore, we
examine an effect of a restriction in the form of leftmost derivations placed on the
grammar in RT.

Definition 3.9 (Leftmost restriction on derivation in RT). Let Γ = (M,G,Ψ)
be an RT with M = (Q,Σ, δ, q0, F) and G = (N,T, P, S). Furthermore, let χ =
(pav1, uAv2) and χ′ = (qv1, uxv2) be two 2-configurations, where A ∈ N , v2, x ∈
(N ∪ T)∗, u ∈ T ∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q. Γ makes a computation
step from χ to χ′, written as χ ⇒lm χ′, if and only if pav1 ⇒ qv1[r1] in M ,
uAv2 ⇒ uxv2[r2] in G, and (r1, r2) ∈ Ψ. In the standard way, ⇒∗lm and ⇒+

lm are
transitive-reflexive and transitive closure of ⇒lm, respectively.

The 2-language of Γ with G generating in the leftmost way, denoted by
2-Llm(Γ), is defined as 2-Llm(Γ) = {(w1, w2)| (q0w1, S) ⇒∗lm (f, w2), w1 ∈ Σ∗,
w2 ∈ T ∗, and f ∈ F}; we call Γ as leftmost restricted RT; and we define the
languages given from 2-Llm(Γ) as Llm(Γ)1 = {w1| (w1, w2) ∈ 2-Llm(Γ)} and
Llm(Γ)2 = {w2| (w1, w2) ∈ 2-Llm(Γ)}. By L (RTlm), L (RTlm)1, and L (RTlm)2,
we understand the classes of 2-languages of leftmost restricted RTs, languages ac-
cepted by M in leftmost restricted RTs, and languages generated by G in leftmost
restricted RTs, respectively.

Theorem 3.10. L (RTlm)2 = CF.

Proof. The inclusion CF ⊆ L (RTlm)2 is clear from the definition, because any
time we can construct leftmost restricted RT, where the automaton M cycles with
reading all possible symbols from the input or ε while the grammar G is generating
some output string. Therefore, we only need to prove the opposite inclusion.

We know that the class of context-free languages is defined, inter alia, by
pushdown automata. It is sufficient to prove that every language Llm(Γ)2 of
RT can be accepted by a pushdown automaton. Consider an RT Γ = (M =

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 21

(Q, ΓΣ, Γδ, q0, F), G = (N,T, P, S),Ψ) and define PDAO = (Q,T,OΓ,Oδ, q0, S, F),
where OΓ = N ∪ T and Oδ is created as follows:

• set Oδ = ∅;
• for each r1 = A→ x ∈ P and r2 = pa→ q ∈ Γδ such that (r1, r2) ∈ Ψ, add
Ap→ (x)Rq into Oδ;

• for each p ∈ Q and a ∈ T add apa→ p into Oδ;

Now, we have to show that L(O) = Llm(Γ)2.

Claim 3.11. Let (q0w, S) ⇒∗ (pw′, uαv) ⇒∗ (f, ŵ) in RT Γ, where u ∈ T ∗,
α ∈ N , and v ∈ (N ∪ T)∗. Then, Sq0ŵ ⇒∗ (v)Rαpŵ′ in PDA O, where ŵ = uŵ′.

Proof. By the induction on the number of computation steps.

• Basis. Let (q0w, S) ⇒0 (q0w, S) ⇒∗ (f, ŵ) in Γ. Trivially, Sq0ŵ ⇒0 Sq0ŵ
and Claim 3.11 holds.

• Induction hypothesis. Suppose that Claim 3.11 holds for j or fewer compu-
tation steps.

• Induction step. Let (q0w, S) ⇒j (paw′, uαv) ⇒ (qw′, uxv) ⇒∗ (f, ŵ) in Γ,
where a ∈ ΓΣ ∪ {ε}, uxv = uu′βv′ and β is the new leftmost nontermi-
nal. Then, by the induction hypothesis, Sq0ŵ ⇒∗ (v)Rαpaŵ′ in O. Since
(paw′, uαv)⇒ (qw′, uxv) in Γ, paw′ ⇒ qw′[r1] in M , uαv ⇒ uxv[r2] in G,
and (r1, r2) ∈ Ψ. From the construction of Oδ, O has rules αp → (x)Rq
and bqb → q for all b ∈ T . Hence, (v)Rαpŵ′ ⇒ (xv)Rqŵ′. Because
uxv = uu′βv′, β is the leftmost nonterminal, and (qw′, uxv) ⇒∗ (f, ŵ),
(xv)Rqŵ′ = (u′βv′)Rqu′ŵ′′, and obviously, (u′βv′)Rqu′ŵ′′ ⇒∗ (βv′)Rqŵ′′

in O. Claim 3.11 holds.

�

The last step of every successful computation of Γ has to be of the form
(qa, uαv)⇒ (f, uxv), with a ∈ T ∪{ε}, f ∈ F , uxv ∈ T ∗. By Claim 3.11, suppose
that O is in configuration (αv)Rqw′, where uw′ = uxv. From the construction of

Oδ, (αv)Rqw′ ⇒ (xv)Rfw′ ⇒∗ f in O. Hence, Llm(Γ)2 ⊆ L(O).
It remains to prove the opposite inclusion, that is, L(O) ⊆ Llm(Γ)2.

Claim 3.12. Let Sq0w ⇒∗ f in PDA O, where f ∈ F . Then, (q0ŵ, S) ⇒∗
(f, w) in RT Γ.

Proof. Consider any successful acceptance:

Sq0w ⇒∗ f (I)

in PDA O. Without any loss of generality, we can express (I) as α0q0w0 ⇒
v1α1u1q1w0 ⇒∗ v1α1q1w1 ⇒ v2α2u2q2w1 ⇒∗ v2α2q2w2 ⇒ . . . ⇒ vkαkukqkwk−1

⇒∗ vkαkqkwk ⇒ vkuk+1fwk ⇒∗ f , where α0 = S and for all i = 1, . . . , k with
k ≥ 0, αi ∈ N , ui, uk+1, vk ∈ T ∗, vi ∈ (N ∪ T)∗, wi−1 = (ui)

Rwi and wk =
(vkuk+1)R. Openly, (ui)

Rαi(vi)
R ⇒ (ui+1ui)

Rαi+1(vi+1)R[ri] in G, qi−1ŵi−1 ⇒
qiŵi[r

′
i], and furthermore, (r′i, ri) ∈ Ψ for all i = 0, . . . , k. Hence, (I) can be

simulated by (q0ŵ0, α0) ⇒ (q1ŵ1, (u1)Rα1(v1)R) ⇒ (q2ŵ2, (u2u1)Rα2(v2)R) ⇒
. . . ⇒ (ukuk−1 . . . u1)Rαk(vk)R ⇒ (f, (uk+1ukuk−1 . . . u1)R(vk)R) = (f, w) in Γ.
So, Claim 3.12 holds. �

22 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

As L(O) ⊆ Llm(Γ)2 and Llm(Γ)2 ⊆ L(O), Theorem 3.10 holds. �

Lemma 3.13. For every language L ∈ CF, there is an RT Γ = (M,G,Ψ) such
that Llm(Γ)1 = L.

Proof. Let I = (IN,T, IP, S) be a context-free grammar such that L(I) =
L. For I, we can construct context-free grammar H = (HN,T,HP, S), where

HN = IN ∪ {〈a〉| a ∈ T} and HP = {〈a〉 → a| a ∈ T} ∪ {A → x| A → x′ ∈
IP and x is created from x′ by replacing all a ∈ T in x′ with 〈a〉}. Surely, L(I) =
L(H) even if H replaces only the leftmost nonterminals in each derivation step.
In addition, we construct finite automaton M = ({q0}, T, δ, q0, {q0}) with δ =
{q0 → q0} ∪ {q0a → q0| a ∈ T}, and Ψ = {(q0 → q0, A → x)| A → x ∈ HP,A ∈
IN} ∪ {(q0a→ q0, 〈a〉 → a)| a ∈ T}.

It is easy to see that any time when H replaces nonterminals from IN in its
sentential form, M reads no input symbol. If and only if H replaces 〈a〉 with a,
where a ∈ T , then M reads a from the input. Since H works in a leftmost way,
2-Llm(Γ) = {(w,w)| w ∈ L(I). Hence, Llm(Γ)1 = L(I). �

Similarly, we show that any RT generating outputs in the leftmost way can
recognize no language out of CF.

Lemma 3.14. Let Γ be an RT. Then, for every language Llm(Γ)1, there is
a PDA O such that Llm(Γ)1 = L(O).

Proof. In the same way as in proof of Theorem 3.3, we construct PDA O such
that L(O) = Llm(Γ)1 for RT Γ = (M = (Q, ΓΣ, Γδ, q0, F), G = (N,T, P, S),Ψ).
We define O as O = (Q, ΓΣ, N,Oδ, q0, S, F), where Oδ is created in the following
way:

• set Oδ = ∅;
• for each r1 = pa → q ∈ Γδ and r2 = A → x ∈ P such that (r1, r2) ∈ Ψ,

add Apa→ (θ(x))Rq into Oδ, where θ(x) is a function from (N ∪T)∗ to N∗

that replaces all terminal symbols in x with ε—that is, θ(x) is x without
terminal symbols.

In the following, we demonstrate that L(O) = Llm(Γ)1.

Claim 3.15. Let (q0w, S) ⇒∗ (pw′, uαv) in RT Γ, where u ∈ T ∗, α ∈ N , and
v ∈ (N ∪ T)∗. Then, Sq0w ⇒∗ (θ(v))Rαpw′ in PDA O.

Proof. By the induction on the number of computation steps.

• Basis. Let (q0w, S)⇒0 (q0w, S) in Γ. Then, surely, Sq0w ⇒0 (θ(S))Rq0w.
Claim 3.15 holds.

• Induction hypothesis. Suppose that Claim 3.15 holds for j or fewer compu-
tation steps.

• Induction step. Let (q0w, S) ⇒j (paw′, uαv) ⇒ (qw′, uxv) in Γ, where
a ∈ ΓΣ ∪ {ε}, uxv = uu′βv′ and β is the leftmost nonterminal. By the in-
duction hypothesis, Sq0w ⇒∗ (θ(v))Rαpaw′ in O. Because (paw′, uαv) ⇒
(qw′, uxv) in Γ, paw′ ⇒ qw′[r1] in M , uαv ⇒ uxv[r2] in G, and (r1, r2) ∈
Ψ. From the construction of Oδ, O has a rule αpa → (θ(x))Rq, and
(θ(v))Rαpaw′ ⇒ (θ(v′))Rβqw′ in O. Claim 3.15 holds.

�

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 23

The last step of any successful computation in Γ is of the form (qa, uαv) ⇒
(f, uxv), where f ∈ F , a ∈ ΓΣ∪{ε}, α ∈ N , and uxv ∈ T ∗. Hence, αqa→ f ∈ Oδ
and αqa⇒ f in O. So, Llm(Γ)1 ⊆ L(O).

Claim 3.16. Let Sq0w ⇒∗ (θ(v))Rαpw′ in PDA O. Then, (q0w, S) ⇒∗
(pw′, uαv) in RT Γ, where u ∈ T ∗, α ∈ N , and v ∈ (N ∪ T)∗.

Proof. By the induction on the number of moves.

• Basis. Let Sq0w ⇒0 Sq0w. Then, (q0w, S) ⇒0 (q0w, S) in Γ and Claim
3.16 holds.

• Induction hypothesis. Suppose that Claim 3.16 holds for j or fewer moves.
• Induction step. Let Sq0w ⇒j (θ(v))Rαpaw′ ⇒ (θ(xv))Rqw′ in O, where
a ∈ ΓΣ ∪ {ε}. Then, by the induction hypothesis, (q0w, S)⇒∗ (paw′, uαv)
in Γ, where u ∈ T ∗, α ∈ N , and v ∈ (N∪T)∗. Because there is a rule αpa→
(θ(x))Rq in Oδ, from the construction of Oδ, there are rules r1 = pa→ q ∈
Γδ and r2 = α → x ∈ P , and (r1, r2) ∈ Ψ. Therefore, (paw′, uαv) ⇒
(qw′, uxv) in Γ. So, Claim 3.16 holds. Furthermore, if θ(xv)w′ = ε and
q ∈ F , then (paw′, uαv)⇒ (q, uxv) and L(O) ⊆ Llm(Γ)1.

�

Since L(O) ⊆ Llm(Γ)1 and Llm(Γ)1 ⊆ L(O), L(O) = Llm(Γ)1. �

Theorem 3.17. L (RTlm)1 = CF.

Proof. It directly follows from Lemma 3.13 and Lemma 3.14. �

Unfortunately, the price for the leftmost restriction, placed on derivations in
the context-free grammar, is relatively high and both accepting and generative
ability of RT with the restriction decreases to the power of CF.

In the following, we extend RT with possibility to prefer a rule over another,
that is, the restriction sets contain triplets of rules (instead of pairs of rules),
where the first rule is a rule of FA, the second rule is a main rule of CFG, and the
third rule is an alternative rule of CFG, which is used only if the main rule is not
applicable.

Definition 3.18. The RT with appearance checking, RTac for short, is a triplet
Γ = (M,G,Ψ), where M = (Q,Σ, δ, q0, F) is a finite automaton, G = (N,T, P, S)
is a context-free grammar, and Ψ is a finite set of triplets of the form (r1, r2, r3)
such that r1 ∈ δ and r2, r3 ∈ P .

Let χ = (pav1, uAv2) and χ′ = (qv1, uxv2), where A ∈ N , v2, x, u ∈ (N ∪ T)∗,
v1 ∈ Σ∗, a ∈ Σ∪{ε}, and p, q ∈ Q, be two 2-configurations. Γ makes a computation
step from χ to χ′, written as χ ⇒ χ′, if and only if for some (r1, r2, r3) ∈ Ψ,
pav1 ⇒ qv1[r1] in M , and either

• uAv2 ⇒ uxv2[r2] in G, or
• uAv2 ⇒ uxv2[r3] in G and r2 is not applicable on uAv2 in G.

The 2-language 2-L(Γ) and languages L(Γ)1, L(Γ)2 are defined in the same way
as in Definition 3.1. The classes of languages defined by the first and the second
component in the system are denoted by L (RTac)1 and L (RTac)2, respectively.

24 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

By the appearance checking both generative and accepting power of RT grow
to the power of Turing machines.

Theorem 3.19. L (RTac)2 = RE.

Proof. Because L (MATac) = RE (see [7]), we only need to prove that
L (MATac) ⊆ L (RTac)2.

Consider a MAT with appearance checking I = (IG, IC) and construct RT
Γ = (ΓM, ΓG,Ψ), such that L(I) = L(Γ)2, as follows: Set ΓG = IG; add a new
initial nonterminal S′, nonterminal ∆, and rules ∆ → ∆, ∆ → ε, S′ → S∆ into
grammar ΓG; and construct finite automaton ΓM = (Q,Σ, δ, s, F) and Ψ in the
following way: Set F,Q = {s}, δ = {s → s}, and Ψ = {(s → s,∆ → ε,∆ →
ε), (s → s, S′ → S∆, S′ → S∆)}; for every m = (p1, t1) . . . (pk, tk) ∈ IC, add
q1, q2, . . . , qk−1 into Q, s → q1, q1 → q2, . . . , qk−2 → qk−1, qk−1 → s into δ, and
(s→ q1, p1, c1), (q1 → q2, p2, c2), . . . , (qk−2 → qk−1, pk−1, ck−1), (qk−1 → qs, pk, ck)
into Ψ, where, for 1 ≤ i ≤ k, if ti = −, then ci = pi; otherwise, ci = ∆→ ∆.

Since S′ is the initial symbol, the first computation step in Γ is (s, S′)⇒ (s, S∆).
After this step, the finite automaton simulates matrices in I by moves. That is, if
x1 ⇒ x2[p] in I, where p = p1 . . . pi for some i ∈ N, then there is q1, . . . , qi−1 ∈ Q
such that r1 = s → q1, r2 = q1 → q2, . . . , ri−1 = qi−2 → qi−1, ri = qi−1 → s ∈ δ
and (r1, p1, c1), . . . , (ri, pi, ci) ∈ Ψ. Therefore, (s, x1) ⇒i (s, x2) in Γ. Notice that
if I can overleap some grammar rule in m ∈ IC, Γ represents the fact by using
∆→ ∆ with the move in ΓM . Similarly, if, for some i ∈ N, (s, x1)⇒i (s, x2) in Γ
and there is no j < i such that (s, x1)⇒j (s, y)⇒∗ (s, x2), there exists p ∈ IC such
that x1 ⇒ x2[p] in I. Hence, if (s, S)⇒∗ (s, w) in Γ, where w is a string over the
set of terminals in ΓG, then S ⇒∗ w in I; and, on the other hand, if S ⇒∗ w in I for
a string over the set of terminals in IG, then (s, S′)⇒ (s, S∆)⇒∗ (s, w∆)⇒ (s, w)
in Γ. �

Theorem 3.20. L (RTac)1 = RE.

Proof. Let I = (IQ,Σ, Iδ, q0, F) be a k-CA for some k ≥ 1 and construct RT
Γ = (M = (MQ,Σ,Mδ, q0, F), G = (N,T, P, S),Ψ) as follows: Set T = {a},Ψ =
∅, N = {S,♦, A1, . . . , Ak}, P = {A → ε,A → ♦| A ∈ N − {♦}} ∪ {S → S},
and MQ = IQ, Mδ = {f → f | f ∈ F}. For each pa → q(t1, . . . , tk) in Iδ,

n = Σk
i=1θ(ti), and m = Σk

i=1θ̂(ti), where if ti ∈ Z, θ(ti) = max(0,−ti) and

θ̂(ti) = max(0, ti); otherwise θ(ti) = 1 and θ̂(ti) = 0, add:

• q1, . . . , qn into MQ;

• r = S → xS, where x ∈ (N − {S,♦})∗ and occur(Ai, x) = θ̂(ti), for each
i = 1, . . . , k, into P ;

• r1 = q0a → q1, r2 = q1 → q2, . . ., rn = qn−1 → qn, rn+1 = qn → q into

Mδ with q0 = p; and for each i = 1, . . . , n, add (ri+1, τi, τ
′
i), where for each

j = 1, . . . , k, if tj ∈ N, for θ(tj) is, τi = τ ′i = Aj → ε; otherwise, if tj = −,
τi = Aj → ♦ and τ ′i = S → S, into Ψ. Notice that n = 0 means that only
q0a→ q, S → xS are considered. Furthermore, add (r1, r, r) into Ψ;

• (f → f, S → ε, S → ε) into Ψ for all f ∈ F .

Similarly as in the proof of Theorem 3.6, the finite automaton of the created
system uses context-free grammar as an external storage, and each counter of the

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 25

I is represented by a nonterminal. If I modifies some counters during a move from
state p to state q, M moves from p to q in several steps during which it changes the
numbers of occurrences of nonterminals correspondingly. Rules applicable only if
some counters are equal to zero are simulated by using an appearance checking,
where Γ tries to replace all nonterminals representing counters which have to be 0
by ♦. If it is not possible, Γ applies the rule S → S and continue with computation.
Otherwise, since ♦ cannot be rewritten during the rest of computation, use of such
rule leads to an unsuccessful computation. The formal proof of the equivalence of
languages is left to the reader. Since L (k−CA) = RE for every k ≥ 2 (see [13]),
Theorem 3.20 holds. �

4. Applications in Natural Language Translation

In this section, we present several examples illustrating potential applications of
the formal models discussed in this paper in natural language processing (NLP),
particularly in translation.

Currently, mainly because of the availability of large corpora (both unannotated
and annotated) for many languages, statistical approaches with the application of
machine learning are dominant in machine translation and NLP in general. Many
machine translation systems are based on n-gram models and use little or no
syntactic information (see [5]). However, the recent trend consists in incorporat-
ing global information of this kind (global within the scope of the sentence) into
translation systems in an effort to improve the results. This approach is usually
called syntax-based or syntax augmented translation (see [16], [24]). An in-depth
description of the formal background of one such system can be found in [4].

In this paper, we present a new formalism that can be applied within the context
of such systems to describe syntactic structures and their transformations, and we
study its properties. RT provides an alternative to formal models currently used
in translation systems, such as synchronous grammars (see [6]).

One of the main advantages of the RT formalism lies in its straightforward
and intuitive basic principle. Indeed, we simply read the input with an FA, while
generating the corresponding output using a CFG. Another important advantage
is the power of RT (see section 3). RT has the ability to describe features of
natural languages that are difficult or even impossible to capture within a purely
context-free framework, such as non-projectivity, demonstrated below.

RT can be easily extended and adapted for use in statistical NLP as well. For
example, similarly to probabilistic CFG (see [15]), we can assign probabilities to
rules, or to pairs of rules in the control set.

First, to demonstrate the basic principles, we perform the passive transforma-
tion of a simple English sentence

The cat caught the mouse.

The passive transformation means transforming a sentence in active voice into
passive, and it is a well-known principle that is common to many languages. For
the above sentence, the passive form is

The mouse was caught by the cat.

26 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

Figure 2 shows derivation trees for the above sentences. Throughout this section,
we use the following notation to represent common linguistic constituents:

AUX auxiliary verb P preposition
DET determiner PN pronoun
N noun PP prepositional phrase
NP noun phrase V verb
NP-SBJ noun phrase in the role of subject VP verb phrase

S

NP -SBJ

NP

DET

the

N

cat

V P

V

caught

NP

DET

the

N

mouse

S

NP -SBJ

NP

DET

the

N

mouse

V P

V

AUX

was

Vpp

caught

PP

P

by

NP

DET

the

N

cat

Figure 2. Example of the passive transformation.

Essentially, what we need to do is the following: swapping the subject and the
object, adding the preposition by in the correct position, and changing the verb
into passive, using the auxiliary verb to be in the appropriate form. The verb to
be is irregular and has many different forms (paradigms) depending not only on
tense, but also person and number. In most cases, we can see the tense directly
from the main verb in the active form, but for the other two categories (person
and number), we need to look at the subject (the object in the original sentence).

Example 4.1. Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F), G =
(N,T, P, S). Let Q = {0, 1, 2, 3, 4, 5, 6, 7, 8a, 8b, 8c, 8d, 8e, 8f, 9}, Σ = {N1s,N2s,
N3s,N1p,N2p,N3p,Vpas,Vps,Vpp,DET,P,AUXpas1s,AUXpas2s,AUXpas3s,AUXpas1p,
AUXpas2p,AUXpas3p,AUXps1s,AUXps2s,AUXps3s,AUXps1p,AUXps2p,AUXps3p},
F = {9}, N = {S,NP-SBJ,NP,VP,PP,N?,V?,AUXpas?,AUXps?}, T = Σ.

Let
δ = { r1 = 0 → 1, r6a = 3Vpas → 5, r10a = 8a → 9,

r2 = 1 → 2, r6b = 3Vps → 5, r10b = 8b → 9,
r3 = 2 → 3, r7 = 5 → 6, ...r4 = 3DET → 4, r8 = 6DET → 7,
r5a = 4N1s → 3, r9a = 7N1s → 8a, r10f = 8f → 9,
r5b = 4N2s → 3, r9b = 7N2s → 8b,

...
...

r5f = 4N3p → 3, r9f = 7N3p → 8f}
and

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 27

P = { p1 = S → NP-SBJ VP, p8a = AUXpas? → AUXpas1s,
p2 = NP-SBJ → NP, p8b = AUXpas? → AUXpas2s,
p3 = NP → DET N?, ...p4a = N? → N1s,
p4b = N? → N2s, p8f = AUXpas? → AUXpas3p,

...
p9a = AUXps? → AUXps1s,
p9b = AUXps? → AUXps2s,

p4f = N? → N3p, ...p5 = VP → V? PP,
p6 = PP → P NP, p9f = AUXps? → AUXps3p,
p7a = V? → AUXpas? Vpp,
p7b = V? → AUXps? Vpp}.

Finally, let Ψ = {(r1, p1), (r2, p5), (r3, p6), (r4, p3), (r5a, p4a), (r5b, p4b), . . . , (r5f ,
p4f), (r6a, p7a), (r6b, p7b), (r7, p2), (r8, p3), (r9a, p4a), (r9b, p4b), . . . , (r9f , p4f), (r10a,
p8a), (r10b, p8b), . . . , (r10f , p8f), (r10a, p9a), (r10b, p9b), . . . , (r10f , p9f)}.

One may notice that the input alphabet of the automaton, as well as the termi-
nal alphabet of the grammar, does not contain the actual words themselves, but
rather symbols representing word categories and their properties (for example,
N3s represents a noun in third person singular). In the examples throughout this
section, we consider syntax analysis and translation on the abstract level, trans-
forming syntactic structures in languages. That is, we assume that we already have
the input sentence split into words (or possibly some other units as appropriate),
and these words are tagged as, for example, a noun, pronoun, or verb.

In the computation examples, the text in square brackets shows the words
associated with the symbols for the given example sentence, but note that this
is not a part of the formalism itself. This specifier is assigned to all terminals.
Nonterminals are only specified by words when the relation can be established
from the computation so far performed (for example, we cannot assign a word
before we read the corresponding input token).

For the sentence the cat caught the mouse (for the purposes of this text, we dis-
regard capitalization and punctuation) from the above example, the computation
can proceed as follows:

(0 DET[the] N3s[cat] Vpas[caught] DET[the] N3s[mouse], S)
⇒ (1 DET[the] N3s[cat] Vpas[caught] DET[the] N3s[mouse], NP-SBJ VP)

[(r1, p1)]
⇒ (2 DET[the] N3s[cat] Vpas[caught] DET[the] N3s[mouse], NP-SBJ V?

PP) [(r2, p5)]
⇒ (3 DET[the] N3s[cat] Vpas[caught] DET[the] N3s[mouse], NP-SBJ V?

P[by] NP) [(r3, p6)]
⇒ (4 N3s[cat] Vpas[caught] DET[the] N3s[mouse], NP-SBJ V? P[by]

DET[the] N?) [(r4, p3)]

⇒ (3 Vpas[caught] DET[the] N3s[mouse], NP-SBJ V? P[by] DET[the]

N3s[cat]) [(r5c, p4c)]
⇒ (5 DET[the] N3s[mouse], NP-SBJ AUXpas?[be] Vpp[caught] P[by]

DET[the] N3s[cat]) [(r6a, p7a)]

28 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

⇒ (6 DET[the] N3s[mouse], NP AUXpas?[be] Vpp[caught] P[by] DET[the]

N3s[cat]) [(r7, p2)]
⇒ (7 N3s[mouse], DET[the] N? AUXpas?[be] Vpp[caught] P[by] DET[the]

N3s[cat]) [(r8, p3)]
⇒ (8c, DET[the] N3s[mouse] AUXpas?[be] Vpp[caught] P[by] DET[the]

N3s[cat]) [(r9c, p4c)]
⇒ (9, DET[the] N3s[mouse] AUXpas3s[was] Vpp[caught] P[by] DET[the]

N3s[cat]) [(r10c, p8c)]

For clarity, in each computation step, the input symbol to be read (if any) and
the nonterminal to be rewritten are underlined.

First (in states 0, 1, and 2), we generate the expected basic structure of the
output sentence. Note that this is done before reading any input. In states 3
and 4, we read the subject of the original sentence, states 5 and 6 read the verb,
and the rest of the states is used to process the object. When we read the verb,
we generate its passive form, consisting of to be and the verb in past participle.
However, at this point, we know the tense (in this case, past simple), but do not
know the person or number yet. The missing information is represented by the
question mark (?) symbol in the nonterminal AUXpas?. Later, when we read the
object of the original sentence, we rewrite AUXpas? to a terminal. In this case, the
object is in third person singular, which gives us the terminal AUXpas3s (meaning
that the correct form to use here is was).

Next, we present examples of translation between different languages. We focus
on Japanese, Czech, and English.

One problem when translating into Czech is that there is very rich inflection.
The form of the words reflects many grammatical categories, such as case, gender,
and number (see [11], where the author discusses this issue with regard to compu-
tational linguistics). To illustrate, compare the following sentences in Japanese,
English, and Czech.

Zasshi o yondeitta onna no hito wa watashi no shiriai deshita.
Zasshi o yondeitta otoko no hito wa watashi no shiriai deshita.

The woman who was reading a magazine was an acquitance of mine.
The man who was reading a magazine was an acquitance of mine.

Žena, která četla časopis, byla moje známá.
Muž, který četl časopis, byl m̊uj známý.

As we can see, in Czech, nearly every word is different, depending on the gender
of the subject. In contrast, in both Japanese and English, the two sentences only
differ in one word – onna no hito (woman) and otoko no hito (man).1

The above sentences also give us an example of some structural differences
between Japanese and Czech. In Czech and English, the structure of the sentence
is very similar, but in Japanese, there is no word that correspond directly to který
(which, who, . . .). Instead, this relation is represented by the form of the verb

1Technically, onna no hito literally translates to woman’s person or female person, with onna

itself meaning woman, female. However, referring to a person only by onna may have negative
connotations in Japanese. Similarly for otoko no hito.

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 29

yondeitta (the dictionary form is yomu, meaning to read). Compare the derivation
trees in Figure 3.

S

NP -SBJ

NP

S′

V P

NP

NPm

zasshi

DET

o

V

yondeitta

NP

NPf

onna no hito

DET

wa

V P

NP

NP?

watashi no shiriai

V

deshita

S

NP -SBJ

NP

NP

NPf

žena

S′

PN

PNf

která

V P

V

Vf

četla

NP

NPn

časopis

V P

V

Vf

byla

NP

NPf

moje známá

Figure 3. Derivation trees – Japanese (top) and Czech.

Example 4.2. Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F),
G = (N,T, P, S). Let Q = {0,m,m1,m2, f, f1, f2, n, n1, n2, 1m, 1f, 1n}, Σ =
{NPm,NPf ,NPn,NP?,V,DET,#}, F = {1m, 1f, 1n}, N = {S,NP-SBJ,NP?,VP,
PN?,V?,X}, T = {NPm,NPf ,NPn,Vm,Vf ,Vn,PNm,PNf ,PNn}.

Let

30 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

δ = { r1 = 0V → 1, rm1 = mV → m1, rf1 = fV → f1,
r2 = 1 → 0, rm2 = m1 → m2, rf2 = f1 → f2,
r3 = 0NP? → 0, rm3 = m2 → m, ...r4 = 0DET → 0, rm4 = mDET → m,

r5m = 0NPm → m, rm5 = mNP? → m, rf7 = 1f → 1f ,
r5f = 0NPf → f , rm5m = mNPm → m, rn1 = nV → n1,
r5n = 0NPn → n, rm5f = mNPf → m, rn2 = n1 → n2,

rm5n = mNPn → m, ...rm6 = m# → 1m,
rm7 = 1m → 1m, rn7 = 1n → 1n}

and

P = { p1 = S → NP-SBJ VP X, p7m = V? → Vm,
p2 = NP-SBJ → NP?, p7f = V? → Vf ,

p3m = NP? → NPm, p7n = V? → Vn,
p3f = NP? → NPf , p8 = S′ → PN? VP,
p3n = NP? → NPn, p9m = PN? → PNm,
p4 = NP? → NP?, p9f = PN? → PNf ,
p5 = NP? → NP? S′, p9n = PN? → PNn,
p6 = VP → V? NP?, p10 = X → ε}.

Let Ψ = {(r1, p1), (r2, p6), (r3, p4), (r4, p2), (r5m, p4), (r5f , p4), (r5n, p4), (rm1,
p5), (rm2, p8), (rm3, p6), (rm4, p4), (rm5, p4), (rm5m, p3m), (rm5f , p3f), (rm5n, p3n),
(rm6, p10), (rm7, p3m), (rm7, p7m), (rm7, p9m), (rf1, p5), (rf2, p8), (rf3, p6), (rf4, p4),
(rf5, p4), (rf5m, p3m), (rf5f , p3f), (rf5n, p3n), (rf6, p10), (rf7, p3f), (rf7, p7f), (rf7,
p9f), (rn1, p5), (rn2, p8), (rn3, p6), (rn4, p4), (rn5, p4), (rn5m, p3m), (rn5f , p3f), (rn5n,
p3n), (rn6, p10), (rn7, p3n), (rn7, p7n), (rn7, p9n)}.

We have added two dummy symbols: the input symbol #, which acts as the
endmarker, and the nonterminal X, which we generate at the beginning of the
computation and then erase when all the input has been read (including #).

In this example, we read the input sentence in reverse order (right to left).
Clearly, this makes no difference from a purely theoretical point of view, but it
may be more suitable in practice due to the way how Japanese sentences are or-
ganized. The computation transforming the sentence zasshi o yondeitta onna no
hito wa watashi no shiriai deshita into žena, která četla časopis, byla moje známá
can proceed as follows:

(0 V[deshita] NP?[watashi no shiriai] DET[wa] NPf [onna no hito]

V[yondeitta] DET[o] NPm[zasshi] #, S)
⇒ (1 NP?[watashi no shiriai] DET[wa] NPf [onna no hito] V[yondeitta]

DET[o] NPm[zasshi] #, NP-SBJ VP X) [(r1, p1)]
⇒ (0 NP?[watashi no shiriai] DET[wa] NPf [onna no hito] V[yondeitta]

DET[o] NPm[zasshi] #, NP-SBJ V?[byl] NP? X) [(r2, p6)]
⇒ (0 DET[wa] NPf [onna no hito] V[yondeitta] DET[o] NPm[zasshi] #,

NP-SBJ V?[byl] NP?[m̊uj známý] X) [(r3, p4)]
⇒ (0 NPf [onna no hito] V[yondeitta] DET[o] NPm[zasshi] #, NP?

V?[byl] NP?[m̊uj známý] X) [(r4, p2)]
⇒ (f V[yondeitta] DET[o] NPm[zasshi] #, NP? [̌zena] V?[byl]

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 31

NP?[m̊uj známý] X) [(r5f , p4)]
⇒ (f1 DET[o] NPm[zasshi] #, NP? [̌zena] S′ V?[byl] NP?[m̊uj známý] X)

[(rf1, p5)]
⇒ (f2 DET[o] NPm[zasshi] #, NP? [̌zena] PN?[který] VP V?[byl]

NP?[m̊uj známý] X) [(rf2, p8)]
⇒ (f DET[o] NPm[zasshi] #, NP? [̌zena] PN?[který] V?[četl] NP? V?[byl]

NP?[m̊uj známý] X) [(rf3, p6)]
⇒ (f NPm[zasshi] #, NP? [̌zena] PN?[který] V?[četl] NP? V?[byl]

NP?[m̊uj známý] X) [(rf4, p4)]
⇒ (f #, NP? [̌zena] PN?[který] V?[četl] NPm[časopis] V?[byl]

NP?[m̊uj známý] X) [(rf5m, p3m)]
⇒ (1f, NP? [̌zena] PN?[který] V?[četl] NPm[časopis] V?[byl]

NP?[m̊uj známý]) [(rf6, p10)]
⇒ (1f, NPf [̌zena] PN?[který] V?[četl] NPm[časopis] V?[byl]

NP?[m̊uj známý]) [(rf7, p3f)]
⇒ (1f, NPf [̌zena] PNf [která] V?[četl] NPm[časopis] V?[byl]

NP?[m̊uj známý]) [(rf7, p9f)]
⇒ (1f, NPf [̌zena] PNf [která] Vf [četla] NPm[časopis] V?[byl]

NP?[m̊uj známý]) [(rf7, p7f)]
⇒ (1f, NPf [̌zena] PNf [která] Vf [četla] NPm[časopis] Vf [byla]

NP?[m̊uj známý]) [(rf7, p7f)]

⇒ (1f, NPf [̌zena] PNf [která] Vf [četla] NPm[časopis] Vf [byla]
NPf [moje známá]) [(rf7, p3f)]

When we first read the word that determines the gender, we move to the state
that represents this gender (state m, n, or f). Note that these states are func-
tionally identical in the sense that we can read the same input symbols, while
performing the same computation steps in the grammar generating the output.
After we have reached the end of input, we rewrite the nonterminal symbols rep-
resenting words with as of yet unknown gender to the corresponding terminal
symbols, depending on the state.

Czech is considered a free-word-order language, that is, it allows for a wide range
of permutations of words in a sentence without changing its syntactic structure
(the meaning of the sentence may be affected). This is perhaps the main source
of the relatively high amount of non-projectivity in Czech sentences.

I
��
ate

��
a
��
cake�� yesterday

��
which

��
was

ww
delicious
}}

.

Figure 4. Non-projective dependency tree (English).

32 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

Non-projectivity means that there are cross-dependencies. For example, con-
sider the English sentence

I ate a cake yesterday which was delicious.

As shown in the dependency tree in Figure 4, there is a crossing of dependencies
represented by arrows (yesterday, ate) and (was, cake). Arrows are drawn from
child (modifier) to parent (head).

Arguably, the English example is somewhat artificial – even though the sentence
is well-formed, in most cases it might be more natural to say simply

I ate a delicious cake yesterday.

In contrast, in Czech, a sentence such as

Nev́ım, jaký je mezi nimi rozd́ıl.
(I don’t know what the difference between them is.)

is not at all unusual. The dependency tree for this sentence (see Figure 5) is also
non-projective.

For further information about projectivity, and the issue of non-projectivity in
the Czech language in particular, see [12].

The following example illustrates how our formalism can account for the non-
projectivity.

Nev́ım
(I) don’t know

""jaký
what

&&
je
is

��
mezi

between

}}
nimi
them

��
rozd́ıl

difference

vv
.

Figure 5. Non-projective dependency tree (Czech).

Example 4.3. Consider an RT Γ = (M,G,Ψ), where M = (Q,Σ, δ, 0, F),
G = (N,T, P, S). Let Q = {0, 1, 2, 3, 4, 5, 6m, 6f, 6n}, Σ = {Nm,Nf ,Nn,V,PN,PNi,
DET,P}, F = {0}, N = {S,NP-SBJ,NP,VP,PP,V?}, T = {Nm,Nf ,Nn,V,PNm,
PNf ,PNn,P}.

Let
δ = { r1m = 0Nm → 6m, r5 = 0DET → 0, r11 = 5 → 0,

r1f = 0Nf → 6f , r6 = 0P → 0, r12m = 6m → 0,
r1n = 0Nn → 6n, r7 = 1 → 2, r12f = 6f → 0,
r2 = 0V → 0, r8 = 2 → 0, r12n = 6n → 0,
r3 = 0PN → 1, r9 = 3 → 4, r13 = 0PN → 0,
r4 = 0PNi → 3, r10 = 4 → 5}

and
P = { p1 = S → NP-SBJ VP, p6m = NP → PNm,

p2 = NP-SBJ → NP, p6f = NP → PNf ,
p3 = NP-SBJ → ε, p6n = NP → PNn,

p4m = NP → Nm, p7 = VP → V? PP NP,
p4f = NP → Nf , p8 = V? → V,
p4n = NP → Nn, p9 = PP → P NP,
p5 = NP → S, p10 = PP → ε}.

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 33

Let Ψ = {(r1m, p4m), (r1f , p4f), (r1n, p4n), (r2, p8), (r3, p1), (r4, p10), (r5, p7), (r6,
p9), (r7, p3), (r8, p7), (r9, p5), (r10, p1), (r11, p2), (r12m, p6m), (r12f , p6f), (r12n, p6n),
(r13, p6m)}.

The computation transforming the English sentence I don’t know what the dif-
ference between them is into the (non-projective) Czech sentence nev́ım, jaký je
mezi nimi rozd́ıl proceeds as follows:

(0 PN[I] V[don’t know] PNi[what] DET[the] Nm[difference] P[between]

PN[them] V[is], S)
⇒ (1 V[don’t know] PNi[what] DET[the] Nm[difference] P[between]

PN[them] V[is], NP-SBJ VP) [(r3, p1)]
⇒ (2 V[don’t know] PNi[what] DET[the] Nm[difference] P[between]

PN[them] V[is], VP) [(r7, p3)]
⇒ (0 V[don’t know] PNi[what] DET[the] Nm[difference] P[between]

PN[them] V[is], V? PP NP) [(r8, p7)]
⇒ (0 PNi[what] DET[the] Nm[difference] P[between] PN[them] V[is],

V[nev́ım] PP NP) [(r2, p8)]
⇒ (3 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım] NP)

[(r4, p10)]
⇒ (4 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım] S)

[(r9, p5)]
⇒ (5 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım]

NP-SBJ VP) [(r10, p1)]
⇒ (0 DET[the] Nm[difference] P[between] PN[them] V[is], V[nev́ım]

NP[jaký] VP) [(r11, p2)]
⇒ (0 Nm[difference] P[between] PN[them] V[is], V[nev́ım] NP[jaký] V?

PP NP) [(r5, p7)]
⇒ (6m P[between] PN[them] V[is], V[nev́ım] NP[jaký] V? PP Nm[rozd́ıl])

[(r1m, p4m)]
⇒ (0 P[between] PN[them] V[is], V[nev́ım] PNm[jaký] V? PP Nm[rozd́ıl])

[(r12m, p6m)]
⇒ (0 PN[them] V[is], V[nev́ım] PNm[jaký] V? P[mezi] NP Nm[rozd́ıl])

[(r6, p9)]
⇒ (0 V[is], V[nev́ım] PNm[jaký] V? P[mezi] PNm[nimi] Nm[rozd́ıl])

[(r13, p6m)]
⇒ (0, V[nev́ım] PNm[jaký] V[je] P[mezi] PNm[nimi] Nm[rozd́ıl])

[(r2, p8)]
The corresponding derivation tree of G is shown in Figure 6.

In the examples presented in this paper, we have made two important assump-
tions. First, we already have the input sentence analysed on a low level – we know
where every word starts and ends (which may be a non-trivial problem in itself in
some languages, such as Japanese) and have some basic grammatical information
about it. Furthermore, we know the translation of the individual words. For prac-
tical applications in natural language translation, we need a more complex system,
with at least two other components: a part-of-speech tagger and a dictionary to
translate the actual meanings of the words. Then, the component based on the

34 M. ČERMÁK, P. HORÁČEK and A. MEDUNA

discussed formal model can be used to transform the syntactic structure and also
ensure that the words in the translated sentence are in the correct form.

S

NP -SBJ

ε

V P

V

nev́ım

PP

ε

NP

S

NP -SBJ

NP

PNm

jaký

V P

V?

V

je

PP

P

mezi

NP

PNm

nimi

NP

Nm

rozd́ıl

Figure 6. The derivation tree of G.

References

[1] S. Abraham, Some questions of language theory, in: Proceedings of the 1965 conference on
Computational linguistics (COLING ’65, Bonn, Germany), Association for Computational

Linguistics, Stroudsburg, 1965, 1–11.
[2] A. V. Aho, Compilers: Principles, Techniques, & Tools, Pearson/Addison Wesley, 2007.
[3] M. Bál, O. Carton, C. Prieur and J. Sakarovitch, Squaring transducers: an effcient procedure

for deciding functionality and sequentiality, Theor. Comput. Sci. 292 (2003), 45–63.

[4] O. Bojar and M Čmejrek, Mathematical model of tree transformations, in: Project Euroma-
trix Deliverable 3.2, Charles University, Prague, 2007.

[5] P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer
and P. S. Roossin, A statistical approach to machine translation, Comput. Linguist. 16
(1990), 79–85.

[6] D. Chiang, An introduction to synchronous grammars, in: 44th Annual Meeting of the As-
sociation for Computational Linguistics, 2006.

[7] J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag,

Berlin, 1989.
[8] S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages, Elsevier

Science Inc., New York, 1975.
[9] S. A. Greibach, Remarks on blind and partially blind one-way multicounter machines, Theor.

Comput. Sci. 7 (1978), 311–324.

[10] E. M. Gurari and O. H. Ibarra, A note on finite-valued and finitely ambiguous transducers,
Theor. Comput. Syst. 16 (1983), 61–66.

RULE-RESTRICTED TRANSDUCERS AND LINGUISTIC APPLICATIONS 35

[11] J. Hajič, Disambiguation of Rich Inflection: Computational Morphology of Czech, Wiscon-

sin Center for Pushkin Studies, Karolinum, 2004.
[12] E. Hajičová, P. Sgall and D. Zeman, Issues of projectivity in the Prague dependency treebank,

in: Prague Bulletin of Mathematical Linguistics, 2004.
[13] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison Wesley, 2000.

[14] O. Jirák and Z. Křivka, Design and implementation of back-end for picoblaze C-compiler,
in: Proceedings of the IADIS International Conference Applied Computing (Rome, Italy),

International Association for Development of the Information Society, 2009, 135–138.

[15] M. Johnson, PCFG models of linguistic tree representations, Comput. Linguist. 24 (1998),
613–632.

[16] M. Khalilov and J. A. R. Fonollosa, N-gram-based statistical machine translation versus syn-

tax augmented machine translation: comparison and system combination, in: Proceedings
of the 12th Conference of the European Chapter of the Association for Computational

Linguistics (EACL ’09), Association for Computational Linguistics, Stroudsburg, 2009, 424–

432.
[17] A. Meduna, Automata and Languages: Theory and Applications, Springer, London, 2000.

[18] T. Mine, R. Taniguchi and M. Amamiya, Coordinated morphological and syntactic analysis

of japanese language, in: Proceedings of the 12th International Joint Conference on Artificial
Intelligence, Vol. 2, Morgan Kaufmann Publ. Inc., 1991, 1012–1017.

[19] R. Mitkov, The Oxford Handbook of Computational Linguistics, Oxford University Press,
2003.

[20] M. Mohri, Finite-state transducers in language and speech processing, Comput. Linguist.

23 (1997), 269–311.
[21] S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann Publ.

Inc., San Francisco, 1997.

[22] P. Šaloun, Parallel LR parsing, in: Proceedings of the 5th International Scientific Con-
ference Electronic Computers and Informatics 2002, The University of Technology Košice,

2002.

[23] A. Weber, On the valuedness of finite transducers, Acta Informatica 27 (1990), 749–780.
[24] A. Zollmann and A. Venugopal, Syntax augmented machine translation via chart parsing, in:

Proceedings of the Workshop on Statistical Machine Translation (StatMT ’06), Association

for Computational Linguistics, Stroudsburg, 2006, 138–141.

Martin Čermák, Faculty of Information Technology, Brno University of Technology, Božetě-
chova 2, 612 66 Brno, Czech Republic,
e-mail : icermak@fit.vutbr.cz

Petr Horáček, Faculty of Information Technology, Brno University of Technology, Božetěcho-

va 2, 612 66 Brno, Czech Republic,
e-mail : ihoracekp@fit.vutbr.cz

Alexander Meduna, Faculty of Information Technology, Brno University of Technology, Bo-

žetěchova 2, 612 66 Brno, Czech Republic,
e-mail : meduna@fit.vutbr.cz

	mfa_vol1_num1 13
	mfa_vol1_num1 14
	mfa_vol1_num1 15
	mfa_vol1_num1 16
	mfa_vol1_num1 17
	mfa_vol1_num1 18
	mfa_vol1_num1 19
	mfa_vol1_num1 20
	mfa_vol1_num1 21
	mfa_vol1_num1 22
	mfa_vol1_num1 23
	mfa_vol1_num1 24
	mfa_vol1_num1 25
	mfa_vol1_num1 26
	mfa_vol1_num1 27
	mfa_vol1_num1 28
	mfa_vol1_num1 29
	mfa_vol1_num1 30
	mfa_vol1_num1 31
	mfa_vol1_num1 32
	mfa_vol1_num1 33
	mfa_vol1_num1 34
	mfa_vol1_num1 35

