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Bonnet's theorem on ruled surfaces [2, p. 449] deals solely with

intrinsic properties if an intrinsic definition of the line of striction is

adopted. Contrasting this, our aim is to define the parameter of

distribution and the line of striction in relation to the enveloping

space and to show that they have the usual properties. Attention

will be called occasionally to the changes required to treat the hyper-

bolic case. The two theorems hold in hyperbolic space with minor

variations and follow by formally analogous proofs. In fact, in the

first one Ky±—\ must be assumed and in the second the hyperbolic

tangent of the distance has to be used. Notation and terminology

will largely be taken from [l].

Let "D be the standard connection on the Euclidean 4-space such

that "DvW=(VWi)ei where eu t = l, 2, 3, 4 constitutes the natural

frame field. Our elliptic 3-space is represented by the unit hypersphere

(x, x) — 1, so the position vector x serves as unit normal and we have

"Dvx= V. If now 'D stands for the induced connection on the elliptic

space we find for vectors tangent to it

(1) "DVW = 'DVW - (V, W)x.

In order to adjust this setup to hyperbolic space the metric ( , )

would acquire one minus sign for the Minkowski 4-space, the im-

bedded hypersurface would be given by (x, x)= — 1, and the minus

sign in (1) would change to plus. With the usual notation for the

curvature tensor [l, p. 59] we get with the aid of (1).

(2) 'R(U, V)W = (V, W)U - (U, W)V.

Denoting by D the connection on a surface immersed in the elliptic

3-space and by N its unit normal vector field and defining the

Weingarten map by L(V) ='DrN, we see in view of (2) that for vec-

tors pertaining to the surface [l, p. 77] 'R(U, V)W = R(U, V)W

-(LV, W)L(U) + (LU, W)L(V). This, in combination with (2),

yields an expression that will allow us to compute the Gaussian

curvature, namely

(U, R(U, V)V) = (U, U)(V, V) - (U, V)2 + (LU, U)(LV, V)
- (LU, V)(LV, U).
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A geodesic of the elliptic space, defined by 'DvV=0, on account of

(1) satisfies "DVV= —x and is therefore represented by

(4) x = (cosv)A + (sinv)B,    (A, A) = (B, B) = 1,    (A, B) = 0.

In the hyperbolic case there would appear hyperbolic functions in (4).

We now wish to determine the common perpendicular to two lines

x = (cos v)A + (s\n v)B and Xi = (cos vi)Ai + (s\n vi)Bi whose unit tan-

gents are V=( — sin v)A+(cos v)B and Fi = ( — sin vi)Ai + (cos vi)Bi.

As we easily infer from (4), the distance E between two points x, xi

may be found by means of cos E — (x, Xi) and Xi — (cos E)x is a vector

at x along the line joining x and Xi. We want this vector to be perpen-

dicular to V, which condition reduces to (V, Xi) = 0. Similarly, (Fi, x)

= 0. In order to take care of these two perpendicularity conditions

we use the abbreviations a = (4, Ai) — (B, Bi), b = (A, Bi) + (B, Ai), c

= (A, Ai) + (B, Bi), d = (4, Bi)-(B, Ai). This enables us to write

two equivalent equations,

(5) a sin(i>i + v) — b cos(fli + v) = 0, c sin(z)i — v) — d cos(»i — v) = 0.

Setting P2 = a2+b2, Q2 = c2+d2, equations (5) imply

a = P cos(i>i + v),   b = P sin(i)i + v),   c = Q cos(»i — v),
(6)

d = Q sin(ui — v),

where in general, the selection of signs for P and Q produces two

solutions. Hyperbolic cosines appearing in (6) would allow for only

one solution. Making use of (6) we obtain for the distance E between

the points x and Xi along the common perpendicular(s)

2 cos E = a cos(ki + v) + b sin(»! + v) + c cos(»i — v)

(7)
+ d sin(»! - v) = P+Q.

In general, the two given lines are not coplanar and it will be useful

to find the angle <p between the planes determined by the common

perpendicular and either line. A plane, being a totally geodesic sur-

face, allows parallel shifting of its normals in the enveloping space

[3, p. 139]. Thus 0 can be evaluated at any point of the common

perpendicular and may be computed as the angle between V and V\.

Hence,

2 cos <t> = — a cos(j)i + v) — b sin(ni + v) + c cos(j>i — v)
(8)

+ d sin(i'i -!)) = - P + Q.

The parametrization of a ruled surface we wish to use takes the

form x = (cos v)A(u) + (sin v)B(u). As the generator corresponding to
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Mi approaches the generator u, c tends toward 2 and d toward 0, so

that relations (6) tell us that vi approaches v. Ii we let v* designate

the parameter of the central point into which the common perpen-

dicular collapses we conclude from (6) that

(9) tan 2v* = lim b/a = 2(A', B')/((A', A') - (B', B')).

There is no loss of generality if the line of striction, which is the locus

of the central point, is taken as v* = 0; because of (9) (A', B') = 0 for

this arrangement. In the elliptic case there are of course two central

points on every generator. Geometrically, the parameter of distribu-

tion p* is defined as the limit as Ui approaches u of E/<f>, By means

of standard methods using (7) and (8) one verifies for the square of

this limit under the assumption that v* = 0.

(P*)2 = Hm E2/<p2 = lim(P + Q - 2)/(-P + Q - 2)

= [(A',A')-(A,B')2]/l(B',B')-(A,B')2].

Interestingly, Clifford parallels arise when the expressions in (7) and

(8) are equal or differ in sign.

Returning to the parametrization of our ruled surface, we derive

its natural frame field consisting of the vectors U = (cosv)A' + (sinv)B'

and F=( — sinz>)^4-|-(cosz>).B. Moreover we will need the functions

gn = (U, U) = (A', A')cos2v + 2(A', B')cosv sinv + (B', B')sin2 v,

gi2 = (U, V) = (A',B),g22 = {V, V) = l. A vector Mnormal to the sur-

face is seen to be given by (M, e() = (e{, x, U, V) = (et, A, U, B) where

the latter symbols abbreviate fourth-order determinants. Squaring

the determinant expression for (M, M) yields (M, M) = gug22 — (gi2)2

= h2, where h is meant to be positive. Thus the unit normal N is

expressed by (N, ei) = h-i(ei, A, U, B). Since 'DrV=0, (LV, V)

vanishes in equation (3). On the other hand, by reason of (1) 'DyU

= (-sinv)A' + (cosv)B'+gi2x. Also, (LV, U)=-('DVU, N)

= h~l(A', A, B', B). As evidenced by (3) the curvature K may now

be written

(11)     -h*(K - 1) = [(A', A') - (A, B')2\[(B', B') - (A, B')2)

and (10) demonstrates that p* = 0 implies K — \, that is K equals the

curvature of the elliptic space [2, p. 456]. We observe from (11) that

VK = 0 is equivalent to Vh = 0 which in turn bears the same relation

to Fgn = 0. This gives the value of v* appearing in (9) and an intrinsic

definition of the line of striction [2, p. 447] is now embodied in the

Theorem. If Ky*l along a ruling, VK = 0 characterizes the central

point.
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Finally, let A0 be the normal at the central point, taken as v* = 0,

of a given ruling. Clearly, ho(N0, c«) = (e,-, 4, A', B), where (h0)2

= (4', A') — {A', B)2. In order to evaluate the angle 0 between A and

No we proceed noting that hh0(N, N0)2 = (N0, A, U, B)(N, A,A',B)

which comes down to h cos d — ho cos v. In addition we form h2 sin2 6

= [(B\ B')-(A', £)2]sin2 v and conclude in view of (10) that (p*)2

tan2 0 = tan2 v which proves the

Theorem. The tangent of the angle through which the normal rotates

as a point moves along a generator is proportional to the tangent of the

distance from the central point to the moving point. The factor of propor-

tionality is the reciprocal of the parameter of distribution [2, p. 458 ].
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