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Abstract 

This paper argues that two apparently distinct modes of generalizing con

cepts - abstracting rules and computing similarity to exemplars - should 

both be seen as special cases of a more general Bayesian learning frame

work. Bayes explains the specific workings of these two modes - which 

rules are abstracted, how similarity is measured - as well as why gener

alization should appear rule- or similarity-based in different situations. 

This analysis also suggests why the rules/similarity distinction, even if 

not computationally fundamental, may still be useful at the algorithmic 

level as part of a principled approximation to fully Bayesian learning. 

1 Introduction 

In domains ranging from reasoning to language acquisition, a broad view is emerging of 

cognition as a hybrid of two distinct modes of computation, one based on applying abstract 

rules and the other based on assessing similarity to stored exemplars [7]. Much support for 

this view comes from the study of concepts and categorization. In generalizing concepts, 

people's judgments often seem to reflect both rule-based and similarity-based computations 

[9], and different brain systems are thought to be involved in each case [8]. Recent psycho

logical models of classification typically incorporate some combination of rule-based and 

similarity-based modules [1,4]. In contrast to this currently popular modularity position, I 

will argue here that rules and similarity are best seen as two ends of a continuum of possible 

concept representations. In [11,12], I introduced a general theoretical framework to account 

for how people can learn concepts from just a few positive examples based on the principles 

of Bayesian inference. Here I explore how this framework provides a unifying explanation 

for these two apparently distinct modes of generalization. The Bayesian framework not only 

includes both rules and similarity as special cases but also addresses several questions that 

conventional modular accounts do not. People employ particular algorithms for selecting 

rules and measuring similarity. Why these algorithms as opposed to any others? People's 

generalizations appear to shift from similarity-like patterns to rule-like patterns in system

atic ways, e.g., as the number of examples observed increases. Why these shifts? 

This short paper focuses on a simple learning game involving number concepts, in which 

both rule-like and similarity-like generalizations clearly emerge in the judgments of human 

subjects. Imagine that I have written some short computer programs which take as input a 

natural number and return as output either "yes" or "no" according to whether that number 
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satisfies some simple concept. Some possible concepts might be "x is odd", "x is between 

30 and 45", "x is a power of3", or"x is less than 10". For simplicity, we assume that only 

numbers under 100 are under consideration. The learner is shown a few randomly chosen 

positive examples - numbers that the program says "yes" to - and must then identify the 

other numbers that the program would accept. This task, admittedly artificial, nonetheless 

draws on people's rich knowledge of number while remaining amenable to theoretical anal

ysis. Its structure is meant to parallel more natural tasks, such as word learning, that often 

require meaningful generalizations from only a few positive examples of a concept. 

Section 2 presents representative experimental data for this task. Section 3 describes a 

Bayesian model and contrasts its predictions with those of models based purely on rules or 

similarity. Section 4 summarizes and discusses the model 's applicability to other domains. 

2 The number concept game 

Eight subjects participated in an experimental study of number concept learning, under es

sentially the same instructions as those given above [11]. On each trial, subj ects were shown 

one or more random positive examples of a concept and asked to rate the probability that 

each of 30 test numbers would belong to the same concept as the examples observed. X 

denotes the set of examples observed on a particular trial, and n the number of examples. 

Trials were designed to fall into one of three classes. Figure la presents data for two repre

sentative trials of each class. Bar heights represent the average judged probabilities that par

ticular test numbers fall under the concept given one or more positive examples X, marked 

by "*"s. Bars are shown only for those test numbers rated by subjects; missing bars do not 

denote zero probability of generalization, merely missing data. 

On class I trials, subjects saw only one example of each concept: e.g., X = {16} and X = 
{60}. To minimize bias, these trials preceded all others on which multiple examples were 

given. Given only one example, people gave most test numbers fairly similar probabilities 

of acceptance. Numbers that were intuitively more similar to the example received slightly 

higher ratings: e.g., for X = {16}, 8 was more acceptable than 9 or 6, and 17 more than 

87; for X = {60}, 50 was more acceptable than 51, and 63 more than 43. 

The remaining trials each presented four examples and occured in pseudorandom order. 

On class II trials, the examples were consistent with a simple mathematical rule: X = 

{16 , 8, 2, 64} or X = {60, 80, 10, 30}. Note that the obvious rules, "powers of two" and 

"multiples often", are in no way logically implied by the data. "Multiples offive" is a pos

sibility in the second case, and "even numbers" or "all numbers under 80" are possibilities 

in both, not to mention other logically possible but psychologically implausible candidates, 

such as "all powers of two, except 32 or4". Nonetheless, subjects overwhelmingly followed 

an all-or-none pattern of generalization, with all test numbers rated near 0 or 1 according to 

whether they satisified the single intuitively "correct" rule. These preferred rules can be 

loosely characterized as the most specific rules (i.e., with smallest extension) that include 

all the examples and that also meet some criterion of psychological simplicity. 

On class III trials, the examples satisified no simple mathematical rule but did have sim

ilar magnitudes: X = {16, 23 , 19, 20} and X = {60, 52, 57, 55} . Generalization now 

followed a similarity gradient along the dimension of magnitude. Probability ratings fell 

below 0.5 for numbers more than a characteristic distance e beyond the largest or smallest 

observed examples - roughly the typical distance between neighboring examples ("'" 2 or 

3). Logically, there is no reason why participants could not have generalized according to 
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various complex rules that happened to pick out the given examples, or according to very 

different values of~, yet all subjects displayed more or less the same similarity gradients. 

To summarize these data, generalization from a single example followed a weak similarity 

gradient based on both mathematical and magnitude properties of numbers. When several 

more examples were observed, generalization evolved into either an all-or-none pattern de

termined by the most specific simple rule, or, when no simple rule applied, a more articu

lated magnitude-based similarity gradient falling off with characteristic distance e roughly 

equal to the typical separation between neighboring examples. Similar patterns were ob

served on several trials not shown (including one with a different value of e) and on two 

other experiments in quite different domains (described briefly in Section 4). 

3 The Bayesian model 

In [12], I introduced a Bayesian framework for concept learning in the context oflearn

ing axis-parallel rectangles in a multidimensional feature space. Here I show that the same 

framework can be adapted to the more complex situation oflearning number concepts and 

can explain all of the phenomena of rules and similarity documented above. Formally, we 

observe n positive examples X = {x(1), ... , x(n)} of concept C and want to compute 

p(y E CIX), the probability that some new object y belongs to C given the observations 

X. Inductive leverage is provided by a hypothesis space 11. of possible concepts and a prob

abilistic model relating hypotheses h to data X. 

The hypothesis space. Elements ofll. correspond to subsets of the universe of objects that 

are psychologically plausible candidates for the extensions of concepts. Here the universe 

consists of numbers between 1 and 100, and the hypotheses correspond to subsets such as 

the even numbers, the numbers between 1 and 10, etc. The hypotheses can be thought of 

in terms of either rules or similarity, i.e., as potential rules to be abstracted or as features 

entering into a similarity computation, but Bayes does not distinguish these interpretations. 

Because we can capture only a fraction of the hypotheses people might bring to this task, 

we would like an objective way to focus on the most relevant parts of people's hypothesis 

space. One such method is additive clustering (ADCLUS) [6,10], which extracts a setoffea

tures that best accounts for subjects' similarity judgments on a given set of objects. These 

features simply correspond to subsets of objects and are thus naturally identified with hy

potheses for concept learning. Applications of ADCLUS to similarity judgments for the 

numbers 0-9 reveal two kinds of subsets [6,10]: numbers sharing a common mathemati

cal property, such as {2, 4, 8} and {3, 6, 9}, and consecutive numbers of similar magnitude, 

such as {I, 2, 3, 4} and {2, 3, 4, 5, 6}. Applying ADCLUS to the full set of numbers from 

1 to 100 is impractical, but we can construct an analogous hypothesis space for this domain 

based on the two kinds of hypotheses found in the ADCLUS solution for 0-9. One group 

of hypotheses captures salient mathematical properties: odd, even, square, cube, and prime 

numbers, multiples and powers of small numbers (~ 12), and sets of numbers ending in the 

same digit. A second group of hypotheses, representing the dimension of numerical mag

nitude, includes all intervals of consecutive numbers with endpoints between 1 and 100. 

Priors and likelihoods. The probabilistic model consists of a prior p( h) over 11. and a like

lihood p( X I h) for each hypothesis h E H. Rather than assigning prior probabilities to each 

ofthe 5083 hypotheses individually, I adopted a hierarchical approach based on the intuitive 

division of 11. into mathematical properties and magnitude intervals. A fraction A of the to

tal probability was allocated to the mathematical hypotheses as a group, leaving (1 - A) for 
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the magnitude hypotheses. The ,\ probability was distributed uniformly across the mathe

matical hypotheses. The (1 - ,\) probability was distributed across the magnitude intervals 

as a function of interval size according to an Erlang distribution, p( h) ex (Ihl/ li2 )e- 1hl /0', 

to capture the intuition that intervals of some intermediate size are more likely than those 

of very large or small size. ,\ and Ii are treated as free parameters of the model. 

The likelihood is determined by the assumption of randomly sampled positive examples. 

In the simplest case, each example in X is assumed to be independently sampled from a 

uniform density over the concept G. For n examples we then have: 

p(Xlh) l/lhl n if Vj, xU) E h 

o otherwise, 

(1) 

where I h I denotes the size of the subset h. For example, if h denotes the even numbers, then 

Ihl = 50, because there are 50 even numbers between I and 100. Equation I embodies the 

size principle for scoring hypotheses: smaller hypotheses assign greater likelihood than do 

larger hypotheses to the same data, and they assign exponentially greater likelihood as the 

number of consistent examples increases. The size principle plays a key role in learning 

concepts from only positive examples [12], and, as we will see below, in determining the 

appearance of rule-like or similarity-like modes of generalization. 

Given these priors and likelihoods, the posterior p( hlX) follows directly from Bayes' rule. 

Finally, we compute the probability of generalization to a new object y by averaging the 

predictions of all hypotheses weighted by their posterior probabilities p( h IX): 

p(y E GIX) = L p(y E Glh)p(hIX). (2) 

hE1i 

Equation 2 follows from the conditional independence of X and the membership of y E G, 

given h. To evaluate Equation 2, note that p(y E Glh) is simply 1 ify E h, and 0 otherwise. 

Model results. Figure Ib shows the predictions of this Bayesian model (with'\ = 1/2, 

Ii = 10). The model captures the main features of the data, including convergence to the 

most specific rule on Class II trials and to appropriately shaped similarity gradients on Class 

III trials. We can understand the transitions between graded, similarity-like and all-or-none, 

rule-like regimes of generalization as arising from the interaction of the size principle (Equa

tion 1) with hypothesis averaging (Equation 2). Because each hypothesis h contributes to 

the average in Equation 2 in proportion to its posterior probability p(hIX), the degree of 

uncertainty in p(hIX) determines whether generalization will be sharp or graded. When 

p( h IX) is very spread out, many distinct hypotheses contribute significantly, resulting in a 

broad gradient of generalization. When p(hIX) is concentrated on a single hypothesis h*, 

only h* contributes significantly and generalization appears all-or-none. The degree of un

certainty in p( h I X) is in tum a consequence of the size principle. Given a few examples con

sistent with one hypothesis that is significantly smaller than the next-best competitor - such 

as X = {16, 8, 2, 64}, where "powers of two" is significantly smaller than "even numbers" 

- then the smallest hypothesis becomes exponentially more likely than any other and gener

alization appears to follow this most specific rule. However, given only one example (such 

as X = {16}), or given several examples consistent with many similarly sized hypotheses

such as X = {16, 23,19, 20}, where the top candidates are all very similar intervals: "num

bers between 16 and 23", "numbers between 15 and 24", etc. - the size-based likelihood 

favors the smaller hypotheses only slightly, p(hIX) is spread out over many overlapping 

hypotheses and generalization appears to follow a gradient of similarity. That the Bayesian 
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model predicts the right shape for the magnitude-based similarity gradients on Class III trials 

is no accident. The characteristic distance € of the Bayesian generalization gradient varies 

with the uncertainty in p( h I X), which (for interval hypotheses) can be shown to covary with 

the intuitively relevant factor of average separation between neighboring examples. 

Bayes vs. rules or similarity alone. It is instructive to consider two special cases of the 

Bayesian model that are equivalent to conventional similarity-based and rule-based algo

rithms from the concept learning literature. What I call the SIM algorithm was pioneered 

by [5] and also described in [2,3] as a Bayesian approach to learning concepts from both 

positive and negative evidence. SIM replaces the size-based likelihood with a binary likeli

hood that measures only whether a hypothesis is consistent with the examples: p( X I h) :::: 1 

ifVj, xli) E h, and 0 otherwise. Generalization under SIM is just a count of the features 

shared by y and all the examples in X, independent of the frequency of those features or 

the number of examples seen. As Figure Ic shows, SIM successfully models generaliza

tion from a single example (Class I) but fails to capture how generalization sharpens up after 

multiple examples, to either the most specific rule (Class II) or a magnitude-based similarity 

gradient with appropriate characteristic distance € (Class III). What I call the MIN algorithm 

preserves the size principle but replaces the step of hypothesis averaging with maximization: 

p(y E GIX) :::: 1 ify E arg maXh p(Xlh), and 0 otherwise. MIN is perhaps the oldest al

gorithm for concept learning [3] and, as a maximum likelihood algorithm, is asymptotically 

equivalent to Bayes. Its success for finite amounts of data depends on how peaked p(hIX) 

is (Figure Id). MIN always selects the most specific consistent rule, which is reasonable 

when that hypothesis is much more probable than any other (Class II), but too conservative 

in other cases (Classes I and III). In quantitative terms, the predictions of Bayes correlate 

much more highly with the observed data (R2 :::: 0.91) than do the predictions of either SIM 

(R2 :::: 0.74) or MIN (R2 :::: 0.47). In sum, only the full Bayesian framework can explain 

the full range of rule-like and similarity-like generalization patterns observed on this task. 

4 Discussion 

Experiments in two other domains provide further support for Bayes as a unifying frame

work for concept learning. In the context of multidimensional continuous feature spaces, 

similarity gradients are the default mode of generalization [5]. Bayes successfully mod

els how the shape of those gradients depends on the distribution and number of examples; 

SIM and MIN do not [12]. Bayes also successfully predicts how fast these similarity gra

dients converge to the most specific consistent rule. Convergence is quite slow in this do

main (n "" 50) because the hypothesis space consists of densely overlapping subsets - axis

parallel rectangles - much like the interval hypotheses in the Class III number tasks. 

Another experiment engaged a word-learning task, using photographs of real objects as 

stimuli and a cover story oflearning a new language [11]. On each trial, subjects saw ei

ther one example of a novel word (e.g., a toy animal labeled with "Here is a blicket."), or 

three examples at one of three different levels of specificity: subordinate (e.g., 3 dalma

tians labeled with "Here are three blickets."), basic (e.g., 3 dogs), or superordinate (e.g., 3 

animals). They then were asked to pick the other instances of that concept from a set of 

24 test objects, containing matches to the example(s) at all levels (e.g., other dalmatians, 

dogs, animals) as well as many non-matching objects. Figure 2 shows data and predictions 

for all three models. Similarity-like generalization given one example rapidly converged to 

the most specific rule after only three examples were observed, just as in the number task 

(Classes I and II) but in contrast to the axis-parallel rectangle task or the Class III num-
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ber tasks, where similarity-like responding was still the norm after three or four examples. 

For modeling purposes, a hypothesis space was constructed from a hierarchical clustering 

of subjects' similarity judgments (augmented by an a priori preference for basic-level con

cepts) [11] . The Bayesian model successfully predicts rapid convergence from a similarity 

gradient to the minimal rule, because the smallest hypothesis consistent with each example 

set is significantly smaller than the next-best competitor (e.g., "dogs" is significantly smaller 

than "dogs and cats", just as with "multiples often" vs. "multiples of five"). Bayes fits the 

full data extremely well (R2 = 0.98); by comparison, SIM (R2 = 0.83) successfully ac

counts for only the n = 1 trials and MIN (R2 = 0.76), the n = 3 trials. 

In conclusion, a Bayesian framework is able to account for both rule- and similarity-like 

modes of generalization, as well as the dynamics of transitions between these modes, across 

several quite different domains of concept learning. The key features of the Bayesian 

model are hypothesis averaging and the size principle. The former allows either rule-like 

or similarity-like behavior depending on the uncertainty in the posterior probability. The 

latter determines this uncertainty as a function of the number and distribution of examples 

and the structure ofthe learner's hypothesis space. With sparsely overlapping hypotheses 

- i.e., the most specific hypothesis consistent with the examples is much smaller than its 

nearest competitors - convergence to a single rule occurs rapidly, after just a few exam

ples. With densely overlapping hypotheses - i.e., many consistent hypotheses of compara

ble size - convergence to a single rule occurs much more slowly, and a gradient of similar

ity is the norm after just a few examples. Importantly, the Bayesian framework does not so 

much obviate the distinction between rules and similarity as explain why it might be useful 

in understanding the brain. As Figures 1 and 2 show, special cases of Bayes correspond

ing to the SIM and MIN algorithms consistently account for distinct and complementary 

regimes of generalization. SIM, without the size principle, works best given only one exam

ple or densely overlappipg hypotheses, when Equation I does not generate large differences 

in likelihood. MIN, without hypothesis averaging, works best given many examples or 

sparsely overlapping hypotheses, when the most specific hypothesis dominates the sum over 

1i in Equation 2. In light of recent brain-imaging studies dissociating rule- and exemplar

based processing [8], the Bayesian theory may best be thought of as a computational-level 

account of concept learning, with multiple subprocesses - perhaps subserving SIM and MIN 

- implemented in distinct neural circuits. I hope to explore this possibility in future work. 
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Figure 1: Data and model predictions for the number concept task. 

(a) Average generalization judgments: 
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Figure 2: Data and model predictions for the word learning task. 


