
Rules of Definitional Reflection

Peter Schroeder-Heister

Universität Tübingen

Wilhelm-Schickard-Institut für Informatik

Sand 13, 7400 Tübingen, Germany

Abstract

This paper discusses two rules of definitional reflec-

tion: The “logical” version of definitional reflection

as used in the extended logic programming language

GCLA and the “ω”-version of definitional reflection

as proposed by Eriksson and Girard. The logical ver-

sion is a Left-introduction rule completely analogous

to the Left-introduction rules for logical operators in

Gentzen-style sequent systems, whereas the ω-version

extends the logical version by a principle related to

the ω-rule in arithmetic. Correspondingly, the inter-

pretation of free variables differs between the two ap-

proaches, resulting in different principles of closure of

inference rules under substitution. This difference is

crucial for the computational interpretation of defini-

tional reflection.

1 Introduction

Suppose we equip a logical system such as intuition-
istic first-order logic with a database D of clauses of
the form

a ⇐ C

(where a is an atom and C an arbitrary formula). In
a Gentzen-style sequent calculus, the normal way of
handling such clauses would be to add an inference
rule like

(`D)
Γ`Cσ

Γ`aσ

where σ stands for an arbitrary substitution. If C is
sufficiently restricted (e.g., to Horn clauses or hered-
itary Harrop formulas), this principle is the basis of
logic programming understood proof-theoretically (see
[10, 15]). It can also be viewed as reading the data-
base as an inductive definition (see [9, 16]), expressing
what it means to establish an atom by reference to its
defining conditions. If that way one regards (`D) as
introducing an atom on the right side of the turnstile,

one may look for a corresponding rule (D`) introduc-
ing an atom on the left side of the turnstile, in ac-
cordance with the symmetry of Gentzen-style sequent
systems. This rule would express the closed charac-
ter of the database D seen as a definition (“there is
no further clause defining an atom”). Because of this
way of reflecting upon the definition as a whole, such
a principle has been called “definitional reflection” by
Hallnäs [9].

Right-introduction rules for atoms like (`D) form
the declarative basis of logic programming languages,
in which implications are allowed to occur in clause
bodies and hypothetical queries can be evaluated –
the most advanced being λ-Prolog [15]. The compu-
tational significance of definitional reflection for logic
programming lies in the fact that by (D`) we obtain an
approach to negation which is not via a meta-inference
like negation by failure. If we interpret “not a” as
a`⊥, introducing a on the left side of the turnstile
means introducing negation. In particular this im-
plies that variable bindings for negated atoms can be
computed, provided, of course, that there is an ap-
propriate computational interpretation of definitional
reflection.

There is a history of definitional reflection which
includes “inversion principles” in logic ([13, 17]). In
the context of logic programming, we have proposed
such a principle in [10], which has been incorporated
into the logic programming language GCLA (see [1]).
A version different from that has been proposed by
Eriksson [5] and by Girard [8]. It is the aim of this
paper to discuss and compare these two versions. For
reasons to be explained they are called the “logical ver-
sion” and the “ω-version”, respectively, of definitional
reflection. In the following section we first discuss the
propositional case, in which both versions do not dif-
fer. Certain basic problems such as cut-elimination
can already be discussed there. The remaining three
sections are dedicated to the differences in the treat-
ment of variables and to computational aspects.

psh
Textfeld
Final Draft of a paper that appeared in LICS 1993(Eighth Annual IEEE Symposium on Logic in Computer Science, Montreal, Canada, June 19-23, 1993, IEEE Computer Society Press, Los Alamitos, 1993, pp. 222-232)



2 The propositional case

As the underlying logic to which we add definitional
reflection we choose the following sequent calculus, of
which we consider both the version with the struc-
tural rule of contraction and the version without con-
traction. Due to the possible lack of contraction we
have to distinguish between two conjunctions, which
we denote by ∧ and ◦. We use Γ and ∆ to denote
multisets of formulas, A, B, C, . . . to denote formulas
and a, b, c, . . . to denote atomic formulas (= proposi-
tional constants in this section). Sequents are of the
form Γ`A.

(I)
A`A

(>)
`>

(⊥)
⊥`C

(`∧)
Γ`A Γ`B

Γ`A∧B
(∧`)

Γ, A`C

Γ, A∧B`C

Γ, B`C

Γ, A∧B`C

(`◦)
Γ`A ∆`B

Γ, ∆`A◦B
(◦`)

Γ, A, B`C

Γ, A◦B`C

(`∨)
Γ`A

Γ`A∨B
(∨`)

Γ, A`C Γ, B`C

Γ, A∨B`C

Γ`B

Γ`A∨B

(`→)
Γ, A`B

Γ`A→B
(→`)

Γ`A ∆, B`C

Γ, ∆, A→B`C

(Thin)
Γ`C

A, Γ`C

[

(Contr)
Γ, A, A`C

Γ, A`C

]

(Cut)
Γ`A ∆, A`B

Γ, ∆`B

Due to the presence of thinning, it is sufficient to con-
sider just one single constant for verum and one for
falsum. Though we could do without >, it is conve-
nient to have this constant to avoid clauses with empty
bodies.

The following results extend to the cases where
thinning is lacking and also to classical sequent sys-
tems with multiple formulas in the succedent. Since
we do not gain much for the questions under consid-
eration, we here avoid the more complicated notation.
Contraction-free logic is the basic substructural logic
in our context.

A clause has the form

a ⇐ C

for an atom a and a formula C. A finite set of clauses
is called a definition. Given a definition D, the set
of defining conditions for a in D is D(a) := {C :
a⇐C ∈ D}. We then extend our logical system by
the following pair of rules

(`D)
Γ`C

Γ`a
(C ∈ D(a))

(D`)
{Γ, C`A : a ∈ D(a)}

Γ, a`A

The rule (D`) is called the rule of definitional reflec-
tion. The system obtained is called the logic of defin-
itional reflection over D and is denoted by DR(D),
if contraction is present, and by DRcf(D), if it is
contraction-free.

Example: Let p, q, r, s be propositional constants.
Let

D = {p⇐q,
p⇐r,
q⇐s,
r⇐s}.

Then in DR(D) we can derive p`s in the following
way:

(D`)

(D`)
s`s

q`s
(D`)

s`s

r`s

p`s
.

There is an obvious symmetry between (`D) and
(D`), which is analogous to the symmetry between
the Right-introduction and Left-introduction rules for
logical operators. By (`D) an atom can be introduced
on the right side of the turnstile, by (D`) on the left
side. As with other pairs of rules in a sequent-style
system, this symmetry can be made explicit by a local
principle of cut: if an atom a has been introduced on
the left and on the right side, respectively, and is then
cut away:

(`D)
Γ`B

Γ`a
(B ∈ D(a)) (D`)

{∆, C`A : C ∈ D(a)}

∆, a`A

Γ, ∆`A
,

then this cut can be reduced to a cut for a defining
condition of a:

Γ`B ∆, B`A

Γ, ∆`A
.



This step is also called (`D)/(D`)-reduction. Simi-
larly, we speak of (`∗)/(∗`)-reduction for any logical
sign ∗.

This is only a local principle of cut since
(`D)/(D`)-reduction does not guarantee the global

admissibility of the cut rule for the whole system with
its structural postulates. Global cut elimination is a
different issue. Suppose D = {p⇐ p→⊥} for some
propositional constant p. Then in DR(D) we have
proofs Π1:

(D`)
(Contr)

p`p ⊥`⊥

p, p→⊥`⊥

p, p`⊥

p`⊥

and Π2:

(`D)

Π1

`p→⊥

`p
,

but no proof of `⊥, which would result from applying
cut to Π1 and Π2. This means that the cut rule is not
eliminable in DR(D).

The basic reason is that in order to reduce a
cut with the atomic cut-formula p, according to
(`D)/(D`)-reduction a cut with the more complex
cut-formula p→⊥ is generated. This situation will
arise with many definitions D, since a defining con-
dition of an atom a is of greater complexity than a, if
it is not itself an atom. However, it can be shown that
for certain definitions D, cut is eliminable in DR(D).

Theorem 1 If the body C of any clause a⇐C in D is

implication-free, then cut is eliminable in DR(D). In

particular, for definite Horn clause programs D, where

clauses have the form a⇐a1∧ . . .∧an, DR(D) enjoys

cut-elimination.

Proof sketch We show that a generalized version of
cut, Slaney’s [23] multicut rule

(mc)
Γ1`A1 . . . Γn`An ∆, A1, . . . , An`C

Γ1, . . . , Γn, ∆`C

can be eliminated provided A1, . . . , An do not con-
tain implication. As the induction measure we use the
triple 〈r, d, l〉, where d and l are, as usual, the degree
of the cut-formula and the length of the derivation of
a topmost multicut, whereas r is the number of ap-
plications of (D`) and (Contr) above the rightmost
premiss of that multicut. Obviously, this number de-
creases by a (`D)/(D`) - reduction, even if d does not
decrease.

For cut-formulas with implications this method
does not work since in a (`→)/(→`)-reduction pre-
misses of multicuts change sides so that a non-
rightmost premiss of a multicut becomes its rightmost
premiss after the reduction step. (For a detailed proof
of Theorem 1 see [21].)

Other candidates of definitions D for which cut is
eliminable from DR(D) would be stratified ones, in
which defined atoms do not occur in their definitional
ancestors (i.e. their defining conditions and defini-
tional ancestors thereof). In general, one may, follow-
ing Hallnäs [9], call a definition D total, if DR(D) en-
joys cut elimination and properly partial if cut is not
eliminable. If we pass to a contraction-free system,
then every definition is total:

Theorem 2 Cut is eliminable in DRcf(D) for any D.

Proof sketch As in the proof of Theorem 1, we use a
triple 〈r, d, l〉, where d and l are the degree of the cut-
formula and the length of the derivation of a topmost
cut. The r-value of a derivation Π ending with an
application of cut counts the number of applications
of (D`) in the following way:

r(Π) = 0 if Π is an axiom.
r(Π) = r(Π1)

if Π results from Π1 by a one-premiss rule
r(Π) = r(Π1) + r(Π2)

if Π results from Π1 and Π2 by an additive
two-premiss rule (only Γ in the conclusion)

r(Π) = max(r(Π1), r(Π2))
if Π results from Π1 and Π2 by a multiplicative
two-premiss rule (Γ and ∆ in the conclusion)

r(Π) = max{r(Πi) : 1 ≤ i ≤ n} + 1
if Π results from {Πi : 1 ≤ i ≤ n} by (D`).

Due to the lack of contraction, r cannot increase
during reduction, but decreases if the degree d of
the cut-formula does not decrease under (`D)/(D`)-
reduction. (For more details see [21].)

It is a philosophical question whether one should
insist on definitions D being total and perhaps force
totality by requiring the underlying logic to be
contraction-free (e.g., linear — this is what Girard [8]
proposes). We do not think that definitions have to
be total (as we do not think that computable func-
tions have to be total). The declarative semantics of
the logic programming language GCLA, for example,
is based on the system DR(D) without cut, in which,
as we have seen, cut is not necessarily admissible. To
generelly abandon implications in clause bodies and



achieve cut elimination in that way, is no viable solu-
tion, since implications in clause bodies have proved
extremely useful in proof-theoretic extensions of logic
programming.

One might add that the idea of definitional reflec-
tion itself including the differences between its two
versions discussed in the following is entirely indepen-
dent of what philosophical point of view one takes with
respect to cut elimination, and whether one works in a
contraction-free system or not (see [11]). Historically,
the tension between the availability of implication and
contraction, which is reflected in Theorem 1 and Theo-
rem 2, was already observed in the discussion of com-
binatory completeness and contraction-free logics in
the early days of combinatory logic, in particular by
Fitch [7] and Curry [4].

3 Definitional reflection with vari-

ables: the logical version

The two versions of definitions reflection mentioned
in the introduction differ when variables are available.
We now consider atoms to be of the form p(t1, . . . , tn)
for n-ary predicate symbols p (including 0-ary propo-
sitional constants) and terms ti which are either indi-
vidual variables or of the form f(t1, . . . , tn) for n-ary
function symbols f (including 0-ary individual con-
stants). We extend our logical system by the usual
first-order quantifier rules:

(`∀)
Γ`A(y)

Γ`∀xA(x)
y new (∀`)

Γ, A(t)`C

Γ, ∀xA(x)`C

(`∃)
Γ`A(t)

Γ`∃xA(x)
(∃`)

Γ, A(y)`C

Γ, ∃xA(x)`C
y new

When we apply substitutions σ, θ, τ, . . ., it is always
assumed that no variable clashes can occur.

As before, definitional clauses are of the form a⇐C,
where now a is an atom and C a formula in the new
sense. For a definition D, the set D(a) of defining
conditions is redefined as follows:

D(a) = {Cσ : b⇐C ∈ D and a = bσ} .

With this notion of D(a), the (`D)- and (D`)-rules are
formulated exactly as in the previous section, where
to the (D`)-rule the following proviso is added:

Proviso for the application of (D`):
D(aθ) = (D(a))θ for any substitution θ

of variables in a

(actually, D(aθ) ⊆ (D(a))θ would suffice, since
the converse holds anyway). Let now DR(D) and
DRcf(D) be the logics of definitional reflection with
variables, with and without contraction, respectively.

Example: Let & and ⊃ be binary function symbols
in infix notation. Let

D = {p(x&y)⇐p(x)◦p(y),
p(x⊃y)⇐p(x)→p(y)}.

Then in DR(D) we can derive `p(((x⊃y)&x)⊃y) as
follows:

(→`)
(D`)
(◦`)
(D`)
(`→)
(`D)

p(x)`p(x) p(y)`p(y)
p(x)→p(y), p(x)`p(y)

p(x⊃y), p(x)`p(y)
p(x⊃y)◦p(x)`p(y)
p((x⊃y)&x)`p(y)

`p((x⊃y)&x)→p(y)
`p(((x⊃y)&x)⊃y)

In this way, we can give a kind of truth definition for
all logical constants by just giving definitional clauses
corresponding to the Right-introduction-rules. The
Left-introduction inferences are generated by the de-
duction mechanism of the (D`)-rule. Our underlying
logic is then the “metalogic” in which some object
logic is defined. If we permit even variable-binding
operators in addition to function symbols, we can give
a truth-definition of quantification by a clause like
p((

∧

x)yx)⇐(∀x)p(yx), where yx stands for a term
with free variable x (an elegant treatment would use
λ-terms). So in a certain sense, (D`) has the effect
of the general schema for generating elimination rules
from introduction rules proposed in a natural deduc-
tion setting in [19].

In DR(D) and DRcf(D), rules with variables are
understood as they are usually understood in formal
systems, particularly in proof-theoretic accounts of
logic programming: An inference rule

S1 . . . Sn

S

for sequents S1, . . . , Sn, S with variables means that
for each ground substitution θ, if S1θ, . . . , Snθ holds
(in some intuitive sense), then so does Sθ.

Correspondingly, we define a primitive inference
rule

S1 . . . Sn

S



to be strongly closed under substitution, if for any sub-
stitution θ for the variables free in S,

S1θ . . . Snθ

Sθ

is itself a primitive inference rule. (The restriction of
θ to variables free in S is to cope with eigenvariable
conditions.)

Lemma 1 All inference rules of DR(D) are strongly

closed under substitution.

Proof In the case of (D`) this is guaranteed by
the proviso. We assume that free variables in clauses
b⇐C, when used with (D`), are always (dynamically)
chosen different from the variables in Γ, a and C (stan-
dardizing apart).

We call (D`) the “logical” version of definitional re-
flection, since it resembles the Left-introduction rules
for logical constants in two crucial respects:

1. (D`) is the exact counterpart of (`D) needed to en-
sure a (`D)/(D`)-reduction. This reduction is formu-
lated exactly as in the propositional part in section 2.

2. As in the rules for logical operators, there is just
one formula being introduced by (D`), whereas the
side formulas in Γ and C remain unchanged.

This will both be different with the version considered
in the next section.

We also speak of local definitional reflection since
the (D`)-rule is a rule for introducing single atoms

rather then predicates on the left side of the turnstile.
For example, if D = {p(1)⇐q, p(2)⇐q}, we can derive
p(1)`q and p(2)`q by

(D`)
q`q

p(1)`q
and (D`)

q`q

p(2)`q
,

but not p(x)`q. Even if we add the clause p(x)⇐r
to D, neither p(x)`q nor p(x)`r is derivable, since
for p(x) the proviso for the application of (D`) is not
fulfilled: Whereas p(x) depends on r as its defining
condition, substituting x with 1 or 2 gives a different
defining condition (so closure under substitution as
expressed by the proviso would be violated).

Theorem 3 The cut-elimination results of Theo-

rem 1 and Theorem 2 also hold for definitional re-

flection with variables.

Proof sketch To deal with quantifiers one has to use
closure under substitution (Lemma 1).

Computationally, in a logically restricted system,
(`D) corresponds to the resolution rule (when under-
stood as a proof search and not as a refutation princi-
ple). By unifying a with heads of definitional clauses
one proceeds from Γ`a backwards to Γσ`Cσ for some
Cσ ∈ D(aσ). Similarly, with (D`), one proceeds from
Γ, a`A backwards to {Γσ, Cσ`Aσ : Cσ ∈ D(aσ)}.
Here σ is a joint unifier of a with a maximal set of
heads of unifiers with the additional constraint that
aσ fulfils the proviso D(aσθ) = (D(aσ))θ for any sub-
stitution θ of variables in aσ. (For particular algo-
rithms to compute such unifiers in the environment of
the logic programming language GCLA, where (D`)
is implemented, see [2]).

So, computationally, one passes from the conclusion
of (`D) or (D`) to a substitution instance of its pre-
miss by means of unification. However, declaratively,
there is just instantiation, i.e., substitution, but no
unification. This is different with another version of
definitional reflection.

4 The ω-version of definitional reflec-

tion

We now consider the following rule of definitional re-
flection, which has been proposed by Eriksson [5] and
Girard [8].

(D`)ω:

{Γσ, Cσ ` Aσ : σ = mgu(a, b) for some b⇐C ∈ D}

Γ, a ` A
,

with the proviso: The variables free in Γ, a`A must be
different from those in the b⇐C above the line, i.e.,
we always assume that variables in clauses are stan-
dardized apart. The systems DRω(D) and DRcf

ω (D)
are obtained from DR(D) and DRcf(D), respectively,
by replacing (D`) with (D`)ω.

The motivation behind (D`)ω is that to prove an
atom, it is sufficient to prove all substitution instances
of its defining conditions, which are obtained by con-
sidering all mgus of the atom with the heads of clauses
in D. Underlying is the reading of the variables of a se-
quent as universally quantified from outside, i.e., Γ`A
is intuitively interpreted as: “for each ground substi-
tution σ, Γσ`Aσ holds”. This idea is obviously related
to the ω-rule in arithmetic. (See also the philosophical
appendix below.)

It is important to realize that mgus are used in
the premisses of (D`)ω . Simple unifiers would not
work: By using mgus, the premisses of (D`)ω refer



to the defining conditions of all possible instances
of a. Therefore, as Eriksson [5] has pointed out, in
the higher-order case, where there is no unique mgu,
complete sets of unifiers have to be considered.

This is different from (D`), where just substitutions
and not unifiers are used. To make this point more
obvious, we write (D`) in the following form (which
is just a notational variant of the formulation given in
the previous section):

(D`)
{Γ, Cσ ` A : a = bσ for some b⇐C ∈ D }

Γ, a ` A
.

The different behavior of (D`) and (D`)ω may
be illustrated by the example of the previous section
with D = {p(1)⇐q, p(2)⇐q}. In contradistinction to
DR(D), in DRω(D) we can derive p(x)`q:

(D`)ω

q`q

p(x)`q
.

We simply use that q is the defining condition of each
defined substitution instance of p(x) (namely of both
p(1) and p(2)).

The standard example discussed both by Eriksson
[5] and Girard [8] is equality. Let D = {x = x⇐>}.
Then all axioms of general equality can be derived, for
example transitivity:

(D`)ω

(Thin)
x2 = x3`x2 = x3

>, x2 = x3`x2 = x3

x1 = x2, x2 = x3`x1 = x3

In the last step we use that the substitution
[x2/x1, x2/x] is an mgu of x1 = x2 with the head
x = x of x = x⇐>. Furthermore, the freeness axioms
of Clark’s equality theory [3] can be derived.

(D`)ω is not strongly closed under substitution,
as the following example shows: Suppose D =
{p(x)⇐q(x), q(x)⇐r(1)}. Then

q(x)`r(1)

p(z)`r(1)

is an instance of (D`)ω, whereas

q(x)`r(1)

p(1)`r(1)

ist not. But, of course,

q(1)`r(1)

p(1)`r(1)

is again an instance of (D`)ω . The reason is obvious:
Due to the universal reading of variables according

to (D`)ω, there is no “vertical” connection between
variables. An inference rule

S1 . . . Sn

S

for sequents S1, . . . , Sn, S with variables means that if
for each i (1 ≤ i ≤ n) and each ground substitution
θi, Siθi holds (in some intuitive sense), then for each
ground substitution θ, Sθ holds.

Correspondingly, we call a primitive inference rule

S1 . . . Sn

S

weakly closed under substitution, if for any substitu-
tion θ for the variables free in S, there are substitu-
tions θ1, . . . , θn such that

S1θ1 . . . Snθn

Sθ
,

or a rule obtained from that by deleting some of the
premisses Siθi, is itself a primitive inference rule.

Lemma 2 All inference rules of DRω(D) are weakly

closed under substitution.

Proof by induction on the length of derivations. We
just have to consider (D`)ω. Suppose its i-th premiss
is ∆σ, Cσ`Aσ. If aθ and bθ are not unifiable then this
premiss is not needed for the derivation of ∆θ, aθ`Aθ.
Otherwise let σ′ := mgu(aθ, b). Then θσ′ is a unifier
of a and b (since variables are standardized apart), so
that θσ′ = στ for some τ . Take τ to be the θi we are
looking for.

As a corollary we have closure of derivations under
substitutions, which is essentially what we need.

Lemma 3 If Γ`A is derivable in DRω(D) or

DRcf

ω (D), then there is a derivation of Γθ`Aθ in

DRω(D) or DRcf

ω (D), respectively, which is not

longer than the original one and which does not use

any inference rules beyond those used in the original

derivation.

Consider the last example. Then in (D`)ω we have
the derivation

r(1)`r(1)

q(x)`r(1)

p(z)`r(1)

and for the substitution [1/z] the derivation

r(1)`r(1)

q(1)`r(1)

p(1)`r(1)



where we have to use [1/x] at the intermediate step.
Viewed as a tree whose nodes are labelled with the
names of the inferences used, after substitution one
obtains the same tree with perhaps some branches
missing.

It is not trivial to extend the cut elimination re-
sults from the logical version of definitional reflec-
tion to the present case, since, unlike (D`), (D`)ω

is not a Left-introduction rule in the genuine sense,
i.e., not a rule dual to (`D). There is no straightfor-
ward (`D)/(D`)ω-reduction, since in (D`)ω the side-
formulas Γ and A do not remain unchanged when a
is introduced on the left side of the turnstile. Rather,
they occur substituted above and unsubstituted be-
low the inference line. Due to the σ occurring in the
premisses of (D`)ω on both sides, (D`)ω can even be
used to introduce an atom on the right side.

However, by decomposing (D`)ω into (D`) and
some other rule, we can carry over the methods used
for cut-elimination with (D`) to the present case. In
that way we also obtain additional insight into the re-
lationship between (D`)ω and (D`). Let (ω) be the
following rule.

(ω):

{Γσ, aσ ` Aσ : σ = mgu(a, b) for some b⇐C ∈ D}

Γ, a ` A

Then the following holds:

Theorem 4 In the system with or without contrac-

tion, but without cut, (D`)ω is interadmissible with

(D`) and (ω), i.e., (D`)ω is admissible if (D`) and

(ω) are primitive rules, and both (D`) and (ω) are

admissible, if (D`)ω is a primitive rule.

Proof Let (D`) have the alternative form given at the
beginning of this section. We first show that (D`)ω

is admissible if (D`) and (ω) are present. Consider a
topmost application of (D`)ω. Suppose σ = mgu(a, b)
for some b⇐C ∈ D. Suppose furthermore that aσ =
b′σ′ for some b′⇐C′ ∈ D. Since variables in a and b′

are different, σ ∪ σ′ is a unifier of a and b′, so there
is an mgu θ of a and b′ such that σ ∪ σ′ = θθ′ for
some θ′. Then Γθ, C′θ`Aθ is among the premisses
of (D`)ω . Therefore by Lemma 3, Γσ, C′σ′`Aσ is
derivable without (D`)ω (again, notice that clauses
variables are standardized apart). By (D`) we ob-
tain Γσ, aσ`Aσ, if we can make sure that the proviso
D(aστ) = (D(aσ))τ is fulfilled for any substitution τ
of variables in aσ. For that, suppose aστ = b′′τ ′′ for
some τ ′′ and some b′′⇐C′′ ∈ D. Then a and b′′ are
unifiable and every element of D(aστ) is in (D(aσ))τ .

Since we have Γσ, aσ`Aσ for any mgu σ of a with
some b⇐C ∈ D, we obtain Γ, a`A by (ω).

Conversely, suppose (D`)ω is given and the pre-
misses of (D`) of the form Γ, Cσ`A, where a = bσ for
some b⇐C ∈ D, i.e. Cσ ∈ D(a), have been derived.
Then
(∗) Γσ, Cσ`Aσ with σ = mgu(a, b) (standardizing
clause variables apart).
Now suppose θ = mgu(a, b′) for some b′⇐C′ ∈ D, and
only aθ but not a itself is an instance of b′. Then due
to the proviso D(aθ) = (D(a))θ we have the following:
C′θ = Cσθ for some Cσ of the kind considered in (∗).
But (∗) implies Γσθ, Cσθ`Aσθ by closure under sub-
stitution (Lemma 3). Thus from the sequents (∗) all
premisses of (D`)ω are derivable.

Finally, we have to show that (ω) is admissible,
if (D`)ω is given. Consider a premiss Γσ, aσ`Aσ of
(ω), where σ = mgu(a, b) for some b⇐C ∈ D. Then
according to the following Lemma 4, aσ is either ob-
tained by (I) or by (Thin) or by (D`)ω. The first two
cases are trivial, and in the last case Γσ, Cσ`Aσ is
among the premisses of Γσ, aσ`Aσ, since σ is already
an mgu of a and b.

Lemma 4 Any derivation of Γ, a`A in DRω(D) or

DRcf

ω (D) can be transformed into one in which a is

introduced in the last step either by (I) or by (Thin)
or by (D`)ω.

Proof by induction on the length of derivations. The
only critical case is the one where in the last step
(D`)ω is applied introducing some a′. That is, we
have two successive applications of (D`)ω , one with
respect to a and one with respect to a′. Every branch
of such a derivation then ends as follows:

Γσiσij , Ciσiσij , Cjσiσij`Aσiσij

Γσi, aσi, Ciσi`Aσi

Γ, a, a′`A
,

where 1 ≤ i, j ≤ n, D = {b1⇐C1, . . . , bn⇐Cn}, σi =
mgu(a′, bi), and σij = mgu(aσi, bj). Thus σiσij is
the mgu of the equation system {a′ = bi, a = bj}.
Since the order of steps in which to solve the equation
system is irrelevant, we can interchange the last two
inferences of the given derivation.

Theorem 5 The cut elimination results of Theorem 1

and Theorem 2 extend to definitional reflection with

(D`)ω.

Proof sketch By Theorem 4, we only have to deal
with additional effects due to the presence of (ω). The



crucial case is the following:

Γ`B

Γ`a

{∆σ, aσ`Aσ : σ = mgu(a, b) for b⇐C ∈ D}

∆, a`A

Γ, ∆`A
.

Since B ∈ D(a), we have a = bσ for some b⇐B ∈ D,
i.e., the mgu of a and b only instantiates variables in
b. Thus ∆, a`A is among the premisses of (D`).

All other cases of (ω) being involved in cuts can
be dealt with by permutative reductions in combina-
tion with closure under substitution (Lemma 3, which
obviously holds for (ω), too).

There is a close relationship between (D`)ω and the
completion on a definition. Suppose the definitional
clauses for p in D have the following form:

p(t11, . . . , t1m) ⇐ C1

...
p(tn1, . . . , tnm) ⇐ Cn .

Then, if we add to D the single equality clause

x = x⇐ >,

the following axiom can be derived in DRcf

ω (D).

(Compp) :

` (∀x1 . . . xm)(p(x1, . . . , xm) ↔
(∃y1)(x1 = t11 ◦ . . . ◦ xm = t1m ◦ C1)
∨
...
∨
(∃yn)(x1 = tn1 ◦ . . . ◦ xm = tnm ◦ Cn)),

where yi contains the variables free in the i-th clause
for p. It can actually be shown that DRcf

ω (D ∪
{x = x⇐>}) is equivalent to COMP(D), where
COMP(D) results from contraction-free first-order
logic (without (`D) and (D`)) by adding
1. a sequent-style version of Clark’s [3] equality theory
(see, e.g., [18]) and
2. for each predicate p in the definition D Right- and
Left-introduction rules (`p) and (p`) which, unlike
(`D) and (D`), are uniform in the arguments of p.
This equivalence, which is elaborated in [22], does not
rely on the cut rule.

Since cut can be eliminated in DRcf

ω (D), from
(Complp) we may infer the following principle for

DRcf

ω (D).

(Fixp):

` p(x1, . . . , xm) is derivable iff for some i,
`x1 = ti1 ◦ . . . ◦ xm = tim ◦ Ci is derivable.

This result was called “fixpoint theorem” by Girard
[8], because it allows one to define a predicate by any
disjunction of defining conditions.

Unlike (D`)ω , the rule (D`) does not imply
(Complp). It would just permit us to derive

a a`C1 ∨ . . . ∨ Cn

if a is defined by

a ⇐ C1

...
a ⇐ Cn .

This again shows the different view of variables under-
lying (D`) and (D`)ω.

5 Computational issues

If we want to extend logic programming by defi-
nitional reflection, then the logical rule (D`) is more
appropriate then (D`)ω. The idea of successively com-
puting an answer substitution, which is central to logic
programming, is bound to strong closure under sub-
stitution, which holds for (D`) but not for (D`)ω. If
we are searching an answer substitution σ such that,
given a query Γ`A, the sequent Γσ`Aσ is derivable,
we compose σ step by step as σ = σ1 . . . σn. Here
any σi, which is being computed at a certain stage, is
viewed at the same time as (part of the) substitution
of the original query. This possibility of interchang-
ing substitution and computation, also called lifting,
crucially depends on a “vertical” connection between
variables, which according to Lemma 1 is available
for (D`), but not for (D`)ω . So, for computational
reasons, (D`)ω is not suitable as the basic rule of def-
initional reflection in an extended logic programming
language.

However, (D`)ω can play a central role in the mod-
elling of a certain kind of quantification in such a lan-
guage. Besides quantification in the “logical” sense in
which the introduction of ∀ on the right side and the
introduction of ∃ on the left side of the turnstile is
reduced to the schematic derivability with eigenvari-
ables, there may be “ω-quantification” in the sense
that ∀xA is reduced to Aσ for all substitutions σ.
This corresponds to the intuition behind (ω), which,



according to Theorem 4, is the characteristic part of
(D`)ω .

To allow for both definitional reflection with the
computation of answer aubstitutions in the sense of
(D`) and an interpretation of quantification in the
sense of (ω), Eriksson ([5]) has proposed a system
with the following general rule which we call (D`)gen.
We distinguish between existential variables x, y, z, . . .
and universal variables x∗, y∗, z∗, . . . (“parameters”).
In the terminology of the present paper, existential
variables are those for which strong closure under sub-
stitution holds and therefore answer substitutions can
be computed successively (in principle). Universal
variables are those for which only weak closure under
substitution holds. The primitive rules for quantifiers
are now formulated with universal variables x∗ and y∗

rather than x and y. Then (D`)gen is the following
rule.

(D`)gen:

{Γσ∗, Cσ∗ ` Aσ∗ : σ∗ = mgu(a, b) for b⇐C ∈ D}

Γ, a ` A
,

where σ∗ is a substitution of universal variables (in-
cluding variables in clauses), and where we have as
a proviso that for all substitutions θ for existential
variables in a, D(aθ) = (D(a))θ. (Eriksson’s rule is
even more general, allowing for higher-order defini-
tions. For details see [5].) Obviously, both (D`) and
(D`)ω are special cases of (D`)gen: (D`) is the case
without universal variables and (D`)ω the case with-
out existential variables.

It is obvious that this rule adds much expressive
power to extended logic programming languages, of
course with many algorithmic problems of how to ef-
ficiently compute bindings at applications of (D`)gen.

Philosophical Appendix Why is it that the ω-rule
in arithmetic

Γ[1/x]`A[1/x] Γ[2/x]`A[2/x] . . .

Γ`A

is infinitary, but (ω) is finitary? Basically because
of the absurdity principle, according to which Γ, a`A
holds, if a is not defined by the definition D.

This can be seen as follows: Suppose we want to
justify (ω) by showing that, if for each ground substi-
tution, each premiss of (ω) holds, then for each ground
substitution its conclusion holds, i.e., for each ground
θ : Γθ, aθ`Aθ. We have to argue as follows: Ei-
ther aθ is defined, i.e., aθ = bσ for some b⇐C ∈ D:

Then Γθ, aθ`Aθ is a substitution instance of a premiss
of (ω). Or aθ is not defined: Then Γθ, aθ`Aθ holds
anyway by the absurdity principle.

Therefore, if one does not accept the absurdity
principle for philosophical reasons, one cannot accept
(D`)ω.

Historical Appendix The rule (D`) is related to
the attempts to formulate a general schema for elimi-
nation rules in natural deduction (see [19]). The (in-
finitary) variable-free formulation was given 1986 by
Hallnäs [9] in his theory of partial inductive defini-
tions. The version with variables including the proviso
was developed by Hallnäs and the author in 1987 [10].
We also considered (D`)ω at that time, but rejected
it, since it did not seem to us appropriate for a logic
programming language. Its first serious consideration
was by Eriksson in a talk in May 1990 at Chalmers
University (Göteborg) and at the ELP-Workshop in
Stockholm in January 1991 [5], and is investigated in
detail in his thesis [6] as a special case of (D`)gen.
He gives a semantics of this rule in terms of infinitary
(variable-free) partial inductive definitions in Hallnäs’
sense, extends it by an induction principle and proves
completeness with respect to that semantics. In Au-
gust 1991 Girard presented a rule equivalent to (D`)ω

in a talk at the German workshop on Artificial Intelli-
gence and discussed it in [8]. He considers (D`)ω as a
rule in the framework of linear logic and motivates it
in relation to logic programming, in particular nega-
tion as failure. Cut elimination for the case of linear
logic is also mentioned.

Acknowledgements Since I have been working
closely with Lars-Henrik Eriksson and Lars Hallnäs,
some of their ideas may have entered this paper with-
out their authorship being mentioned in each case.
Further thanks are due to Dale Miller and the referees
for helpful comments and suggestions. This work was
supported by DFG grant Schr 275/8-1 and by Esprit
Basic Research Working Group 7232 (GENTZEN).



References

[1] Aronsson, M., Eriksson, L.-H., Gäredal, A.,
Hallnäs, L. & Olin, P. The programming language
GCLA: A definitional appraoch to logic program-
ming. New Generation Computing, 4 (1990), 381–
404.

[2] Aronsson, M. Implementational issues in GCLA:
A-sufficiency and the definiens operation. In:
E. Lamma & P. Mello (Eds.), Extensions of

Logic Programming. Third International Work-

shop, ELP-92, Bologna, February 1992, Proceed-

ings. Springer LNCS, Berlin 1993.

[3] Clark, K. L. Negation as failure. In: Gallaire, H.
& Minker, J. (Eds.), Logic and Data Bases, New
York 1978, 293–322.

[4] Curry, H. B. The inconsistency of certain formal
logics. Journal of Symbolic Logic, 7 (1942), 115–
117.

[5] Eriksson, L.-H. A finitary version of the calcu-
lus of partial inductive definitions. In: Eriksson,
L.-H., Hallnäs, L. & Schroeder-Heister, P. (Eds.),
Extensions of Logic Programming. Second Inter-

national Workshop, ELP-91, Stockholm, Janu-

ary 1991, Proceedings. Springer LNCS, Vol. 596,
Berlin 1992, 89–134.

[6] Eriksson, L.-H. Finitary Partial Inductive Defi-

nitions and General Logic. Ph. D. thesis, Royal
Institute of Technology, Stockholm 1993.

[7] Fitch. F. B. A system of formal logic without an
analogue to the Curry W operator. Journal of

Symbolic Logic, 1 (1936), 92–100.

[8] Girard, J.-Y. A fixpoint theorem for linear logic.
In: P. Lincoln (Ed.), Linear Logic Mailing List,
linear@cs.stanford.edu, 5 February 1992.

[9] Hallnäs, L. Partial inductive definitions. Theoret-

ical Computer Science, 87 (1991), 115-142. Pre-
vious versions published as SICS Research Re-
ports 86005 (1986) and 86005C (1988), and in:
Avron, A. et al. (Eds.), Workshop on General
Logic, Dept. of Computer Science, University of
Edinburgh, Report ECS-LFCS-88-52 (1988).

[10] Hallnäs, L. & Schroeder-Heister, P. A proof-
theoretic approach to logic programming. I.
Clauses as rules. Journal of Logic and Compu-

tation, 1 (1990), 261–283; II. Programs as defin-
itions, ibid. 1 (1991), 635–660. Previous version
published at SICS Research Report 88005, 1988.

[11] Hallnäs, L. & Schroeder-Heister, Jean Yves Gi-
rard’s “A fixpoint theorem in linear logic”. In:
P. Lincoln (Ed.), Linear Logic Mailing List, lin-
ear@cs.stanford.edu, 19 February 1992.

[12] Hermes, H. Zum Inversionsprinzip der operativen
Logik. In: A. Heyting (ed.), Constructivity in

Mathematics, Amsterdam: North-Holland, 1961,
62-68.

[13] Lorenzen, P. Einführung in die operative Logik

und Mathematik. Springer: Berlin 1955, 2nd ed.
Berlin 1969.

[14] Martin-Löf, P. Hauptsatz for the intuitionistic
theory of iterated inductive definitions. In: Fen-
stad, J. E. (Ed.), Proceedings of the Second Scan-

dinavian Logic Symposium, North-Holland: Am-
sterdam 1971, 179–216.

[15] Nadathur, G. & Miller, D. An overview of λ-
Prolog. In: Kowalski, R. & Bowen, K. (Eds.),
Fifth International Conference on Logic Program-

ming, MIT Press 1988, 810–827.

[16] Paulson, L. C. & Smith, A. W. Logic program-
ming, functional programming, and inductive de-
finitions. In: P. Schroeder-Heister (Ed.), Exten-

sions of Logic Programming. International Work-

shop, Tübingen, FRG, December 1989, Proceed-

ings. Springer LNCS, Vol. 475, Berlin 1991, 283–
309.

[17] Prawitz, D. Natural Deduction: A Proof-

Theoretical Study. Almqvist & Wiksell: Stock-
holm, 1965.

[18] Sahlin, D., Franzén, T. & Haridi, S. An intuition-
istic predicate logic theorem prover, Journal of

Logic and Computation (to appear).

[19] Schroeder-Heister, A natural extension of natural
deduction, Journal of Symbolic Logic, 49 (1984),
1284–1300.

[20] Schroeder-Heister, P. Hypothetical reasoning
and definitional reflection in logic program-
ming. In: P. Schroeder-Heister (Ed.), Exten-

sions of Logic Programming. International Work-

shop, Tübingen, FRG, December 1989, Proceed-

ings. Springer LNCS, Vol. 475, Berlin 1991, 327–
340.

[21] Schroeder-Heister, P. Cut-elimination in logics
with definitional reflection. In: D. Pearce &



H. Wansing (Eds.), Nonclassical Logics and In-

formation Processing. International Workshop,

Berlin 1990, Proceedings. Springer LNCS, Vol.
619, Berlin 1992, 146–171.

[22] Schroeder-Heister, P. Definitional reflection and
the completion. Extensions of Logic Program-

ming. Fourth International Workshop, ELP-93,

St. Andrews, March 1993.

[23] Slaney, J. Solution to a problem of Ono and Ko-
mori. Journal of Philosophical Logic, 18 (1989),
103–111.


